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A WEAK TRAPEZOIDAL METHOD FOR A CLASS OF

STOCHASTIC DIFFERENTIAL EQUATIONS∗

DAVID F. ANDERSON† AND JONATHAN C. MATTINGLY‡

Abstract. We present a numerical method for the approximation of solutions for the class
of stochastic differential equations driven by Brownian motions which induce stochastic variation
in fixed directions. This class of equations arises naturally in the study of population processes
and chemical reaction kinetics. We show that the method constructs paths that are second order
accurate in the weak sense. The method is simpler than many second order methods in that it
neither requires the construction of iterated Itô integrals nor the evaluation of any derivatives. The
method consists of two steps. In the first an explicit Euler step is used to take a fractional step. The
resulting fractional point is then combined with the initial point to obtain a higher order, trapezoidal
like, approximation. The higher order of accuracy stems from the fact that both the drift and the
quadratic variation of the underlying SDE are approximated to second order.

Key words. Weak trapezoidal, error analysis, reaction networks, higher-order methods, stochas-
tic differential equations, numerical methods.
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1. Introduction

We consider the problem of constructing accurate approximations on bounded
time intervals to solutions of the following family of stochastic differential equations
(SDEs)

dX(t) = b(X(t))dt+

M
∑

k=1

σk(X(t)) νk dWk(t),

X(0) = x ∈ R
d, (1.1)

where b : Rd → R
d, σk : R

d → R≥0, νk ∈ R
d, and Wk(t) are one-dimensional Wiener

processes. Thus, randomness enters the system in fixed directions νk, but at variable
rates σk(X(t)). Precise regularity conditions on the coefficients will be presented with
our main results in Section 2.

The algorithm developed in this paper is a trapezoidal-type method and consists
of two steps; in the first an explicit Euler step is used to take a fractional step and in
the second the resulting fractional point is used in combination with the initial point to
obtain a higher order, trapezoidal like, approximation. We will prove that the method
developed is second order accurate in the weak sense. Because the method developed
here produces single paths, it is natural to allow variable step-sizes; this is in contrast
to Richardson extrapolation techniques ([20]). Finally, it is important to note that
while the method presented in this paper is applicable to only a sub-class of SDEs,
that sub-class does include systems whose diffusion terms do not commute, which is
a classical simplifying assumption to obtain higher order methods (see [9, 14]).
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The method we propose is in some sense similar to the classical predictor- correc-
tor. There have already been a number of such methods proposed in the stochastic
context to produce higher-order methods (see [18, 19, 5]). In a general way, all of
these methods require the simulation of iterated Itô integrals and sometimes need
derivatives of the diffusion terms. If one only cares about weak accuracy, it is possible
to use random variables which make these calculations easier and computationally
cheaper. That being said, the complexity and cost of such calculations is one of the
main impediments to their wider use. By assuming a certain structure for (1.1), we
are able to develop a numerical method which we hope is more easily applied and
implemented.

Though a specific structure of (1.1) is assumed, it is a structure which arises nat-
urally in a number of settings. For example, our method will be applicable whenever
d = 1. Also, we note that diffusion approximations to continuous time Markov chain
models of population processes, including (bio)chemical processes, satisfy (1.1). As
stochastic models of biochemical reaction systems, and, in particular, gene regulatory
systems, are becoming more prevalent in the science literature, developing algorithms
that utilize the specific structure of such models has increased importance [1, 2].
Furthermore, in Section 8 we quote a result from the literature which states that
any system with uniformly elliptic diffusion can be put in the form of (1.1) without
changing its distribution.

The topic of this paper is a method that produces a weak approximation rather
than a strong approximation in that the approximate trajectory is produced without
reference to an underlying Wiener process trajectory. We see this as an advantage.
Except for applications such as filtering or certain problems of collective motion for
stochastic flows, one is usually simply interested in generating an accurate draw from
the distribution on C([0, T ],Rd) induced by (1.1). This is different than accurately
reproducing the Itô map W 7→ X(t,W ) implied by (1.1). The latter is referred to as
strong approximation. In our opinion such approximations are usually unnecessary
and lead to a concept of accuracy which is unnecessarily restrictive. In [7], it is
discussed that without accurately estimating second order Itô integrals one cannot
produce a strong method of order greater then 1/2. If the vector fields commute, then
this restriction does not apply and higher order strong methods are possible. While
the term “strong approximation” is quite specific, the term “weak approximation”
is used for a number of concepts. Here we mean that the joint distribution of the
numerical method at a fixed number of time points converges to the true marginal
distribution as the numerical grid converges to zero. If this error goes to zero at a rate
equal to the numerical mesh size raised to the power p in some norm on measures,
then we say the method is of order p. This should be contrasted with talking about
the rate at which a given function of the path converges.

The outline of the paper is as follows. In Section 2 we present our algorithm
together with our main results concerning its weak error properties. In Section 3
we give the intuition as to why the method should work. In Section 4 we give the
delayed proof of the local error estimates for the method which were stated in Sec-
tion 2. In Section 5 we provide examples illustrating the performance of the proposed
algorithm. In Section 6 we discuss the effect of varying the size of the first fractional
step of the algorithm. In Section 7 we compare one step of the algorithm to one step
in a Richardson extrapolation type algorithm. In Section 8 we show how, at least
theoretically, the method can be applied to any uniformly elliptic SDE. Finally, an
appendix contains a tedious calculation needed in Section 4.
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2. The numerical method and main results

Throughout the paper, we let X(t) denote the solution to (1.1) and Yi denote
the computed approximation at the time ti for the time discretization 0 = t0 < t1 <
· · · . We begin both from the same initial condition, namely X(0) = Y0 = x0. Let
{

η
(i)
1k , η

(i)
2k : k ∈ {1, . . . ,M}, i ∈ N

}

be a collection of mutually independent Gaussian
random variables with mean zero and variance one. It is notationally convenient to
define [x]+ = x ∨ 0 = max{x, 0}.

We propose the following algorithm to approximate the solutions of (1.1).

