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WEAK ERROR ANALYSIS OF NUMERICAL METHODS FOR
STOCHASTIC MODELS OF POPULATION PROCESSES∗
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Abstract. The simplest, and most common, stochastic model for population processes, includ-
ing those from biochemistry and cell biology, are continuous time Markov chains. Simulation of
such models is often relatively straightforward, as there are easily implementable methods for the
generation of exact sample paths. However, when using ensemble averages to approximate expected
values, the computational complexity can become prohibitive as the number of computations per
path scales linearly with the number of jumps of the process. When such methods become compu-
tationally intractable, approximate methods, which introduce a bias, can become advantageous. In
this paper, we provide a general framework for understanding the weak error, or bias, induced by
different numerical approximation techniques in the current setting. The analysis takes into account
both the natural scalings within a given system and the step size of the numerical method. Examples
are provided to demonstrate the main analytical results as well as the reduction in computational
complexity achieved by the approximate methods.
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1. Introduction. This paper provides a general framework for analyzing the
weak error of numerical approximation techniques for the continuous time Markov
chain models typically found in the study of population processes, including chemistry
and cell biology. The main novelty of this work lies in how the analysis takes account of
both the natural multiple scalings of a given system and the step size of the numerical
method, and it is best viewed as an extension of the papers [3, 22, 23].

For k ∈ {1, . . . , R}, let ζk ∈ R
d denote the possible transition directions for a

continuous time Markov chain, and let λ′
k : Rd → R denote the respective intensity,

or propensity functions.1 The random time change representation for the model of
interest is then

(1.1) X(t) = X(0) +
R∑

k=1

Yk

(∫ t

0

λ′
k(X(s))ds

)
ζk,

where the Yk are independent, unit-rate Poisson processes. See, for example, [27], [14,
Chapter 6 ], or the recent survey [5]. The infinitesimal generator for the model (1.1)
is the operator A satisfying

(Af)(x) =
∑
k

λ′
k(x)(f(x + ζk)− f(x)),
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where f : Rd → R is chosen from a sufficiently large class of functions.
The problem of simulating (1.1) (and particularly of approximating expected

values) seems deceivingly easy since we can simulate the continuous time Markov
chains exactly.2 Letting f be some function of the state of the system giving us some
quantity of interest, we may estimate Ef(X(T )) via an ensemble average,

(1.2) μ̂n =
1

n

n∑
i=1

f(X[i](T )),

where X[i] is the ith independent copy of (1.1). The law of large numbers then ensures
that

(1.3) lim
n→∞ μ̂n = Ef(X(T )),

with a probability of one. However, it is the computational work needed to achieve
an accuracy with a given tolerance, and not simply the fact that such a limit holds,
that is of most interest to us.

1.1. Scalings and computational cost. The main potential problem in trying
to naively apply the limit (1.3) to a given system stems from the fact that there is an
expected computational cost to the generation of each independent realization, which
we denote by N for now and explicitly quantify in (1.7) below. Assuming we wish
to approximate Ef(X(T )) to an accuracy of ε > 0, in terms of confidence intervals,
we must generate O(ε−2) paths yielding a total computational complexity of order
O(Nε−2). This computational complexity can be substantial when N is large and/or
ε is small.

In many models of interest, including many from cell and population biology, we
do, in fact, have that N � 1. It is therefore natural to consider how approximation
schemes perform. Before considering such schemes, however, it is important (from an
analytical point of view) to modify (1.1) by incorporating into the model a scaling
parameter, N , that can eventually be used to quantify N . The value N is usually
taken to be the order of magnitude of maxi |Xi|. We then scale the process by setting

XN
i = N−αiXi,

where αi is chosen so that XN
i is O(1). Defining ζNk = N−αiζki, the general form of

the scaled model is then

(1.4) XN(t) = XN (0) +

R∑
k=1

Yk

(
Nγ

∫ t

0

N ckλk(X
N (s))ds

)
ζNk ,

where γ and ck are scalars such that

(1.5) |ζNk | = O(N−ck),

with |ζNk | ≈ N−ck for at least one k, and both XN and λk(X
N (·)) are O(1). We

explicitly note that we are allowing for the possibility that |ζNk | � N−ck for some of
the k. Also, note that the models (1.1) and (1.4) are equivalent in that one is simply

2This assumes that the pseudorandom numbers generated by modern computers are “random
enough” to be considered truly random. We take this viewpoint throughout.
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a scaled version of the other. For concreteness, the scaling thus described will be
carried out explicitly for the stochastic models arising in biochemistry in section 2.

The infinitesimal generator AN for the model (1.4) is

(1.6) (ANf)(x) = Nγ
∑
k

N ckλk(x)(f(x + ζNk )− f(x)),

where f : Rd → R is chosen from a sufficiently large class of functions. Note that it
is now natural to take

(1.7) N = Nγ
∑
k

N ck

as the order of magnitude for the number of steps required to generate a single path
up to a time of T > 0.

The parameter γ of (1.4) should be thought of as representing the natural time
scale of the problem with γ > 0 implying a relevant time scale smaller than one. In this
case of γ > 0, the explicit numerical schemes considered in this paper are usually not a
good choice and other methods, such as averaging techniques, are usually required in
conjunction with the methods described here [5, 7, 9, 13, 25]. This fact is demonstrated
by our main analytical results, which provide error bounds for the different schemes
that grow exponentially in Nγ . Therefore, our main results are most useful when
γ ≤ 0.

The model (1.4) is henceforth our main model of interest. We make the following
running assumption, which, in light of the fact that both XN and λk(X

N (·)) are
O(1), is a light one.

Running assumption. The intensity functions λk for the scaled process XN sat-
isfying (1.4), together with all of their derivatives, are uniformly bounded.

The above running assumption can almost certainly be weakened to a local Lips-
chitz condition, in which case analytical methods similar to those found in [24] and/or
[28] can be applied. Proving our main results in such generality, while possible and
certainly worth doing in future work, will be significantly messier, and we feel the
main points of the analysis will be lost.

We return to our problem of interest and let f be a function of the state giving
a quantity of interest and consider how to approximate Ef(XN(T )). As already
discussed, the computational cost of approximating Ef(XN(T )) to an accuracy of ε,
in the sense of confidence intervals, using the estimator (1.2) is O(Nε−2). Suppose
now that ZN is an approximation ofXN constructed with a time-discretization step of
size h > 0.3 Letting ZN

[i] denote independent copies of Z
N , we construct the estimator

(1.8) μ̂n =
1

n

n∑
i=1

f(ZN
[i](T )).

Suppose that it can be shown that the approximation scheme has a weak error, or
bias, of order one. That is,

Ef(XN (T ))− Ef(ZN (T )) = O(h)

3As the approximate process explicitly depends upon the choice of h, we could denote it as ZN
h .

However, for ease of exposition we choose to drop the h dependence from the notation.
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for a suitably large class of functions f . Then, noting that

Ef(XN (T ))− μ̂n =
[
Ef(XN(T ))− Ef(ZN (T ))

]
+
[
Ef(ZN (T ))− μ̂n

]
,

we see that we must choose h = O(ε) to make the first term on the right, the bias,
O(ε), and n = O(ε−2) to make the second term, the statistical error, have a variance of
O(ε2), and a standard deviation of O(ε). This gives a total computational complexity
of O(ε−3). This will greatly lower the computational complexity of the problem, as
compared with using exact sample paths, if ε−1 � N .

If, instead, the method for generating ZN is second order accurate in a weak
sense, that is, if

Ef(XN (T ))− Ef(ZN (T )) = O(h2),

then we could choose h = O(ε1/2) to yield a bias of O(ε). This leads to a total
computational complexity of O(ε−2.5), which for small ε represents a substantial im-
provement over using an order one method.

The above discussion points out that the key quantity to understand for a given
approximation method, and the focus of this paper, is the bias, or weak error, it
induces for a given function f :

(1.9) Bf (Z
N , x, t)

def
= Exf(X

N(t))− Exf(Z
N (t)).

Note that Bf (Z
N , x, h) represents the local, one-step error of the method as the fixed

time step is of size h > 0. Analyzing the bias induced by different numerical schemes
is by now classical in the study of stochastic processes, with nearly all the focus
falling on how the bias scales with the size of the time step, h [26]. However, it is not
sufficient in the current setting to simply understand how the bias (1.9) scales with
the time discretization alone. Care must also be taken to quantify how the leading
order constants depend upon the natural scalings of a given system and given method,
here quantified by the parameter N > 0. For example, if

Ef(XN(T ))− Ef(ZN(T )) = O(cN1 h+ cN2 h2),

then we wish to understand how cN1 , cN2 depend upon N since for a given choice of
h we may have that cN1 h < cN2 h2. In this case, the method will behave as if it is an
order two method until h is reduced to the point when cN1 h > cN2 h2, in which case it
will behave like an order one method.