Algorithm. (Weak θ-Midpoint Trapezoidal ) Fixing θ ∈ (0, 1), we define

α1
def

=
1

2

1

θ(1− θ)
and α2

def

=
1

2

(1− θ)2 + θ2

θ(1− θ)
. (2.1)

Next, fixing a discretization step h, for each i ∈ {1, 2, 3, . . . } we repeat the following

steps in which we first compute a θ-midpoint y∗ and then the new value Yi:

Step 1. y∗ = Yi−1 + b(Yi−1)θh+
M
∑

k=1

σk(Yi−1) νk η
(i)
1k

√
θh

Step 2.

Yi = y∗ + (α1b(y
∗)− α2b(Yi−1))(1− θ)h

+
M
∑

k=1

√

[

α1σ2
k(y

∗)− α2σ2
k(Yi−1)

]+
νk η

(i)
2k

√

(1− θ)h.

Remark 2.1. Notice that on the ith-step y∗ is the standard Euler approximation to
X(θh+ (i− 1)h) starting from Yi−1 at time (i− 1)h [13].

Remark 2.2. Notice that for all θ ∈ (0, 1) one has α1 > α2 and α1 − α2 = 1.
It is reasonable to ask which θ is best. Notice that when θ = 1/2 both α1 and α2

are minimized with values α1 = 2 and α2 = 1. This likely has positive stability
implications. From the point of view of accuracy θ = 1/2 also seems like a reasonable
choice as it provides a central point for building a balanced trapezoidal approximation,
as will be explained in Section 3. Further, picking a θ close to 1 or 0 increases the
likelihood that the term [α1σ

2
k(y

∗) − α2σ
2
k(Yi−1)]

+ will be zero, which will lower the
accuracy of the method. If instability due to stiffness is a concern, one might consider
a θ closer to one as that would likely give better stability properties, making the
method closer to an implicit method. In general, θ = 1/2 seems like a reasonable
compromise, though this question requires further investigation and will be briefly
revisited in Section 6.

For simplicity, we will restrict ourselves to the case when b and the σk are in
C6(Rd) — the space of bounded functions whose first through sixth derivatives are
continuous and bounded. In general, we will denote by Ck(Rd) the space of bounded,
continuous functions whose first k derivatives are bounded and continuous. For f ∈
Ck(Rd), we define the standard norm

‖f‖k = sup
{

|f(x)|, |∂αf(x)| : x ∈ R
d, α = (α1, . . . , αj), αi ∈ {1, . . . , d}, j ≤ k

}

.

It is notationally convenient to define the Markov semigroup Pt : C
k → Ck associated

with (1.1) by

(Ptf)(x)
def
=Exf(X(t)), (2.2)



304 A WEAK TRAPEZOIDAL METHOD FOR STOCHASTIC DIFFERENTIAL EQUATIONS

where X(0) = x and Markov semigroup Ph : C
k → Ck associated with a single full

step of size h of the numerical method by

(Phf)(y)
def
=Eyf(Y1),

where Y0 = y. Clearly ‖Phf‖0 ≤ ‖f‖0 and ‖Phf‖0 ≤ ‖f‖0. It is also a standard fact,
which we summarize in Appendix B, that in our setting, for any t > 0 and k ∈ N,
if b, σ1, . . . σM ∈ Ck then there exists a C = C(T, k, b, σ) so that ‖Ptf‖k ≤ C‖f‖k is
true for all t ≤ T . All of these can be rewritten succinctly in the induced operator
norm from Ck → Ck as ‖Pt‖k→k ≤ C, ‖Pt‖0→0 ≤ 1, and ‖Ph‖0→0 ≤ 1. Analogously,
for any linear operator L : Ck → Cℓ we will denote the induced operator norm from
Ck → Cℓ by ‖L‖k→ℓ which is defined by

‖L‖k→ℓ = sup
f∈Ck,f 6=0

‖Lf‖ℓ
‖f‖k

.

The following two theorems are the principle results of this article. They give,
respectively, the weak local and global error of the Weak Trapezoidal method.

Theorem 2.3 (One-step approximation). Assume that b ∈ C6 and for all k,
σk ∈ C6 with infx σk(x) > 0. Then there exists a constant K so that

‖Ph − Ph‖6→0 ≤ Kh3 (2.3)

for all h sufficiently small.

From this one-step error bound, it is relatively straight-forward to obtain a global
error bound. The following result shows that our approximation scheme gives a weak
approximation of second order.

Theorem 2.4 (Global approximation). Assume that b ∈ C6 and for all k,
σk ∈ C6 with infx σk(x) > 0. Then for any T > 0 there exists a constant C(T ) such

that

sup
0≤n≤T/h

‖Pnh − Pn
h ‖6→0 ≤ C(T )h2. (2.4)

Proof. We begin by observing that

Pn
h − Pnh =

n
∑

k=1

P k−1
h (Ph − Ph)Ph(n−k)

and hence since sup0≤s≤T ‖Ps‖6→6 ≤ C̃(T ) and ‖P k
h ‖0→0 ≤ 1, using (2.3) we have

that for any n with 0 ≤ n ≤ T/h

‖Pnh − Pn
h ‖6→0 ≤

n
∑

k=1

‖P k−1
h ‖0→0‖Ph − Ph‖6→0‖Ph(n−k)‖6→6

≤
n
∑

k=1

C̃(T )Kh3 = KTC̃(T )h2 = C(T )h2.

Remark 2.5. The restriction that infx σk(x) > 0 can likely be relaxed if one has
some control of the behavior of the solution around the degeneracies of σk(x). This
assumption is made to keep the proof simple with easily stated assumptions.
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3. Why the method works

We now give two different, but related, explanations as to why the Weak θ-
Midpoint Trapezoidal Algorithm is second order accurate in the weak sense.