1.2. Notation and terminology. In this short subsection, we collect some
necessary extra notation and terminology used throughout the paper. We first note
that for f : Rd → R, and any t ≥ 0, Dynkin’s formula for the process (1.4) is

(1.10) Exf(X
N (t)) = f(x) + Ex

∫ t

0

ANf(X(s))ds,

which holds as long as the expectations exist. Similar expressions will hold for the
approximate methods under consideration. Dynkin’s formula will be our main ana-
lytical tool, as it will allow us to quantify the bias (1.9) for the different methods, and
we therefore focus on developing compact notation for the generators of our processes.

We define the operator ∇N
k for the kth possible transition, which we will typically

call a “reaction” in keeping with the motivating application of section 2, via

(1.11) ∇N
k f(x)

def
= N ck(f(x+ ζNk )− f(x)).
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Note that if f is globally Lipschitz, then ∇N
k f(x) is uniformly bounded over k and x

since |ζNk | = O(N−ck). We may now write (1.6) as

(ANf)(x) =
∑
k

Nγλk(x)∇N
k f(x).

Defining the vector valued operators

(1.12) λ
def
= [λ1, . . . , λR], ∇N def

= [∇N
1 , . . . ,∇N

R ],

where we recall that R is the number of reactions, we obtain

(ANf)(x) = (Nγλ · ∇N )f(x).

For i ∈ {1, . . . , d} and k ∈ {1, . . . , R}, we let mk satisfy

|ζNk | = N−mk .

Note that, by construction, we have ck ≤ mk for all k. Finally, we denote the jth
directional derivative of f into the direction [v1, v2, . . . , vj ] by f ′[v1, . . . , vj ] and make
the usual definition

‖f‖j def
= sup

x
{f ′[v1, . . . , vj ](x), ‖v‖ = 1}.(1.13)

1.3. Summary of main results. The following list is a summary of our main
results. Technical details and assumptions have been omitted from the statements
below for the sake of clarity.
1. In Theorem 4.1, we prove that for any explicit numerical scheme with a step size

of h > 0,

Bf (Z
N , x, T ) = O

(
Th−1 sup

z
|Bf (Z

N , z, h)|),
where Bf (Z

N , x, t) is the bias defined in (1.9). Thus, if the numerical scheme has
a local, one-step error of O(hp+1), then the global error is O(hp). This result is
standard and should be compared to similar results in [6, 22]. It is included here
since it is necessary to show that the scalings do not alter the usual result.

2. In Theorem 5.4, we prove that if ZN
E is generated via Euler’s method, also known

as explicit τ -leaping in the setting of biochemistry, then

Bf (Z
N
E , x, h) = O(ch2),

where c is independent of N . Thus, after applying Theorem 4.1, Euler’s method
is proven to be an order one method, in that the leading order of the global error
satisfies

Bf (Z
N
E , x, T ) = O(ch)

and decreases linearly with the step size. This fact is formally stated in Theorem
6.2.

3. In Theorem 5.5, we prove that if ZN
M is generated via an approximate midpoint

method, then

Bf (Z
N
M , x, h) = O(cN1 h2 + cN2 h3),
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where cN1 , cN2 depend upon the natural scalings of the system, quantified here by
N > 0. The term that dominates this error then depends upon the specific scalings
of a system, encapsulated in the constants cN1 and cN2 , and the size of the time
discretization h. Theorem 4.1 then implies

Bf (Z
N
M , x, T ) = O(cN1 h+ cN2 h2),

and the midpoint method will sometimes behave like a first order method, and
other times it will behave like a second order method. This fact is formally stated
in Theorem 6.3. A transition point, in terms ofN and h, for this change in behavior
is also provided.

4. In Theorem 5.6, we prove that if ZN
trap is generated via the weak trapezoidal

method, which was originally formulated in the diffusive setting [6] and is extended
to the discrete setting in section 3, then

Bf (Z
N
trap, x, h) = O(ch3),

where c is independent of N . Thus, after applying Theorem 4.1, the weak trape-
zoidal method is proven to be a second order method, in that the leading order of
the global error satisfies

Bf (Z
N
trap, x, T ) = O(ch2)

and decreases quadratically with the step size. This fact is formally stated in
Theorem 6.5.

1.4. Context. We attempt to put the present work in the correct historical
context. In [3], Anderson, Ganguly, and Kurtz provided the first error analysis of dif-
ferent approximation techniques that incorporated the natural scalings of the system
(1.1) into the analysis. Specifically, they considered models satisfying the “classical
scaling,” which using our present terminology corresponds with γ = 0, ck ≡ 1, and
αi ≡ 1. They further coupled the time discretization to the scaling, thereby ensuring
h was always in a useful regime, and derived results for both the weak and the strong
errors of Euler’s method and the midpoint method. They proved that, in this specific
setting, Euler’s method is an order one method in both a weak and a strong (in the L1

norm) sense. They proved that the strong error of the midpoint method falls between
orders one and two (see [3] for precise statements), and that the leading order term
of the weak error of the midpoint method scales quadratically with the step size.

In [22], it was shown by Hu, Li, and Min that the O(h2) weak convergence rate
of the midpoint method given in [3] depended intimately on the coupling between the
time discretization and the scaling parameter of the system. It was this particular
observation that in large part motivates the present work, as we wish to provide
a general analytical rate of convergence for the different relevant methods in the
most general possible scaling regime and in which the time-discretization parameter
is independent of the natural scalings.

In [6], the weak trapezoidal algorithm was introduced in the context of SDEs
driven by Brownian motions. There, it was shown to be an easy to implement method
that is second order accurate in a weak sense. Further, it has the nice property
that no costly derivatives need be computed during the course of the simulation. In
[23], it was pointed out that since the motivation for the original weak trapezoidal
algorithm comes from viewing SDEs as driven by space-time Wiener processes, the
same algorithm can work in the present jump setting by viewing the driving forces
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as space-time Poisson processes. This observation was also made independently in an
earlier version of the present paper.

It is worth pointing out that there are at least two other trapezoidal-type algo-
rithms in the literature pertaining to models of stochastic chemical kinetics. These are
the implicit and explicit trapezoidal methods of [11]. These methods were explicitly
developed to give better stability than the usual methods, and so they do not exhibit
better convergence than Euler’s method.

1.5. Paper outline. The remainder of the paper is organized as follows. In
section 2, we show how the basic models considered in this paper, (1.1) and (1.4),
arise naturally in biochemistry, which is the main area of motivation for this work.
This section can safely be skipped by anyone not interested in that application. In
section 3, we discuss numerical methods for the models under consideration, including
both exact and approximate schemes. In section 4, we prove Theorem 4.1, as stated
loosely above, and relevant corollaries. In section 5, we prove Theorems 5.4, 5.5,
and 5.6, each stated loosely above, providing the local, one-step errors induced by
the approximate schemes considered here. In section 6, we provide bounds on the
semigroup operator of the exact process XN , yielding the final piece to the global
analysis of the weak error of the different methods. We also briefly discuss stability
concerns in section 6. In section 7, we provide relevant examples.

2. Motivating systems: Biochemical reaction networks. In this section,
we build the relevant models (1.1) and (1.4) used in the study of stochastically modeled
biochemical reaction networks. We feel it is worthwhile to include this section, as
this is the area of main motivation for the present work. However, it can safely be
skipped by those wishing to simply see the mathematical analysis and not the areas
of application.

2.1. The unscaled model. A chemical reaction network is a dynamical system
involving multiple reactions and chemical species. The simplest stochastic models of
such networks treat the system as a continuous time Markov chain with the state,
X ∈ Z

d
≥0, giving the number of molecules of each species and with reactions modeled

as possible transitions of the chain.
An example of a chemical reaction is

2S1 + S2 → S3,

where we would interpret the above as saying two molecules of type S1 combine with
a molecule of type S2 to produce a molecule of type S3. The Si are called chemical
species. Letting

ν1 =

⎛⎝ 2
1
0

⎞⎠ , ν′1 =

⎛⎝ 0
0
1

⎞⎠ , and ζ1 = ν′1 − ν1 =

⎛⎝ −2−1
1

⎞⎠ ,

we see that every instance of the reaction changes the state of the system by the
addition of ζ1. Here the subscript “1” is used to denote the first (and in this case
only) reaction of the system.

In the general setting we denote the number of species by d, and for i ∈ {1, . . . , d}
we denote the ith species by Si. We then consider a finite set of R reactions, where
the model for the kth reaction is determined by
(i) a vector of inputs νk specifying the number of molecules of each chemical species

that are consumed in the reaction,
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(ii) a vector of outputs ν′k specifying the number of molecules of each chemical
species that are created in the reaction, and

(iii) a function of the state λ′
k that gives the transition intensity, rate, or propensity

at which the reaction occurs.
Specifically, if we denote the state of the system at time t by X(t) ∈ Z

d, and if the kth
reaction occurs at time t, we update the state by the addition of the reaction vector

ξk
def
= ν′k − νk

and the new state becomes X(t) = X(t−)+ξk. For the standard Markov chain model,
the number of times that the kth reaction occurs by time t can be represented by the
counting process

Rk(t) = Yk

(∫ t

0

λ′
k(X(s))ds

)
,

where the Yk are independent, unit-rate Poisson processes [27], [14, Chapter 6 ]. The
state of the system then satisfies

X(t) = X(0) +
∑
k

Yk

(∫ t

0

λ′
k(X(s))ds

)
ξk,

which was (1.1) in the introduction. The above formulation is termed a random time
change representation and is equivalent to the chemical master equation representation
found in much of the biology and chemistry literature, where the master equation is
Kolmogorov’s forward equation in the terminology of probability.

A common choice of intensity function for chemical reaction systems is that of
mass action kinetics. Under mass action kinetics, the intensity function for the kth
reaction is

(2.1) λ′
k(x) = κ′

k

d∏
i=1

xi!

(xi − νki)!
,

where νki is the ith component of νk.
Example 1. To solidify notation, we consider the network

S1

κ1

�
κ2

S2, 2S2
κk→ S3,

where we have placed the rate constants κk above or below their respective reactions.
For this example, (1.1) is

X(t) = X(0) + Y1

(∫ t

0

κ1X1(s)ds

)⎡⎣ −11
0

⎤⎦+ Y2

(∫ t

0

κ2X2(s)ds

)⎡⎣ 1
−1
0

⎤⎦
+ Y3

(∫ t

0

κ3X2(s)(X2(s)− 1)ds

)⎡⎣ 0
−2
1

⎤⎦ .

Defining ζ1 = [−1, 1, 0]T , ζ2 = [1,−1, 0]T , and ζ3 = [0,−2, 1]T , the generator A
satisfies

(Af)(x) = κ1x1(f(x+ζ1)−f(x))+κ2x2(f(x+ζ2)−f(x))+κ3x2(x2−1)(f(x+ζ3)−f(x)).
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2.2. Scaled biochemical models. The scaling described below has been used
previously in at least [4, 5, 7, 25]. We emphasize that the scaling is an analytical tool
used to understand the behavior of the different processes, and that the actual simula-
tions using the different methods make no use of, nor have need for, an understanding
of N , α, or the βk.

Let N � 1 be a natural parameter of the system, perhaps the abundance of the
species with the highest number of molecules. Assume that the system satisfies (1.1)
with λ′

k determined via mass action kinetics (2.1), and with ζk ∈ Z
d representing the

reaction vectors described in section 2.1. For each species i, define the normalized
abundance (or, simply, the abundance) by

XN
i (t) = N−αiXi(t),

where αi ≥ 0 should be selected so that XN
i is O(1). Here XN

i may be the species
number (αi = 0), the species concentration, or something else.

Since the rate constants may also vary over several orders of magnitude, we write
κ′
k = κkN

βk , where the βk are selected so that κk = O(1) (recall that κ′
k is the original

system parameter). Note that while the αi are nonnegative if N is chosen to be the
abundance of the species with the highest number of molecules, βk can be positive,
negative, or zero.

Under the mass action kinetics assumption, we always have that λ′
k(X(s)) =

Nβk+νk·αλk(X
N(s)), where λk denotes the deterministic mass action kinetics with

rate constants κk [5, 7, 25]. Our model has therefore become

(2.2) XN(t) = XN (0) +
∑
k

Yk

(∫ t

0

Nβk+νk·αλk(X
N(s))ds

)
ζNk , i ∈ {1, . . . , d},

where ζNki
def
= N−αiζki. To quantify the natural time scale of the system, define γ ∈ R

via

γ = max
{i,k : ζN

ki �=0}
{βk + νk · α− αi},

where we recall that νk is the source vector for the kth reaction. Letting

ck = βk + νk · α− γ,

for each k, the model (2.2) is seen to be exactly (1.4).
Remark 1. If βk + νk · α = αi = 1 for all i, k in (2.2), in which case γ = 0, then

we have what is typically called the classical scaling. It was specifically this scaling
that was used in the analyses of the Euler and midpoint methods found in [3, 22, 23].
In this case it is natural to consider XN as a vector whose ith component gives the
concentration, in moles per unit volume, of the ith species.

Example 2. As an instructive example, consider the system

S1

100
�
100

S2

with X1(0) = X2(0) = 10,000. In this case, it is natural to take N = 10,000 and
α1 = α2 = 1. As the rate constants are 100 =

√
10,000, we take β1 = β2 = 1/2 and

find that γ = 1/2. The equation governing the normalized process XN
1 is

XN
1 (t) = XN

1 (0)− Y1

(
N1/2N

∫ t

0

XN
1 (s)ds

)
1

N
+ Y2

(
N1/2N

∫ t

0

(2−XN
1 (s))ds

)
1

N
,

where we have used that XN
1 +XN

2 ≡ 2.
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3. Numerical methods.

3.1. Exact methods. As already discussed in the introduction, because we are
considering continuous time Markov chains, there are a number of numerical methods
available for the generation of exact sample paths for the model (1.1) or the equivalent
model (1.4). All are examples of discrete event simulation [21]. In the language of
biochemistry these methods include the stochastic simulation algorithm, best known
as Gillespie’s algorithm in this setting [17, 18], the first reaction method [17], and
the next reaction method [1, 16]. All such algorithms perform the same two basic
steps multiple times until a sample path is produced over a desired time interval:
conditioned on the current state of the system, both (i) the amount of time that passes
until the next reaction takes place, Δt, is computed and (ii) the specific reaction that
has taken place is found. Note that Δt is an exponential random variable with a
parameter of

∑
k λk(X(t)). Therefore, if

(3.1)
∑
k

λk(X(t)) ≈ N � 1 so that EΔt =
1∑

k λk(X(t))
≈ 1

N
� 1,

then the runtime needed to produce a single exact sample path may be prohibitive
when coupled with Monte Carlo techniques, and approximate methods may be desir-
able.

3.2. Approximate methods. There will be times when we will wish to discuss
an arbitrary approximation to X or XN , and other times we will wish to consider
specific approximations. When we consider an arbitrary approximation we will simply
denote the approximation by Z or ZN . When we distinguish the Euler, midpoint,
and weak trapezoidal approximations, the main approximations under consideration
here, we will denote by ZE , ZM , and Ztrap the respective approximations to X and
by ZN

E , ZN
M , and ZN

trap the respective approximations to XN . Throughout, our time-
discretization parameter will be denoted by h > 0.4

3.2.1. Euler’s method. The Euler approximation, ZE , to the model (1.1) is
the solution to

(3.2) ZE(t) = ZE(0) +
∑
k

Yk

(∫ t

0

λ′
k(ZE ◦ η(s))ds

)
ζk,

where η(s)
def
= �s/h�h, and all other notation is as before. Note that ZE(η(s)) =

ZE(tn) if tn ≤ s < tn+1. The basic algorithm for the simulation of (3.2) up to a time
of T > 0 is the following. For x ≥ 0 we will write Poisson(x) for a Poisson random
variable with a parameter of x.

Algorithm 1 (Euler’s method). Fix h > 0. Set ZE(0) = x0, t0 = 0, and n = 0,
and repeat the following until tn+1 = T :
(i) Set tn+1 = tn + h. If tn+1 ≥ T , set tn+1 = T and h = T − tn.
(ii) For k ∈ {1, . . . , R}, let Λk = Poisson(λ′

k(ZE(tn))h) be independent of each other
and all previous random variables.

(iii) Set ZE(tn+1) = ZE(tn) +
∑

k Λkζk.
(iv) Set n← n+ 1.

4Historically, the time-discretization parameter for the methods described in this paper have
been τ , thus giving these methods the general name “τ -leaping methods.” We choose to break from
this tradition and denote our time step by h so as not to confuse τ with a stopping time.
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The above algorithm is termed explicit tau-leaping in the biology and biochemistry
literature [19]. Several improvements and modifications have been made to the basic
algorithm described above over the years in the context of biochemical processes.
Many of the improvements are concerned with how to choose the step size adaptively
[10, 20] and/or how to ensure that population values do not go negative during the
course of a simulation [2, 8, 12], which is a relevant issue, as population processes
have a natural nonnegativity constraint. For the simulations carried out in section 7,
we choose to simply keep a fixed step size and set any species that goes negative in
the course of a jump to zero.

Defining the operator

(3.3) (Bzf)(x) def
=

∑
k

λ′
k(z)(f(x+ ζk)− f(x)),

we see that for t > 0

(3.4) Ef(ZE(t)) = Ef(ZE ◦ η(t)) + E

∫ t

η(t)

(BZE◦η(t)f)(ZE(s))ds,

as long as the expectations exist. The scaled version of (3.2), which is an approxima-
tion to XN satisfying (1.4), is

(3.5) ZN
E (t) = ZN

E (0) +
∑
k

Yk

(
Nγ

∫ t

0

N ckλk(Z
N
E ◦ η(s))ds

)
ζNk ,

where all notation is as before. Define the operator BN
z by

(3.6) BN
z f(x)

def
= (Nγλ(z) · ∇N )f(x).