3.1. A first point of view. Inserting the expression for y∗ from Step 1 of the
Weak θ-Midpoint Trapezoidal Algorithm into Step 2 and disregarding the diffusion
terms yields

Yi = Yi−1 + h

[

1

2θ
b(y∗) +

(

1− 1

2θ

)

b(Yi−1)

]

+ . . . . (3.1)

= Yi−1 + b(Yi−1)h+
b(y∗)− b(Yi−1)

θh

h2

2
+ . . . . (3.2)

Considering (3.1), we see that when θ ≈ 1 we recover the standard theta method
(not to be confused with our use of θ) with theta = 1/2, which is known to be a
second order method for deterministic systems. When θ = 1/2, we recover the stan-
dard trapezoidal or midpoint method. For θ 6= 1/2, we simply have a trapezoidal
rule where a fractional point of the interval is used in the construction of the trape-
zoid. We will argue heuristically that the Weak Trapezoidal Algorithm handles the
diffusion terms similarly. We also note that (3.2) shows that our algorithm can be
understood as an approximation to the two-step Taylor series where θ is a parameter
used to approximate the second derivative. This idea will be revisited in the proof of
Theorem 2.3.

Equation (1.1) is distributionally equivalent to

X(t) = X(0) +

∫ t

0

b(X(s))ds+

M
∑

k=1

νk

∫ ∞

0

∫ t

0

1[0,σ2
k
(X(s)))(u)Yk(du× ds), (3.3)

where the Yk are independent space-time white noise processes1 and all other notation
is as before, in that solutions to (3.3) are Markov processes that solve the same
martingale problem as solutions to (1.1); that is, they have the same generator [6].
In order to approximate the diffusion term in (3.3) over the interval [0, h), we must
approximate Yk(A[0,h)(σ

2
k)), where A[0,h)(σ

2
k) is the region under the curve σ2

k(X(t)),
for 0 ≤ t ≤ h.

We consider a natural way to approximate X(h) and focus on the double integral
in (3.3) for a single k. We also take θ = 1/2 for simplicity and simply note that the
case θ 6= 1/2 follows similarly. We begin by approximating the value X(h/2) by y∗

obtained via an Euler approximation of the system on the interval [0, h/2). To do so,
we hold X(t) fixed at X(0) and see that we need to calculate Yk(Region 1), where
Region 1 is the grey shaded region in Figure 3.1(a). Because

Yk(Region 1)
D
= N(0, σ2

k(X(0))h/2)
D
= σk(X(0))

√

h
2 N(0, 1),

we see that this step is equivalent in distribution to Step 1 of Algorithm 1.1. (Here

and in the sequel, “
D
=” denotes “equal in distribution.”)

1More precisely, the Yk are random measures on [0,∞)2 such that if A,B ⊂ [0,∞)2 with A∩B = ∅
then Yk(A) and Yk(B) are each independent, mean zero Gaussian random variables with variances
Area(A) and Area(B), respectively. Integration with respect to this field can be defined in the
standard way beginning with adapted simple functions which are fixed random variables on fixed
rectangular sets and then extending by linearity after the appropriate Itô isometry is established.
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Region 1

σ
2

k(X(0))

σ
2

k(y
∗)

σ
2

k(X(t))

(a) First step

Region 2

Region 3

σ
2

k(X(t))

(b) Desired second step

Region  3

Region 4

Region 5

σ
2

k(X(t))

2 |V |

|V |

(c) Used second step

Fig. 3.1: A graphical depiction of the Weak Trapezoidal Algorithm with θ = 1/2. In (a) the region
of space-time used in the first step of the Weak Trapezoidal Algorithm is depicted by the grey shaded
Region 1. In (b) the desired region to use, in order to perform a trapezoidal approximation, would
be Region 2. However we have used Region 3 in our previous calculation and this is analytically
problematic to undo. In (c), where V = σ2

k(y
∗) − σ2

k(X(0)), we see that Region 5 gives the correct
amount of new area wanted as subtracting off the area of Region 4 “offsets” the used area of Region
3. The case θ 6= 1/2 is similar.

If we were trying to determine the area under the curve σ2
k(X(t)) using an esti-

mated midpoint y∗ for a deterministic X(t), one natural (and common) way would be
to use the area of Region 2, where Region 2 is the grey shaded region in Figure 3.1(b).
Such a method would be equivalent to the trapezoidal rule given in (3.1). However,
in our setting we would have to ignore, or subtract off, the area already accounted for
in Region 3, which is depicted as the shaded green section of Figure 3.1(b). In doing
so, the random variable needed in order to perform this step would necessarily be
dependent upon the past (via Region 3), and our current analysis would break down.
However, noting that Region 3 has the same area as Region 4, as depicted by the blue
shaded region in Figure 3.1(c), we see that it would be reasonable to expect that if
one only uses Region 5, as depicted as the grey shaded region in Figure 3.1(c), then
the accuracy of the method should be improved as we have performed a trapezoidal
type approximation. Because

Yk(Region 5)
D
= N

(

0,
(

σ2
k(X(0)) + 2V

)

h
2

)

D
=

√

σ2
k(X(0)) + 2V

√

h
2N(0, 1)

=
√

2σ2
k(y

∗)− σ2
k(X(0))

√

h
2N(0, 1),

where V = σ2
k(y

∗) − σ2
k(X(0)), we see that this is precisely what is carried out by

Step 2 of the Weak θ-Midpoint Trapezoidal Algorithm.

3.2. A second point of view. To obtain a higher order method one must
both approximate well the expected drift term as well as the quadratic variation of the
process. The basic idea of the Weak Trapezoidal Algorithm is to make a preliminary
step using an Euler approximation and then use this step to make a higher order
approximation to the drift integral and to the quadratic variation integral. Similar to
(3.1), the desired one step approximation to the quadratic variation integrals are

∫ h

0

σ2
k(X(s))ds ≈ h

[

1

2θ
σ2
k(y

∗) +

(

1− 1

2θ

)

σ2
k(Yi−1)

]

,
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where all notation is as before.
Considering just the variance terms of the quadratic variation, we let {ei} be an

orthonormal basis and see that our method yields the approximation

Var(X(h) · ei) ≈
M
∑

k=1

Var
(

σk(Y0)(νk · ei)η1k
√
θh

+

√

[

α1σ2
k(y

∗)− α2σ2
k(Y0)

]+
(νk · ei)η2k

√

(1− θ)h
)

=
M
∑

k=1

E

(

σ2
k(Y0)θ +

[

α1σ
2
k(y

∗)− α2σ
2
k(Y0)

]+
(1− θ)

)

(νk · ei)2h.