If ZN
E satisfies (3.5), then for all t > 0

Ef(ZN
E (t)) = Ef(ZN

E (η(t))) + E

∫ t

η(t)

(BN
ZN

E (η(t))f)(Z
N
E (s))ds,

as long as the expectations exist.

3.2.2. Approximate midpoint method. A midpoint-type method was first
described in [19]5 and analyzed in [3, 22]. Define the function

ρ(z)
def
= z +

1

2
h
∑
k

λ′
k(z)ζk,

which computes an approximate midpoint for the system (1.1) assuming the state of
the system is z and the time step is h. Then define ZM to be the process that satisfies

(3.7) ZM (t) = ZM (0) +
∑
k

Yk

(∫ t

0

λ′
k ◦ ρ(ZM ◦ η(s))ds

)
ζk.

The basic algorithm for the simulation of (3.7) up to a time of T > 0 is the
following. Note that only step (ii) changes from Euler’s method.

Algorithm 2 (midpoint method). Fix h > 0. Set ZM (0) = x0, t0 = 0, and
n = 0, and repeat the following until tn+1 = T :

5The midpoint method detailed in [19] is actually a slight variant of the method described here.
In [19] the approximate midpoint, called ρ(z) above, is rounded to the nearest integer value.
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(i) Set tn+1 = tn + h. If tn+1 ≥ T , set tn+1 = T and h = T − tn.
(ii) For k ∈ {1, . . . , R}, let Λk = Poisson(λ′

k ◦ ρ(ZM (tn))h) be independent of each
other and all previous random variables.

(iii) Set ZM (tn+1) = ZM (tn) +
∑

k Λkζk.
(iv) Set n← n+ 1.

For Bz defined via (3.3), any t > 0, and ZM satisfying (3.7), we have

Ef(ZM (t)) = Ef(ZM ◦ η(t)) + E

∫ t

η(t)

(Bρ◦ZM◦η(t)f)(ZM (s))ds,

as long as the expectations exist. The scaled version of (3.7), which is an approxima-
tion to XN satisfying (1.4), is

(3.8) ZN
M (t) = ZN

M (0) +
∑
k

Yk

(
Nγ

∫ t

0

N ckλk ◦ ρ(ZN
M ◦ η(s))ds

)
ζNk ,

where now

ρ(z) = z +
1

2
hNγ

∑
k

N ckλk(z)ζ
N
k .

While we should write ρN in the above, we repress the “N” in this case for ease of
notation. For BN

z defined via (3.6) and ZN
M satisfying (3.8), we have

Ef(ZN
M (t)) = Ef(ZN

M (η(t))) + E

∫ t

η(t)

(BN
ρ(ZN

M◦η(t))f)(Z
N
M (s))ds

for all t > 0, as long as the expectations exist.

3.2.3. The weak trapezoidal method. We will now describe a trapezoidal-
type algorithm for approximating the solutions of (1.1) and/or (1.4). The method was
originally introduced in the work of Anderson and Mattingly in the diffusive setting,
where it is best understood by using a pathwise representation that incorporates
space-time white noise processes; see [6]. It has independently been extended to the
current jump setting in [23], where it was studied in the classical scaling (γ = 0, αi ≡
1, ck ≡ 1, with the step size coupled to the system size similarly to the analysis in
[3]).

In the algorithm below, which simulates a path up to a time T > 0, it is nota-
tionally convenient to define [x]+ = x ∨ 0 = max{x, 0}.

Algorithm 3 (weak trapezoidal method). Fix h > 0. Set Z(0) = x0, t0 = 0,
and n = 0. Fixing a θ ∈ (0, 1), we define

ξ1
def
=

1

2

1

θ(1 − θ)
and ξ2

def
=

1

2

(1− θ)2 + θ2

θ(1− θ)
.(3.9)

We repeat the following steps until tn+1 = T , in which we first compute a θ-midpoint
y∗ and then the new value Ztrap(tn+1):
(i) Set tn+1 = tn + h. If tn+1 ≥ T , set tn+1 = T and h = T − tn.
(ii) For k ∈ {1, . . . , R}, let Λk,1 = Poisson(λ′

k(Ztrap(tn))θh) be independent of each
other and all previous random variables.

(iii) Set y∗ = Ztrap(tn) +
∑

k Λk,1ζk.
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(iv) For k ∈ {1, . . . , R}, let Λk,2 = Poisson([ξ1λ
′
k(y

∗)− ξ2λ
′
k(tn)]

+(1 − θ)h) be inde-
pendent of each other and all previous random variables.

(v) Set Ztrap(tn+1) = y∗ +
∑

k Λk,2ζk.
(vi) Set n← n+ 1.

Remark 2. Notice that on the (n + 1)st step, y∗ is the Euler approximation to
X(nh+ θh) starting from Ztrap(tn) at time nh.

Remark 3. Notice that for all θ ∈ (0, 1) one has ξ1 > ξ2 and ξ1 − ξ2 = 1.
We define the operator Bz1,z2 by

(Bz1,z2f)(x) def
=

∑
k

[ξ1λ
′
k(z1)− ξ2λ

′
k(z2)]

+(f(x+ ζk)− f(x)).

Then, for η(t) ≤ t ≤ η(t) + θh, the process Ztrap satisfies

Ef(Ztrap(t)) = Ef(Ztrap(η(t))) + E

∫ t

η(t)

(BZtrap(η(t))f)(Ztrap(s))ds,

where we recall that Bz is defined via (3.3), and for η(t) + θh ≤ t ≤ η(t) + h, the
process Ztrap satisfies

Ef(Ztrap(t)) = Ef(Ztrap(η(t)+θh))+E

∫ t

η(t)+θh

(BZtrap(η(t)+θh),Ztrap(η(t))f)(Ztrap(s))ds.

Finally, define the operator BN
z1,z2 by

(BN
z1,z2f)(x)

def
= (Nγ [ξ1λ(z1)− ξ2λ(z2)]

+ · ∇N )f(x),

where for some θ ∈ (0, 1), ξ1 and ξ2 satisfy (3.9), and for v ∈ R
d the ith component

of v+ is [vi]
+ = max{vi, 0}. Then, if ZN

trap represents the approximation to (1.4) via
the weak trapezoidal method, for η(t) ≤ t < η(t) + θh

Ef(ZN
trap(t)) = Ef(ZN

trap(η(t))) + E

∫ t

η(t)

(BN
ZN

trap(η(t))
f)(ZN

trap(s))ds,

whereas for η(t) + θh ≤ t < η(t) + h

Ef(ZN
trap(t)) = Ef(ZN

trap(η(t)+θh))+E

∫ t

η(t)+θh

(BN
ZN

trap(η(t)+θh),ZN
trap(η(t))

f)(ZN
trap(s))ds.

4. Global error from local error. Throughout the section, we will denote
the vector valued process whose ith component satisfies (1.4) by XN and denote
an arbitrary approximate process via ZN . Also, we define the following semigroup
operators acting on f ∈ C0(R

d,R):

Ptf(x)
def
= Exf(X

N(t)),(4.1)

Ptf(x)
def
= Exf(Z

N(t)),

where for ease of notation we choose not to incorporate the notation N into either Pt

or Pt. Returning to the notation introduced in section 1, we note that

Bf (Z
N , x, t) = Exf(X

N(t))− Exf(Z
N (t)) = (Pt − Pt)f(x).
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We may therefore interpret the difference between the above two operators, for t ∈
[0, T ], as the weak error, or bias, of the approximate process ZN on the interval [0, T ].
As h > 0 is our time step, we note that Bf (Z

N , x, h) = (Ph−Ph)f(x) is the one-step
local error.

Definition 4.1. Let n be an arbitrary nonnegative integer, and letM be an m-
dimensional vector of C(Rd,R) valued operators on C(Rd,R), with its �th coordinate
denoted by M�. Then we define

‖f‖Mn = sup

{∥∥∥∥∥
(

p∏
i=1

M�i

)
f

∥∥∥∥∥
∞

, 1 ≤ �i ≤ m, p ≤ n

}
.

For example, if j, k, � ∈ {1, . . . , R} then
|(∇N

j ∇N
k ∇N

� f)(x)| ≤ ‖f‖∇N

3 ,

where we recall that ∇N is defined in (1.12). Note that, for anyM,

(4.2) ‖f‖M0 = ‖f‖0 = ‖f‖∞.

Also note that, by definition, for n ≥ 0

‖f‖Mn ≤ ‖f‖Mn+1.

Definition 4.2. Suppose M : C(Rd,R) → C(Rd,RR) and Q : C(Rd,R) →
C(Rd,R) are operators. Then define

‖Q‖Mj→�
def
= sup

f∈Cj ,f �=0

‖Qf‖M�
‖f‖Mj

.

Note that as stated in the introduction, the purpose of this paper is to derive
bounds for the global weak error of the different approximate processes, which, due to
(4.2), consists of deriving bounds for ‖(Pn

h −Pnh)‖Mm→0, for an appropriately defined
M and a reasonable choice of m ≥ 0. Theorem 4.1 quantifies how the global error
‖(Pn

h − Pnh)‖Mm→0 can be bounded using the one-step local error ‖Ph − Ph‖Mm→0. In
section 5, we will derive the requisite bounds for the local error for each of the three
methods.

Theorem 4.1. Let M be a C(Rd,RR) valued operator on C(Rd,R). Then for
any n,m ≥ 0, and h > 0

‖(Pn
h − Pnh)‖Mm→0 = O

(
n ‖Ph − Ph‖Mm→0 max

�∈{1,...,n}
{‖P�h‖Mm→m}

)
.

Proof. Let f ∈ C0(R
d,R). Note that, since ‖g‖0 = ‖g‖M0 for any g,

‖P j−1
h ‖M0→0‖Ph − Ph‖Mm→0 = ‖P j−1

h ‖0→0‖Ph − Ph‖Mm→0.

With this in mind,

‖(Pn
h − Pnh)f‖0 =

∥∥∥∥∥∥
n∑

j=1

(P j
hPh(n−j) − P j−1

h Ph(n−j+1))f

∥∥∥∥∥∥
0

≤
n∑

j=1

‖P j−1
h (Ph − Ph)Ph(n−j)f‖0

≤
n∑

j=1

‖P j−1
h ‖0→0‖Ph − Ph‖Mm→0‖Ph(n−j)‖Mm→m‖f‖Mm .
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Since Ph is a contraction, i.e., ‖Ph‖0→0 ≤ 1, the result is shown.
The following result, where ∇N replacesM in Theorem 4.1, is now immediate.
Corollary 4.2. Under the same assumptions of Theorem 4.1 and with f ∈

Cm
0 (Rd,R),

‖(Pn
h − Pnh)f‖∇N

0 = O
(
n‖Ph − Ph‖∇N

m→0 max
�∈{1,...,n}

{‖P�hf‖∇N

m }).
The following generalization, which allows for variable step sizes, is straightfor-

ward.
Corollary 4.3. For f ∈ Cm

0 (Rd,R)

‖Exf(Ztn)− Exf(Xtn)‖∞ = O
(
n max

i=1,...,n
{‖Phi − Phi‖∇

N

m→0} max
�∈{1,...,n}

{‖Pt�f‖∇
N

m }).
Thus, once we compute the local one-step error ‖Ph−Ph‖∇N

m→0 for an approximate
process, we have a bound on the global weak error that depends only on the semigroup

Pt of the original process. We will delay discussion of ‖Ptf‖∇N

m for now, as this term
is independent of the approximate process. Instead, in the next section we provide

bounds for ‖Ph − Ph‖∇N

m→0 for each of the three methods described in section 3.

5. Local errors. Section 5.1 will present some necessary propositions and lem-
mas. Sections 5.2, 5.3, and 5.4 will present the local analyses of the Euler, midpoint,
and weak trapezoidal methods, respectively.

5.1. Analytical tools.
Proposition 5.1. Let f ∈ C1

0 (R
d,RR). For any k ∈ {1, . . . , R}

∇N
k f ∈ O(N ck−mk‖f‖1) ⊂ O(1).

In particular, N−ck∇N
k f is bounded.

Proof. The result follows from the fact that for any w ∈ R
d

|f(x+ w) − f(x)| ≤ |w|‖f‖1.
Define, for any multisubset I of {1, . . . , R},

∇N
I f

def
=

⎧⎨⎩
⎛⎝ |I|∏

i=1

∇N
�i

⎞⎠ f

⎫⎬⎭
so that

‖f‖∇N

n = sup
|I|≤n

‖∇N
I f‖∞.

Proposition 5.2. Let f ∈ Cj
0(R

d,RR). Then

‖f‖∇N

j = O(‖f‖j).
Proof. The case j = 1 follows from Proposition 5.1. Now consider ∇N

I f(x) for a
multiset I of {1, . . . , R}, with |I| = j ≥ 2. If mk > 0 for all k ∈ I, the statement is
clear. If, on the other hand, mk = 0 for some k ∈ I, then for this specific k we have
ck ≤ 0 and

‖∇N
I f‖∞ ≤ 2N ck‖∇N

I\kf‖∞ = O(‖f‖j−1) = O(‖f‖j),
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where the second to last equality follows by an inductive hypothesis.
We make some definitions associated with ∇N . Let g : Rd → R

R. For i, j ∈
{1, . . . , R}

[DNg(x)]ij
def
= ∇N

j gi(x),

[(∇N )2]ij
def
= ∇N

i ∇N
j ,

diag(N c)
def
= diag(N c1 , . . . , N cR).

(5.1)

Also, we define 1R to be the R-dimensional vector whose entries are all 1.
Lemma 5.1 (product rule). Let g, q : Rd → R

R be vector valued functions. Then

∇N
k (g · q)(x) = (∇N

k g · q)(x) + (g · ∇N
k q)(x) +N−ck(∇N

k g · ∇N
k q)(x).

Also,

∇N (g · q)(x) = [DNg]T q(x) + [DNq]T g(x) + diag(N c)−1([DNg]T × [DNq]T )(x)1Rf.

Proof. Note that, for any k,

∇N
k (g · q)(x) = N ck(g(x+ ζNk )q(x + ζNk )− g(x)q(x))

= N ck(g(x+ ζNk )− g(x))q(x) +N ck(q(x + ζNk )− q(x))g(x)

+N−ckN ck(q(x + ζNk )− q(x))N ck(g(x+ ζNk )− g(x))

= (∇N
k g) · q)(x) + (∇N

k q · g)(x) +N−ck(∇N
k g · ∇N

k q)(x),

verifying the first statement. To verify the second, one simply notes that the above
calculation holds for every coordinate, and the result follows after simple bookkeep-
ing.

Corollary 5.3. Let λ : Rd → R
R be a vector valued function, and let f : Rd →

R. Then

∇N
k (λ · ∇Nf)(x) = (∇N

k λ · ∇N )f + λ · ∇N∇N
k f +N−ck∇N

k λ · ∇N∇N
k f.

Also,

∇N (λ · ∇Nf) = [DNλ]T∇Nf + [(∇N )2f ]λ+ diag(N c)−1[DNλ× (∇N )2]1Rf.(5.2)

Proof. Simply put g = λ and q = ∇Nf , and note that ∇2 is symmetric.

5.2. Euler’s method. Throughout subsection 5.2, we let ZN
E be the Euler ap-

proximation to XN , and we let

PE,hf(x)
def
= Exf(Z

N
E (h)),

where h is the step size taken in the algorithm. Below, we will assume h < N−γ ,
which is a natural stability condition and is discussed further in section 6.2.

Theorem 5.4. Suppose that the step size h satisfies h < N−γ. Then

‖PE,h − Ph‖∇N

2→0 = O(N2γh2).

Proof. For Euler’s method with initial condition x0

(5.3) PE,hf(x0) = f(x0) + hBN
x0
f(x0) +

h2

2
(BN

x0
)2f(x0) +O(N3γ‖f‖∇N

3 h3),
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where, noting that ∇Nλ(x0) = 0 and using the product rule in Lemma 5.1, we have

BN
x0
f = Nγλ(x0) · ∇Nf,

(BN
x0
)2f = Nγλ(x0) · ∇N (Nγλ(x0) · ∇Nf)

= N2γλ(x0)
T [(∇N )2f ]λ(x0).(5.4)

On the other hand, for the exact process (1.4),

Phf(x0) = f(x0) + hANf(x0) +
h2

2
(AN )2f(x0) +O(N3γ‖f‖∇N

3 h3),(5.5)

where, again,

ANf = Nγλ · ∇Nf.

Noting that

(AN )2f(x) = N2γ(λ · ∇N (λ · ∇Nf(x)))

= N2γλT ([DNλ]T∇Nf(x) + [(∇N )2f ]λ(x) +N2γλT (diag(N−c)[DNλ× (∇)2]1Rf)

(5.6)

and defining

a(x)
def
= N2γλT [DNλ]T∇Nf(x),

b(x)
def
= N2γλT [(∇N )2f ]λ(x),

c(x)
def
= N2γλT [diag(N−c)[DNλ× (∇N )2]1Rf(x)],

we can write

Phf(x0) = f(x0) + hANf(x0) +
h2

2
(a(x0) + b(x0) + c(x0)) +O(N3γ‖f‖∇N

3 h3).

Note that BN
x0
f(x0) = ANf(x0) and b(x0) = (BN

x0
)2f(x0). We may then compare

(5.3) and (5.5):

(PE,h − Ph)f(x0) =
h2

2
((BN

x0
)2f(x0)− (a(x0) + b(x0) + c(x0))) +O(N3γ‖f‖∇N

3 h3)

=
h2

2
(−a(x0)− c(x0)) +O(N3γ‖f‖∇N

3 h3).

The term a(x)+c(x) = O(N2γ‖f‖∇N

2 ) is clearly nonzero in general, giving the desired
result.