If the step-size is sufficiently small, then
[

α1σ
2
k(y

∗)−α2σ
2
k(Y0)

]+
is positive with high

probability because of our uniform ellipticity assumption; hence,

Var(X(h) · ei) ≈ E

M
∑

k=1

(νk · ei)2
( 1

2θ
σ2
k(y

∗) +
(

1− 1

2θ

)

σ2
k(Yi−1)

)

h,

which is a locally third order approximation to the true quadratic variation integral
of

Var(X(h) · ei) = E

M
∑

k=1

(νk · ei)2
∫ h

0

σ2
k(X(s))ds.

Notice that it was important in this simple analysis that the direction of variation
νk stayed constant over the interval so that the two terms could combine exactly. Of
course, one should really be computing the full quadratic variation, including terms
such as Cov(X(h) · ei, X(h) · ej), but they follow the same pattern as above because

each is a linear combination of the integral terms
∫ h

0
σ2
k(X(s))ds.

4. Proof of local error estimate

We now give the proof of the local error estimate given in Theorem 2.3 which is
the central result of this paper.

Proof. (of Theorem 2.3) We need to show that there exists a constant K so that
for any f ∈ C6 one has

|Ef(Y1)− Ef(X(h))| ≤ K‖f‖6h3.

Hence for the reminder of the proof we fix an arbitrary f ∈ C6. Observe that Step
1 of the Weak Trapezoidal Algorithm produces a value, y∗, that is distributionally
equivalent to y(θh), where y(t) solves

dy(t) = b(y(0))dt+
M
∑

k=1

σk(y(0)) νk dWk(t),

y(0) = x0. (4.1)

Likewise, Step 2 of the Weak Trapezoidal Algorithm produces a value, Y1, that is
distributionally equivalent to y(h), where y(t) solves

dy(t) = (α1b(y
∗)− α2b(x0))dt+

M
∑

k=1

√

[α1σ2
k(y

∗)− α2σ2
k(x0)]+ νk dWk(t),

y(θh) = y∗. (4.2)
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Let Ft denote the filtration generated by the Weiner processes Wk(t) in (4.1) and
(4.2). Then

Ef(y(h)) = E [E[f(y(h)) | Fθh] ]
def
=E [Eθhf(y(h))], (4.3)

where we have made the definition Eθh[ · ]def=E[ · | Fθh].
Let A denote the generator for the process (1.1), B1 denote the generator for the

process (4.1), and B2 denote the generator for the process (4.2) conditioned upon
Fθh. Then

(Af)(x) = f ′[b](x) +
1

2

∑

k

σ2
kf

′′[νk, νk](x),

(B1f)(x) = f ′[b(x0)](x) +
1

2

∑

k

σk(x0)
2f ′′[νk, νk](x), and

(B2f)(x) = f ′[α1b(y
∗)− α2b(x0)](x) +

1

2

∑

k

[α1σk(y
∗)2 − α2σk(x0)

2]+f ′′[νk, νk](x),

where f ′[ξ](z) is the derivative of f in the direction ξ evaluated at the point z. Note

that (Af)(x0) = (B1f)(x0). For any integer k ≥ 2 we define recursively (Akf)(x)
def
=

(A(Ak−1f))(x), and similarly for B1 and B2. By repeated application of the Itô-
Dynkin formula (see [17]), we have

Eθhf(y(h)) = f(y∗) +

∫ h

θh

Eθh(B2f)(y(s)) ds

= f(y∗) + (B2f)(y
∗)(1− θ)h+

∫ h

θh

∫ s

θh

Eθh(B
2
2f)(y(r)) dr ds

= f(y∗) + (B2f)(y
∗)(1− θ)h+ (B2

2f)(y
∗)
(1− θ)2h2

2

+

∫ h

θh

∫ s

θh

∫ r

θh

Eθh(B
3
2f)(y(u)) du dr ds.

(4.4)

The term (B3
2f)(y(u)) depends on the first six derivatives of f . Therefore, since

f ∈ C6,
∣

∣

∣

∣

∣

∫ h

θh

∫ s

θh

∫ r

θh

Eθh(B
3
2f)(y(u)) du dr ds

∣

∣

∣

∣

∣

≤ C‖f‖6h3 (4.5)

for some constant C. Combining (4.3), (4.4), (4.5), and recalling that Ef(Y1) =
Ef(y(h)), gives

Ef(Y1) = E [ Eθhf(y(h))]

= E f(y∗) + E (B2f)(y
∗)(1− θ)h

+ E (B2
2f)(y

∗)
(1− θ)2h2

2
+O(h3). (4.6)

Here and in the sequel, we will write F = G + O(hp) to mean that there exist a
constant K depending on only σ and b so that for all initial conditions x0,

|F −G| ≤ K‖f‖6hp (4.7)
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for h sufficiently small. In the spirit of the preceding calculation, repeated application
of the Itô-Dynkin formula to (1.1) produces

Ef(X(h)) = f(x0) + (Af)(x0)h+ (A2f)(x0)
h2

2
+O(h3).

The proof of the theorem is then completed by Lemma 4.1 given below. Its proof,
which is straightforward but tedious, is given in the appendix.

Lemma 4.1. Under the assumptions of Theorem 2.3, for all h > 0 sufficiently small

and f ∈ C6 one has

E

[

f(y∗) + (B2f)(y
∗)(1− θ)h+ (B2

2f)(y
∗)
(1− θ)2h2

2

]

=f(x0) + (Af)(x0) + (A2f)(x0)
h2

2
+O(h3).

Remark 4.2. Comparing Equation (3.2) and Lemma 4.1 shows that our algorithm
can be viewed as providing an approximation to the two step Taylor series approxi-
mation.

5. Examples

We present two examples that demonstrate the rate of convergence of the Weak
Trapezoidal Algorithm with θ = 1/2. In each example we shall compare the accuracy
of the proposed algorithm to that of Euler’s method and a “midpoint drift” algorithm
defined via repetition of the following steps

y∗ = Yi−1 + b(Yi−1)
h

2
,

Yi = Yi−1 + b(y∗)h+
M
∑

k=1

σk(Yi−1)νk ηk
√
h,

(5.1)

where the notation is as before. We compare the proposed algorithm to that given via
(5.1) to point out that the gain in efficiency being demonstrated is not solely due to
the fact that we are getting better approximations to the drift terms, but also because
of the superior approximation of the diffusion terms.

5.1. First example. Consider the system
[

dX1(t)
dX2(t)

]

=

[

X1(t)
0

]

+X1(t)

[

0
1

]

dW1(t) +
1

10

[

1
1

]

dW2(t), (5.2)

where W1(t) and W2(t) are standard Weiner processes. In our notation b1(x) = x1,
b2(x) = 0, σ1(x) = x1, σ2(x) = 1/10, and ν1 = [0, 1]T , ν2 = [1, 1]T . Note that the
noise does not commute. It is an exercise to show that

EX2(t)
2 = E X2(0)

2 − 1

2
E X1(0)

2 +
1

400
e2t(200EX1(0)

2 + 1) +
t

200
− 1

400
. (5.3)

For both Euler’s method and the midpoint drift method (5.1) we used step sizes
hk = 1/3k, k ∈ {1, 2, 3, 4, 5} and initial condition X1(0) = X2(0) = 1 to generate
500, 000 sample paths of the system (5.2). We then computed

errork(t) = EX2(t)
2 − 1

5× 105

5×105
∑

i=1

X
hk

2 (t)2, (5.4)
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where X
hk
(t) is the sample path generated numerically and EX2(t)

2 is given via (5.3).
We also generated 10, 000, 000 sample paths using the Weak Trapezoidal Algorithm
with the same initial condition and step sizes hk = 1/(4k), k ∈ {1, 2, 3, 4}. We then
computed errork(t) similarly to before. The outcome of the numerical experiment is
summarized in Figure 5.1a where we have plotted log(hk) versus log(|errork(1)|) for
the different algorithms. As expected, we see that the Weak Trapezoidal Algorithm
gives an error that decreases proportional to h2, whereas the other two algorithms
give errors that decrease proportional to h.
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(a) First Example
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(b) Second Example

Fig. 5.1: Log-log plots of the step-size versus the error for the three different algorithms. In (a)
the example (5.2) is considered. The best fit lines for the data (shown) have slopes 2.029, .998,
and 1.030, for the Weak Trapezoidal Algorithm, Euler’s method, and the midpoint drift method,
respectively. In (b) the example in (5.5) is considered. The best fit lines for the data (shown)
have slopes 2.223, .952, and 1.098, for the Weak Trapezoidal Algorithm, Euler’s method, and the
midpoint drift method, respectively. In both examples all results agree with what was expected.

5.2. Second example. Now consider the following system that is similar to
one considered in [20]:

[

dX1(t)
dX2(t)

]

=

[

−X2(t)
X1(t)

]

+

√

sin2(X1(t) +X2(t)) + 6

t+ 1

[

1
0

]

dW1(t)

+

√

cos2(X1(t) +X2(t)) + 6

t+ 1

[

0
1

]

dW2(t),

(5.5)

where W1(t) and W2(t) are independent Weiner processes. It is simple to show that

E|X(t)|2 = EX(0)2 + 13 log(1 + t). (5.6)

We used step sizes hk = 1/(2k), k ∈ {1, 2, . . . , 8}, to generate five million approximate
sample paths of the system (5.5) using each of: (a) Weak Trapezoidal Algorithm, (b)
Euler’s method, and (c) the midpoint drift method (5.1). We then computed

errork(t) = E|X(t)|2 − 1

5× 106

5×106
∑

i=1

|Xhk
(t)|2,
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where X
hk
(t) is the sample path generated numerically and E|X(t)|2 is given via

(5.6). The outcome is summarized in Figure 5.1b where we have plotted log(hk)
versus log(|errork(1)|) for the different algorithms. As before, we see that the Weak
Trapezoidal Algorithm gives an error that decreases proportional to h2, whereas the
other two algorithms give errors that decrease proportional to h.

Remark 5.1. We note that in both examples we needed to average over an extremely
large number of computed sample paths in order to estimate errork(t) for the Weak
Trapezoidal Algorithm. This is due to the fact that the increased accuracy of the
method quickly makes sampling error the dominant error.

6. The effect of varying θ

The term
[

α1σ
2
k(y

∗)−α2σ
2
k(Yi−1)

]+
in Step 2 of the Weak Trapezoidal Algorithm

will yield zero, and the given step will have a local error of only O(h2), if

α1σ
2
k(y

∗) < α2σ
2
k(Yi−1) ⇐⇒ σ2

k(y
∗) <

α2

α1
σ2
k(Yi−1) = (1− 2θ + 2θ2)σ2

k(Yi−1).

We will call such a step a “degenerate” step. The function g(θ) = 1 − 2θ + 2θ2 is
minimized at g(1/2) = 1/2, and g(θ) → 1 as θ → 0 or θ → 1. Therefore, as mentioned
Remark 2.2, one would expect that as θ → 0 or θ → 1 more steps will be degenerate,
and a decrease in accuracy, together with a bias against σk decreasing, would follow.
Using a step-size of h = 1/10, we tracked the percentage of degenerate steps for the
simple system

dX(t) =
√

X(t)2 + 1 dW (t), X(0) = 1, (6.1)

where W (t) is a standard Weiner process. To do so, we computed 10, 000 sample
paths over the time interval [0, 1] for each of θ = .02k, k ∈ {1, . . . , 49}. The results
are shown in Figure 6.1a where the behavior predicted above is seen. Curiously, the
minimum number of rejections takes place at θ = .42. It is also worth noting that
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(b) accuracy for different θ

Fig. 6.1: (a) The number of degenerate steps for the Weak Trapezoidal Algorithm applied to (6.1)
with h = 1/10 and different values of θ. (b) The log h vs log(|error|) plot is given for different
choices of θ for the Weak Trapezoidal Algorithm applied to (5.2) where the error is defined similarly
to (5.4). The best fit lines for the data (shown) have slopes 1.865, 1.996, 2.029, and 2.033 for
θ = .05, .25, .50, .75, respectively.
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one can check on computer software that in the general case the coefficient of h3 for
the one-step error grows like 1/θ as θ → 0. This does not happen in the deterministic
case (3.1).