5.3. Approximate midpoint method. Throughout subsection 5.3, we let ZN
M

be the midpoint method approximation to XN , and we let

PM,hf(x)
def
= Exf(Z

N
M (h)),

where h is the step size taken in the algorithm. As before, we will assume h < N−γ ,
which is a natural stability condition and is discussed further in section 6.2.

Theorem 5.5. Suppose that the step size h satisfies h < N−γ. Then

‖(PM,h − Ph)‖∇N

3→0 = O(N3γh3 +N2γ−min{mk}h2).
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Remark 4. Theorem 5.5 predicts that the midpoint method behaves locally like
a third order method and globally like a second order method if h is in a regime
satisfying Nγh � N−min{mk}, or equivalently if h � N−γ−min{mk}. This agrees
with the result found in [3] pertaining to the midpoint method, which had γ = 0,
mk ≡ 1, and the running assumption that h � 1/N . This behavior is demonstrated
via numerical example in section 7.

Proof of Theorem 5.5. Let ζN denote the matrix with kth column ζNk , i.e.,

[ζN ] = [ζN1 , ζN2 , . . . , ζNR ].

Recall that ρ is defined via

ρ(z) = z +
h

2
Nγ

∑
k

λk(z)N
ckζNk .

After some algebra, we have

BN
ρ(x0)

f(x) = Nγ

(
λ

(
x0 +

h

2
Nγ

∑
k

λk(x0)N
ckζNk

))
· ∇Nf(x)

= Nγλ(x0) · ∇Nf(x) + w(x0) +O(N2γ‖f‖∇N

1 h2),

where

w(x)
def
= N2γ h

2
[Dλ(x0)][ζ

N ]diag(N c)λ(x0) · ∇Nf(x).

Next, using the product rule (5.2), we see that

(BN
ρ(x0)

)2f(x)

= Nγλ

(
x0 +

h

2
[ζN ]diag(N c)λ(x0)

)
·∇N

(
Nγλ

(
x0 +

h

2
[ζN ]diag(N c)λ(x0)

)
· ∇Nf

)
(x)

= N2γλ

(
x0 +

h

2
[ζN ]diag(N c)λ(x0)

)T

·[(∇N )2f ]λ

(
x0 +

h

2
[ζN ]diag(N c)λ(x0)

)
· ∇Nf(x)

= g(x0) +O(N2γ‖f‖∇N

2 h),

where

g(x0)
def
= N2γλ(x0)

T [(∇N )2f(x)]λ(x0).

Therefore, since Nγλ(x0) · ∇Nf(x0) = ANf(x0), it follows that

PM,hf(x0) = f(x0) + hBN
ρ(x0)

f(x0) +
h2

2
(BN

ρ(x0)
)2f(x0) +O(N3γ‖f‖∇N

3 h3)

= f(x0) + h
(
ANf(x0) + w(x0) +O(N2γ‖f‖∇N

2 h2)
)

+
h2

2

(
g(x0) +O(N2γ‖f‖∇N

2 h)
)
+O(N3γ‖f‖∇N

3 h3).
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Recall that

(AN )2f(x) = a(x) + b(x) + c(x),

where

a(x) = N2γλT [DNλ]T∇Nf(x),

b(x) = N2γλT [(∇N )2f ]λ(x),

c(x) = N2γλT [diag(N−c)[DNλ× (∇N )2]1Rf(x)],(5.7)

and

Phf(x0) = f(x0) + hANf(x0) +
h2

2
(a(x0) + b(x0) + c(x0)) +O(N3γ‖f‖∇N

3 h3).

Noting that b(x0) = g(x0), we see that

(PM,h − Ph)f(x0)

= h w(x0) +
h2

2
(g(x0)− (a(x0) + b(x0) + c(x0))) +O(N3γ‖f‖∇N

3 h3)

=

(
h w(x0)− h2

2
a(x0)

)
− h2

2
c(x0) +O(N3γ‖f‖∇N

3 h3).(5.8)

We will now gain control over the terms (h w(x0)− h2

2 a(x0)) and
h2

2 c(x0) separately.

Handling h2

2 c(x0) first, we have that ∇Nλk ∈ O(N ck−mk), and so

c(x0) = O(N2γ−min{mk}‖f‖∇N

2 ).

Next, we will show that

h w(x0)− h2

2
a(x0) = O(N2γ−min{mk}‖f‖∇N

1 h2).

We have

h w(x0)− h2

2
a(x0)

=
h2

2
N2γ [Dλ(x0)][ζ

N ]diag(N c)λ(x0) · ∇Nf(x0)− h2

2
N2γλT [DNλ]T∇Nf(x)

=
h2

2
N2γ

(
[Dλ(x0)][ζ

N ]diag(N c)− [DNλ(x0)]

)
λ(x0) · ∇Nf(x0).

(5.9)

By Proposition 5.2, ∇Nf(x) is bounded by ‖f‖∇N

1 . Therefore, we need only show
that the difference between the two square matrices

[DNλ(x0)] and [Dλ(x0)][ζ
N ]diag(N c)(5.10)

is O(N−min{mk}). Recalling the definitions in (5.1), the (i, j)th entry of the left-hand
side of (5.10) is

N cj(λi(x0 + ζNj )− λi(x0)),
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whereas that of the right-hand side of (5.10) is

N cj∇λi · ζNj .

Also, note that, for λ ∈ C2
c (R

d,R),

((λ(x + v)− λ(x)) −∇λ(x) · v) ∈ O(|v|2‖λ‖2),
where

‖λ‖2 = sup{‖λ‖∞, ‖∂xiλ‖∞, ‖∂xj∂x�
λ‖∞, i, j, k ≤ d}.

Since ‖λk‖2 is bounded for any k, the difference between the (i, j)th entries of the
two expressions in (5.10) is

O(N cjN−2mj).

Also, recall that cj −mj ≤ 0. Thus the above is also

O(N−min{mk}).

Therefore (5.9) is of order

O(N2γ−min{mk}h2‖f‖∇N

1 ),

as desired. Combining the above with (5.8) gives us

‖(Ph − PM,h)f‖0 = O(N2γ−min{mk}‖f‖∇N

1 h2

+N2γ−min{mk}‖f‖∇N

2 h2 +N3γ‖f‖∇N

3 h3)

= O(‖f‖∇N

3 [N3γh3 +N2γ−min{mk}h2]),(5.11)

implying

‖PM,h − Ph‖∇N

3→0 = O(N3γh3 +N2γ−min{mk}h2),

as desired.

5.4. Weak trapezoidal method. Throughout subsection 5.4, we let ZN
trap be

the weak trapezoidal approximation to XN , and we let

Ptrap,hf(x)
def
= Exf(Z

N
trap(h)),

where h is the size of the time discretization. We will again consider only the case
h < N−γ , which is a natural stability condition and is discussed further in section
6.2.

We make the standing assumption that for all x in our state space of interest,
and k, j ∈ {1, . . . , R}, we have that

ξ1λk(x+ ζNj )− ξ2λk(x) ≥ 0,(5.12)

where ξ1 > ξ2 are defined in (3.9) for some θ ∈ (0, 1). Noting that ζNj will often
be small, and that ξ1 − ξ2 = 1, for most processes, including those arising from
biochemistry, the requirement (5.12) holds as long as the process is not directly at
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the boundary of the positive orthant. Weakening (5.12) is almost certainly doable,
for example, by gaining control over the probability that a process leaves a region in
which the condition holds. This is an avenue for future work.

Theorem 5.6. Suppose that the step size h satisfies h < N−γ. Then

‖(Ptrap,h − Ph)‖∇N

3→0 = O(N3γh3).

Proof. Consider one step of the method with a step size of size h and with
initial value x0. Note that the first step of the algorithm produces a value y∗ that is
distributionally equivalent to one produced by a Markov process with generator BN

1

given by

BN
1 f(x) = Nγλ(x0) · ∇Nf(x).

Next, given both x0 and y∗, the second step produces a value which is distributionally
equivalent to one produced by a Markov process with generator

BN
2 f(x) = Nγ [ξ1λ(y

∗)− ξ2λ(x0)]
+ · ∇Nf(x).(5.13)

Recall that, for the exact process,

Phf(x0) = f(x0) + hANf(x0) +
h2

2
(AN )2f(x0) +O(N3γ‖f‖∇N

3 h3).

For the approximate process we have that

Ptrap,hf(x0) = Ex0 [Ex0 [f(Z
N
trap(h))|y∗]]

= Ex0f(y
∗) + (1− θ)hEx0 [B

N
2 f(y∗)]

+
(1 − θ)2h2

2
Ex0 [(B

N
2 )2f(y∗)] +O(N3γ‖f‖∇N

3 h3).
(5.14)

We will expand each piece of (5.14) in turn. Noting that BN
1 f(x0) = ANf(x0), the

first term is

Ex0f(y
∗) = f(x0) + Ex0

[∫ θh

0

BN
1 f(Zs)ds

]

= f(x0) + θhANf(x0) +
θ2h2

2
(BN

1 )2f(x0) +O(N3γ‖f‖∇N

3 h3).

We turn our attention to the second term, (1−θ)hEx0[B
N
2 f(y∗)], and begin by making

the following definition:

g(y∗) def
= BN

2 f(y∗) = Nγ [ξ1λ(y
∗)− ξ2λ(x0)]

+ · ∇Nf(y∗)

so that g(x) = Nγ([ξ1λ(x) − ξ2λ(x0)]
+ · ∇N )f(x). Because ξ1 − ξ2 = 1, we have

g(x0) = Nγλ(x0) · ∇Nf(x0) = ANf(x0).

By our standing assumption (5.12) we have that

g(x0+ ζk)− g(x0) = Nγ(ξ1λ(x0+ ζk)− ξ2λ(x0)) ·∇Nf(x0+ ζk)−Nγλ(x0) ·∇Nf(x0).
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After some algebra,

BN
1 g(x0) = Nγ(λ(x0) · ∇Ng)(x0) = Nγ

∑
k

N ckλk(x0)[g(x0 + ζk)− g(x0)]

= ξ1N
γλ(x0) · ∇N (Nγλ · f)(x0)− ξ2N

γλ(x0) · ∇N (λ(x0) · f)(x0)

= ξ1(B
N
1 ANf(x0))− ξ2((B

N
1 )2f)(x0).

Thus,

Ex0 [B
N
2 f(y∗)] = Ex0 [g(y

∗)] = g(x0) + θhBN
1 g(x0) +O(N3γ‖f‖∇N

3 h2)

= ANf(x0) + θh
[
ξ1(B

N
1 ANf)(x0)− ξ2(B

N
1 )2f(x0)

]
+O(N3γ‖f‖∇N

2 h2)

= ANf(x0) + θh
[
ξ1(AN )2f(x0)− ξ2(B

N
1 )2f(x0)

]
+O(N3γ‖f‖∇N

3 h2),

where the last line follows since BN
1 f(x0) = ANf(x0) for any f .

Finally, we turn the the last term in (5.14). Define

q(y∗) def
= (BN

2 )2f(y∗)

= [ξ1λ(y
∗)− ξ2λ(x0)]

+ · ∇N ([ξ1λ(y
∗)− ξ2λ(x0)]

+∇Nf)(y∗)

so that

q(x) = [ξ1λ− ξ2λ(x0)]
+ · ∇N ([ξ1λ− ξ2λ(x0)]

+∇Nf)(x).

By our standing assumption (5.12) we have that

Ex0 [(B
N
2 )2f(y∗)] = Ex0 [q(y

∗)]

= q(x0) +O(N3γ‖f‖∇N

3 h)

= (BN
1 )2f(x0) +O(N3γ‖f‖∇N

3 h).

(5.15)

Noting that

(1− θ)θξ1 =
1

2
and (1− θ)θξ2 =

(1− θ)2 + θ2

2
,

we may conclude the following from the above calculations:

Ex0 [f(Z
N
trap,h)] = Ex0f(y

∗) + (1− θ)hEx0 [B
N
2 f(y∗)] +

(1− θ)2h2

2
Ex0 [(B

N
2 )2f(y∗)]

+O(N3γ‖f‖∇N

3 h3)

= f(x0) + θhANf(x0) +
θ2h2

2
(BN

1 )2f(x0)

+ (1 − θ)hANf(x0) +
h2

2
(AN )2f(x0)− h2

2
[(1− θ)2 + θ2](BN

1 )2f(x0)

+
(1 − θ)2h2

2
(BN

1 )2f(x0) +O(N3γ‖f‖∇N

3 h3)

= f(x0) +ANf(x0) +
h2

2
(AN )2f(x0) +O(N3γ‖f‖∇N

3 h3).

Thus

‖(Ptrap,h − Ph)f‖0 ∈ O(N3γ‖f‖∇N

3 h3),

and the proof is complete.
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6. Global bounds and stability. In section 6.1, we bound ‖Ptf‖∇N

n , which
was the remaining piece to handle in Theorem 4.1 to give us global bounds on the
weak error induced by the different methods. In section 6.2, we briefly discuss some
issues related to stability of the different methods.

6.1. Bounds on ‖Ptf‖∇N

n . In this section we bound ‖Ptf‖∇N

n , where n is a
nonnegative integer and Pt is the semigroup operator (4.1) of the scaled process (1.4).
We point out, however, that for any process XN for which Pt is well behaved, in that

‖Pt‖∇N

n→0 is bounded uniformly in N , the following results are not needed, and, in fact,
would most likely be a least optimal bound, as the bound grows exponentially in Nγt.
Note that any system satisfying the classical scaling has γ = 0. We also point out
that the arguments used below are quite similar to those used in [22] by Hu, Li, and
Min, which were extensions of those used in [3] by Anderson, Ganguly, and Kurtz.

For t ≥ 0 and any x ∈ R
d we define

v(t, x)
def
= Ptf(x) = Exf(X

N
t ).

Theorem 6.1. If ‖f‖∇N

n <∞, then

‖v(t, ·)‖∇N

n = ‖Ptf‖∇N

n ≤ ‖f‖∇N

n eN
γCnt,

where

(6.1) Cn = 2
(
‖λ‖∇N

1 n R+R(n− 1)‖λ‖∇N

n

)
.

We delay the proof of Theorem 6.1 until the following lemma is shown, the proof
of which is similar to that found in [22], which itself was an extension of the proof of
Lemma 4.3 in [3].

Lemma 6.1. Given a multiset I of {1, . . . , R}, there exists a function qI(x) that
is a linear function of terms of the form ∇N

J v(t, x) with |J | < |I|, so that

∂t∇N
I v(t, x) = Nγ(λ · ∇N )∇N

I v(t, x) +Nγ

|I|∑
i=1

(βi · ∇N )∇I\�iv(t, x+ ζ�i) +NγqI(x),

where βi = ∇N
�i
λ. Further, qI consists of at most R(|I| − 1) terms of the form

∇N
J v(t, x), each of whose coefficients are bounded above by ‖λ‖∇N

|I| .
Proof. This goes by induction. For |I| = 0, the statement follows because

(6.2) ∂tv(t, x) = Nγ(λ · ∇N )v(t, x).

Note that in this case there are no βi or q terms. It is instructive to perform the
|I| = 1 case. We have

∂t∇N
k v(t, x) = ∇N

k ∂tv(t, x)

= ∇N
k (Nγλ · ∇Nv(t, x))

= Nγ(∇N
k λ · ∇N )v(t, x) +Nγλ · ∇N

k ∇Nv(t, x) +Nγ(N−ck∇N
k λ · ∇N

k ∇Nv(t, x)).

Note that for any g : Rd → R

(∇N
k λ · ∇N )g(x) + (N−ck∇N

k λ · ∇N )∇N
k g(x) = (∇N

k λ · ∇N )g(x+ ζk).(6.3)
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Therefore, with g(x) = v(t, x) in the above, we have that

∂t∇N
k v(t, x) = Nγ(λ(x) · ∇N )∇N

k v(t, x) +Nγ(∇N
k λ(x) · ∇N )v(t, x+ ζk).

Now assume that it holds for a set of size ≤ |I|. Then using the inductive hy-
pothesis, Lemma 5.1, and (6.3) yields

∂t ∇N
k ∇N

I v(t, x)

= ∇N
k ∂t∇N

I v(t, x)

= Nγ∇N
k

⎡⎣(λ · ∇N )∇N
I v(t, x) +

|I|∑
i=1

(βi · ∇N )∇I\�iv(t, x+ ζ�i) + qI(x)

⎤⎦
= Nγ

[
(λ · ∇N )∇N

I∪kv(t, x) + (∇N
k λ · ∇N )∇N

I v(t, x+ ζk)

]

+Nγ

|I|∑
i=1

[
(βi · ∇N )∇N

k ∇N
I\�iv(t, x+ ζ�i) + (∇N

k βi · ∇N )∇N
I\�iv(t, x+ ζ�i + ζk)

]
+Nγ∇N

k qI(x)

= Nγ(λ · ∇N )∇N
I∪kv(t, x)

+Nγ

⎡⎣(∇N
k λ · ∇N )∇N

I∪k\kv(t, x + ζk) +

|I|∑
i=1

(βi · ∇N )∇N
I∪k\�iv(t, x+ ζ�i)

⎤⎦
+Nγ

[
∇N

k qI(x) + (∇N
k βi · ∇N )∇N

I\�iv(t, x+ ζ�i + ζk)

]
,

showing the result.
Proof of Theorem 6.1. Let n ≥ 0. Define

Un(t)
def
= max

x,|I|≤n
|∇N

I v(t, x)| = ‖v‖∇N

n .