While the above considerations give some interesting insight into the effect of
various θ, the situation is more complex. A θ closer to one should give the method
more stability, albeit at an expense as the rejection fraction increases as θ approaches
one. It would be interesting to perform a stability analysis in the spirit of [8] to better
understand the effect of θ. In lieu of this, Figure 6.1b gives the result of a convergence
analysis of the Weak Trapezoidal Algorithm applied to (5.2) with different choices of
θ. Interestingly, larger θ seem to result in smaller (and hence better) convergence rate
prefactors. This seems to indicate that in at least this example stability is an issue.

The performance of the Weak Trapezoidal Algorithm as a function of θ is a topic
deserving further consideration, but combining the above shows that θ = 1/2 is a
reasonable first choice, though stability considerations might lead one to consider a θ
closer to 1.

7. Comparison to richardson extrapolation

It is illustrative to compare the Weak Trapezoidal Algorithm to Richardson ex-
trapolation, which from a certain point of view is the method in the literature that is
most similar to ours. See [20] for complete details of Richardson extrapolation in the
SDE setting.

Let Zh/2(t) and Zh(t) denote approximate sample paths of (1.1) generated using
Euler’s method with step sizes of h/2 and h, respectively. For all f satisfying mild
assumptions, both Ef(Zh/2(t)) and Ef(Zh(t)) will approximate Ef(X(t)) with an
order of O(h). However, Richardson extrapolation may be used and the linear com-
bination 2Ef(Zh/2(t)) − Ef(Zh) will approximate Ef(X(t)) with an order of O(h2)
(see [20]). Of course, taking f to be the identity shows that the linear combination
2Zh/2(t)−Zh(t) gives an O(h2) approximate of the mean of the process. As Richard-
son extrapolation does not compute a single path, but instead uses the statistics from
two to achieve a higher order of approximation for a given statistic, we will compare
one step of the Weak Trapezoidal Algorithm with a step-size of h, to one step of size
h of the process 2Zh/2(t)− Zh(t) with the clear understanding that 2Zh/2(t)− Zh(t)
is only O(h) accurate for higher moments.

Recall that systems of the form (1.1) are equivalent to those driven by space-time
white noise processes (3.3). As in Section 3.1, we consider how each method uses the
areas of [0,∞)2 associated to Yk(du×ds) from (3.3) during one step. We will proceed
considering a single k since it is sufficient to illustrate the point. For Ai ⊂ [0,∞)2, we
denote by ηAi

a normal random variable with mean 0 and variance area(Ai). Recall
that ηAi

and ηAj
are independent as long as Ai ∩ Aj has Lebesgue measure zero.

Consider (7.1)(a) in which we are supposing that σ2
k(X(t)) increases over a single

time-step. The change in the process Zh/2 due to this k would be νk times

ηA1
+ ηA2

+ ηA3
.

Similarly, the change in Zh would be νk times ηA1
+ ηA2

. Therefore, the change in
the process 2Zh/2(t)− Zh(t) would be νk times

ηA1
+ ηA2

+ 2ηA3
.

On the other hand, the change in the process generated by the Weak Trapezoidal
Algorithm due to this k is νk times

ηA1
+ ηA2

+ ηA3
+ ηA4

.
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(a) When the process increases
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(b) When the process decreases

Fig. 7.1: The areas of space-time utilized by 2Zh/2 − Zh and the Weak Trapezoidal Algorithm for

a single k and a single step. In 7.1(a), σ2
k(X(t)) increases and 2Zh/2 −Zh uses ηA1

+ ηA2
+2ηA3

,

whereas the Weak Trapezoidal Algorithm uses ηA1
+ ηA2

+ ηA3
+ ηA4

. In the case when σ2
k(X(t))

decreases, 7.1(b) above, the processes use ηA1
+ ηA2

+ ηA3
− ηA4

and ηA1
+ ηA2

, respectively. In
both cases, it is the better use of the areas by the Weak Trapezoidal Algorithm that achieves a higher
order of convergence.

Therefore, and as expected, the means should be the same, but the variances should
not as

V ar(2ηA3
) = 4V ar(ηA3

) = 2V ar(ηA3
+ ηA4

).

Similarly, in the case in which σ2
k(X(t)) decreases as depicted in (7.1)(b), the process

2Zh/2(t) − Zh(t) would use ηA1
+ ηA2

+ ηA3
− ηA4

, whereas the Weak Trapezoidal
Algorithm would use ηA1

+ηA2
. Again, the means will be the same, but the variances

will not. In both cases, the Weak Trapezoidal Algorithm makes better use of the
areas to approximate the quadratic variation of the true process, and thus achieves a
higher order of convergence.

8. Extension to general uniformly elliptic systems

For a moment let us consider the setting of general uniformly elliptic SDEs

dX(t) = b(X(t))dt+

M
∑

k=1

gk(X(t)) dWk(t),

X(0) = x ∈ R
d,

(8.1)

where b and W are as before and gk : R
d → R

d is such that if
G(x) = (g1(x), · · · , gM (x))(g1(x), · · · , gM (x))T then there exist positive λ− and λ+

such that

λ−|ξ|2 ≤ G(x)ξ · ξ ≤ λ+|ξ|2

for all x, ξ ∈ R
d. For such a family of uniformly elliptic matrices a lemma of Motzkin

and Wasow [15], whose precise formulation we take from Kurtz [10], states that if the
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entries of G are Ck then there exists an M and {σk : R
d → R≥0 : k = 1, . . . ,M},

{νk ∈ R
d : k = 1, · · · ,M} with σk ∈ Ck and strictly positive so that

G(x) =
∑

σ2
k(x)νkν

T
k .

Hence (8.1) has the same law on path space as (1.1) with these σk and νk. Of course
M might be arbitrarily large (depending on the ratio of λ+/λ−) and hence it is more
subtle to compare the total work for our method with a standard scheme based directly
on (8.1). Furthermore, depending on the dependence on x, it is not transparent how
to obtain the vectors ν and functions σ exactly. Approximations could be obtained
using the SVN of the matrix G(x) for fixed x but we do not explore this further here.

9. Conclusions and further extensions

We have presented a relatively simple method directly applicable to a wide class of
systems which is weakly second order. We have also shown how, at least theoretically,
it should be applicable to systems which do not satisfy our structural assumptions
but are uniformly elliptic. We have picked a particularly simple setting to perform
our analysis to make the central points clearer. The assumption that b and σk are
uniformly bounded can be relaxed to a local Lipschitz condition. That is to say,
if b and σ and their needed derivatives are not bounded uniformly, but rather are
bounded by an appropriate Lyapunov function, then it should be possible to extend
the method directly to the setting of unbounded coefficients provided the method is
stable for the given SDE (see for instance [12]). If the SDE is not globally Lipschitz
then using an implicit drift split-step method as in [12], an adaptive method as in
[11], or a truncation method as in [14] should extend to our current setting. More
interesting is relaxing the non-degeneracy assumption on the σk, which was used to
minimize the probability of the diffusion correction being negative. This tact is in
some ways reminiscent of [14] in that a modification of the method is made on a small
set of paths, though the take here is quite different. It would be interesting to use the
probability that the correction to the diffusion is negative to adapt the step-size much
in the spirit of [11]. Lastly, there is some similarity of our method with predictor
corrector methods. In the deterministic setting, predictor corrector methods not only
have a higher order of accuracy but also have better stability properties. There have
been a number of papers exploring this in the stochastic context (see [5, 4, 19, 8]). It
would be interesting to do the same with the method presented here.

Appendix A. Proof of Lemma 4.1. The proof of Lemma 4.1 requires the re-
placement of the terms of the form [α1σ

2
k(y

∗)−α2σ
2
k(x0)]

+ with [α1σ
2
k(y

∗)−α2σ
2
k(x0)].

The following two lemmas show that this can be done at the cost of an error whose
size is O(h3). Here O(h3) has the same meaning described earlier around (4.7). We
begin with an abstract technical lemma where p and q satisfy 1/p+ 1/q = 1.

Proposition A.1. Let X and Y be a real valued random variables on a probability

space (Ω,P) with |XY |Lp(Ω) < ∞ for some p ∈ (1,∞]. Then |EY [X]+ − EY X| ≤
|Y X|Lp(Ω)(P{X < 0})1/q. Similarly if X,Y and Z are real valued random variables

with |ZXY |Lp(Ω) < ∞ and A = {X < 0} ∪ {Z < 0} then |EY [X]+[Z]+ − EY XZ| ≤
2|ZY X|Lp(Ω)(P{A})1/q.

Proof. Let A = {X < 0} and q = p/(p − 1). Then |EY ([X]+ − X)| ≤
E|Y ||[X]+ − X|1A ≤ |Y X|Lp(Ω)(P(A))

1/q, showing the first claim. For the second
notice that EY [X]+[Z]+−EY XZ = (EY [X]+Z−EY XZ)+(EY [X]+[Z]+−EY [X]+Z)
and that each of the terms in parentheses can be bounded by the first result.
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Corollary A.2. Let σk ∈ C2 with infx σk(x) > 0 for all k and let Y be a random

variable with |Y | ≤ C a.s. for some C. Then for any p ≥ 1 there exists an h0 so that

EY [α1σ
2
k(y

∗)−α2σ
2
k(x0)]

+ = EY [α1σ
2
k(y

∗)− α2σ
2
k(x0)] +O(hp) and

EY [α1σ
2
k(y

∗)−α2σ
2
k(x0)]

+[α1σ
2
ℓ (y

∗)− α2σ
2
ℓ (x0)]

+

=EY [α1σ
2
k(y

∗)− α2σ
2
k(x0)][α1σ

2
ℓ (y

∗)− α2σ
2
ℓ (x0)] +O(hp)

for all h ∈ (0, h0] and k, ℓ ∈ {1, . . . ,M}, where y∗ is defined via Step 1 of the Weak

Trapezoidal Algorithm.

Proof. Define the event Ak =

{

σk(y
∗) <

α2

α1
σk(x0)

}

. In light of Proposi-

tion A.1, it is sufficient to show that for any p > 1 there exists a Cp such that
P(Ak) ≤ Cph

p. Because σk is Lipschitz there exists a positive C such that

σ2
k(x0 + δ)− α2

α1
σ2
k(x0) >

(

1− α2

α1

)

σ2
k(x0)− C|δ|,

for any δ > 0. In particular, setting δ = y∗ − x0 = b(x0)θh +
∑

j σj(x0)
√
θh νj η

(1)
1j ,

and noting that α2 < α1 and that the σ’s are uniformly bounded from both above
and below, the result follows from the Gaussian tails of the η’s.

Proof. (of Lemma 4.1) From Taylor’s theorem and the definition of the operators
involved one has

Ef(y∗) = f(x0) + (B1f)(x0)θh+ (B2
1f)(x0)

θ2h2

2
+O(h3)

= f(x0) + (Af)(x0)θh+ (B2
1f)(x0)

θ2h2

2
+O(h3) .

In the last line, we have used the observation that (B1f)(x0) = (Af)(x0). Now we
turn to E(B2f)(y

∗). We begin by using Lemma A.2 to remove the [ · ]+. Then we use
the fact that α1 − α2 = 1 and Taylor’s theorem to expand various terms to produce
the following:

E(B2f)(y
∗)

=Ef ′(y∗)[α1b(y
∗)− α2b(x0)] +

1

2
E

∑

k

[α1σ
2
k(y

∗)− α2σ
2
k(x0)]

+f ′′[νk, νk](y
∗)

=Ef ′(y∗)[α1b(y
∗)− α2b(x0)] +

1

2
E

∑

k

[α1σ
2
k(y

∗)− α2σ
2
k(x0)]f

′′[νk, νk](y
∗) +O(h2)

=f ′(x0)[b(x0)] +
1

2

∑

k

σk(x0)
2f ′′(x0)[νk, νk]

+ EB1

(

f ′[α1b− α2b(x0)] +
1

2

∑

k

(α1σ
2
k − α2σ

2
k(x0))f

′′[νk, νk]
)

(x0)θh+O(h2)

=(Af)(x0) + α1(B1(Af))(x0)θh− α2(B
2
1f)(x0)θh+O(h2)

=(Af)(x0) + α1(A
2f)(x0)θh− α2(B

2
1f)(x0)θh+O(h2).
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Similar reasoning produces

E(B2
2f)(y

∗)

=E

(

B2

(

f ′[α1b(y
∗)− α2b(x0)] +

1

2

∑

k

[α1σ
2
k(y

∗)− α2σ
2
k(x0)]

+f ′′[νk, νk]
)

(y∗)
)

=f ′′[b(x0), b(x0)](x0) + E

∑

k

[α1σ
2
k(y

∗)− α2σ
2
k(x0)]

+f ′′′[νk, νk, b(x0)](x0)

+
1

4
E

∑

k,j

[α1σ
2
k(y

∗)− α2σ
2
k(x0)]

+[α1σ
2
j (y

∗)− α2σ
2
j (x0)]

+f ′′′′[νk, νk, νj , νj ](x0) +O(h)

=f ′′[b(x0), b(x0)](x0) +
∑

k

σ2
k(x0)f

′′′[νk, νk, b(x0)](x0)

+
1

4

∑

k,j

σ2
k(x0)σ

2
j (x0)f

′′′′[νk, νk, νj , νj ](x0) +O(h)

=(B2
1f)(x0) +O(h).

Combining these estimates and the fact that 2(1 − θ)θα2 = θ2 + (1 − θ)2 and 2(1 −
θ)θα1 = 1 produces the quoted result after some algebra.

Appendix B. Operator bound for Pt : C
k → Ck. In this section, we show

that if b, σℓ ∈ Ck then Pt is a bounded operator from Cm to Cm for m ∈ {0, · · · , k}.
The k = 0 case follows immediately from |f(x)| ≤ ‖f‖0 for all x ∈ R

d. To address
the higher k, we introduce the first k variations of Equation (1.1).

For any ξ ∈ R
d we denote the first variation of (1.1) in the direction ξ by

J (1)(t, x)[ξ] which solves the linear equation

dJ (1)(t, x)[ξ] = (∇b)(X(t))[J (1)(t, x)[ξ]] dt+

M
∑

k=1

νk(∇σk)(X(t))[J (1)(t, x)[ξ]] dWk(t),

J (1)(0, x)[ξ] = ξ and X(0) = x.

Similarly for ξ = (ξ1, ξ2) ∈ R
2, the second variation of X(t) (in the directions ξ) will

be denoted by J (2)(t, x)[ξ] and defined by

dJ (2)(t, x)[ξ] = (∇b)(X(t))[J (2)(t, x)[ξ]] dt+
M
∑

k=1

νk(∇σk)(X(t))[J (2)(t, x)[ξ]] dWk(t)

+ (∇2b)(X(t))[J (1)(t, x)[ξ1], J
(1)(t, x)[ξ2]]

+

M
∑

k=1

(∇2σk)(X(t))[J (1)(t, x)[ξ1], J
(1)(t, x)[ξ2]]dWk(t)

J (2)(0, x)[ξ] = 0 and X(0) = x.

These equations were obtained from successive formal differentiation of (1.1).
By further formal differentiation we obtain analogous equations for the k-variation
J (k)(t, x)[ξ] where ξ = (ξ1, · · · , ξk) ∈ R

k is the vector of directions. It is a standard
fact that if the coefficients b, σj are in Ck then for any t > 0

sup
x

Ex sup

{

sup
s∈[0,t]

|J (n)(s, x)[ξ1, . . . , ξn]|p : ξi ∈ R
d with |ξi| = 1

}

< ∞.
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This can be found in Lemma 2 in [3] on p. 196 or in a slightly different context in
Proposition 1.3 in [16]2 With these definitions in hand, we have that for any f ∈ C1

that

∇(Ptf)(x)[ξ] = Exf
′(X(t))[J (1)(t, x)[ξ]],

∇2(Ptf)(x)[ξ] = Exf
′(X(t))[J (2)(t, x)[ξ]] + Exf

(2)(X(t))[J (1)(t, x)[ξ1], J
(1)(t, x)[ξ2]].

Using the moment bounds we have that for q ≥ 1 and an ever changing constant C,

E sup
|ξ|=1

|∇(Ptf)(x)[ξ]|q ≤ C‖f‖qC1 sup
|ξ|=1

∣

∣J
(1)
t [ξ]

∣

∣

q ≤ C‖f‖qC1 < ∞

E sup
|ξi|=1

|∇2(Ptf)(x)[ξ1, ξ2]|q

≤ C‖f‖qC2

(

(

E sup
|ξ1|=1

|J (1)(t, x)[ξ1]|2q
)

1
2 + E sup

|ξi|=1

|J (2)(t, x)[ξ1, ξ2]]|q
)

≤ C‖f‖qC2 < ∞.

Continuing in this manner we see that for any positive integer m, if f, b, σℓ ∈ Cm then
for any q ≥ 1 one has

E sup
|ξi|=1

|∇m(Ptf)(x)[ξ1, · · · , ξm]|q ≤ C‖f‖qCm < ∞

for some C. Now observe that taking q = 1 proves the desired claim on the operator
norm of Pt from Ck to Ck since

‖Ptf‖k ≤ C

k
∑

j=0

E sup
|ξi|=1

∣

∣(∇jPtf)(x)[ξ1, · · · , ξj ]
∣

∣ ≤ C

k
∑

j=0

‖f‖Cj ≤ C‖f‖Ck .
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