Each ∇N
I v(t, x) is a continuously differentiable function with respect to t. Therefore,

the maximum above is achieved at some (I∗, x∗) for all t ∈ [0, t1], where t1 > 0.
Fixing this choice of (I∗, x∗), we have

Un(t) = ∇N
I∗v(t, x∗)

for all t < t1.
Note that

[(λ · ∇N )∇N
I∗v(t, x∗)]∇N

I∗v(t, x∗) =
∑
k

λk(x)(∇N
k ∇N

I∗v(t, x∗))∇N
I∗v(t, x∗)

=
∑
k

N ckλk(x)(∇N
I∗v(t, x∗ + ζk)−∇N

I∗v(t, x∗))∇N
I∗v(t, x∗)

≤ 0,

(6.4)

where the final inequality holds by the specific choices of I∗ and x∗. Also note that
for any �i ∈ I∗ and any choice of x

|∇N∇N
I∗\�iv(t, x)| ≤

R∑
k=1

|∇k∇N
I∗\�iv(t, x)| ≤ R|∇N

I∗v(t, x∗)|.(6.5)
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From Lemma 6.1 and (6.4) and (6.5), we have that

(6.6)

1

2
∂t(∇N

I∗v(t, x∗))2 = (∂t∇N
I∗v(t, x∗))∇N

I∗v(t, x∗)

= Nγ

⎡⎣(λ · ∇N )∇N
I∗v(t, x∗) +

|I∗|∑
i=1

(βi · ∇N )∇I∗\�iv(t, x
∗ + ζ�i) + qI∗(x∗)

⎤⎦∇N
I∗v(t, x∗)

≤ Nγ

[
‖λ‖∇N

1 |I∗| R |∇N
I∗v(t, x∗)|2 +R(|I∗| − 1)‖λ‖∇N

|I∗||∇N
I∗v(t, x∗)|2

]
,

where we have used the fact that each βi = ∇�iλ for �i ∈ I∗. Setting

(6.7) Cn = 2
(
‖λ‖∇N

1 n R+R(n− 1)‖λ‖∇N

n

)
,

we see by an application of Gronwall’s inequality that the conclusion of the theorem
holds for all t < t1. That is, for t < t1

Un(t) ≤ ‖f‖∇N

n eN
γCnt.

To continue, repeat the above argument on the interval [t1, t2), with I∗, x∗ again
chosen to maximize Un on that interval, and note that

Un(t1) ≤ ‖f‖∇N

n eN
γCnt1 ,

so that we may conclude that for t1 ≤ t < t2

Un(t) ≤ ‖f‖∇N

n eN
γCnt1eN

γCn(t−t1) = ‖f‖∇N

n eN
γCnt.

Continuing on, we see that ti → ∞ as i → ∞ by the boundedness of the time
derivatives of v(t, x), thereby concluding the proof.

Remark 5. In the theorem above, Cn ∈ ‖λ‖∇N

n .
Combining all of the previous results, we have the following theorems.
Theorem 6.2 (global bound for the Euler method). Suppose that the step size

h satisfies h < N−γ , and T = nh. Then

‖(Pn
E,h − Pnh)‖∇N

2→0 = O(N2γheC2N
γT ),

where C2 ∈ O(‖λ‖∇N

2 ) is defined in (6.1).
Theorem 6.3 (global bound for the midpoint method). Suppose that the step

size h satisfies h < N−γ , and T = nh. Then

‖(Pn
M,h − Pnh)‖∇N

3→0 = O([N3γh2 +N2γ−min{mk}h]eC3N
γT ),

where C3 ∈ O(‖λ‖∇N

3 ) is defined in (6.1).
The following immediate corollary to the theorem above recovers the result in [3].
Corollary 6.4. Under the additional condition h > N−γ−min{mk} in Theorem

6.3, the leading order of the error of the midpoint method is O(h2).
Theorem 6.5 (global bound for the weak trapezoidal method). Suppose that the

step size h satisfies h < N−γ , and T = nh. Then

‖Pn
trap,h − Pnh‖∇N

3→0 = O(h2N3γeN
γC3T ),
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where C3 ∈ O(‖λ‖∇N

3 ) is defined in (6.1).
Thus, we see that the weak trapezoidal method detailed in Algorithm 3 is the only

method that boasts a global error of second order in the step size h in an “honest
sense.” That is, it is a second order method regardless of the relation of h with respect
to N . This is in contrast to the midpoint method which has second order accuracy
only when the order of h is larger than N−γ−min{mk}.

6.2. Stability concerns. The main results and proofs of our paper have incor-
porated stability concerns into the analysis. This is seen in the statements of the
theorems by the running condition that h < N−γ , where we recall that Nγ should
be interpreted as the time scale of the system. Without this condition, the methods
are unstable. It is an interesting question, and the subject of future work, of how to
determine the stability properties of other methods in this setting.

As an instructive example, again consider the system

S1

100

�
100

S2,

with X1(0) = X2(0) = 10,000. In this case, it is natural to take N = 10,000. As the
rate constants are 100 =

√
10,000, we take β1 = β2 = 1/2 and find that γ = 1/2. The

equation governing the normalized process XN
1 is

XN
1 (t) = XN

1 (0)− Y1

(
N1/2N

∫ t

0

XN
1 (s)ds

)
1

N
+ Y2

(
N1/2N

∫ t

0

(2−XN
1 (s))ds

)
1

N
,

where we have used that XN
1 +XN

2 ≡ 2. It is now clear that if the condition h < N−γ

is violated, a path generated by any of the explicit methods discussed in this paper
will behave quite poorly.

7. Examples. We provide two test systems. The first is a simple linear system
with three species that we will use to demonstrate our main analytical results. The
second is a gene-protien-mRNA model that we will use to demonstrate the capabilities
of the different methods on an actual test problem. We note that in all simulations
of the weak trapezoidal algorithm, we chose θ = 1/2.

Example 1. Consider the following first order reaction network:

A
κ1

�
κ2

B
κ3

�
κ4

C,

with κ1 = 0.03, κ2 = 1, κ3 = 0.1, and κ4 = 1. We start from the initial state

X(0) = (XA(0), XB(0), XC(0)) = (13000, 100, 20),

where we make the obvious associations X1 = XA, X2 = XB, and X3 = XC . We
approximate X(2) using the three methods considered in this paper: Euler, midpoint,
and weak trapezoidal with a choice of θ = 1/2. For first order systems, we may find
the first moments and the covariances of X(t) as solutions of linear ODEs using a
moment generating function approach [15].

In Figure 7.1, we show a log-log plot of |E[X2
3 (2)] − E[Z2

3 (2)]| against h for the
three approximation methods. Each data point was found from either 106, 2.9× 106,
3.9 × 106, 4.9 × 106, 8 × 106, or 107 independent simulations, with the number of
simulations depending upon the size of h and the method being used. The slope for
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Fig. 7.1. The log-log plot of |E[X2
3 (2)]−E[Z2

3 (2)]| against h for the three approximation methods.
The slope for Euler’s method is 1.21, whereas the slope for the weak trapezoidal solution with θ = 1/2
is 3.06, which is better than expected. The curve governing the solution from the midpoint method
appears not to be linear, a behavior predicted by Theorem 5.5.
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Fig. 7.2. The log-log plot of |E[X2
3 (2)]− E[Z2

3 (2)]| against h. The slope generated via midpoint
tau-leaping shifts from 2.03 in (a) to 1.12 in (b).

Euler’s method is 1.21, whereas the slope for the weak trapezoidal solution is 3.06,
which is better than expected. The curve governing the solution from the midpoint
method appears not to be linear, a behavior predicted by Theorem 5.5.

In Figure 7.2 we again consider the log-log plots of |E[X2
3 (2)]− E[Z2

3 (2)]| against
h, but now only for Euler’s method and the midpoint method so that we may see
the change in behavior in the midpoint method predicted in Theorem 5.5. In (a), we
see that for larger h the slope generated via the midpoint method is 2.03, whereas in
(b) the slope is 1.12 when h is smaller. For reference, in (a) the slope generated by
Euler’s method is 1.366, whereas in (b) it is 1.09.
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Fig. 7.3. Log-log plot of |E[X3(2)] − E[Z3(2)]| against h for the three approximation methods.
The approximate slopes are 1.02 for Euler’s method, 2.372 for the midpoint method, and 2.3 for the
trapezoidal method.

While the simulations make no use of the scalings inherent in the system, it is
instructive for us to quantify them in this example so that we are able to understand
the behavior of the midpoint method. We have N ≈ 104, α1 = 1, α2 = 1/2, α3 = 1/4,
and mk = 1/4. Also, γ ≈ 0. Therefore, Theorem 5.5 predicts that the midpoint
method will behave as an order two method if h� N−1/4 ≈ 1/10, or if log(h)� −2.3,
which roughly agrees with what is shown in Figures 7.1 and 7.2. Note that Theorem
5.5 will never provide a sharp estimate as to when the behavior will change, as it
is a local result and the scalings in the system will change during the course of a
simulation.

The fact that the trapezoidal method gave an order three convergence rate above
does not hold in general. This was demonstrated in the proof of Theorem 5.6, but
it is helpful to also show this via example. In Figure 7.3 we present a log-log plot of
|EX2(2)−EZ2(2)| for the different algorithms on this same example. The approximate
slopes are 1.02 for Euler’s method, 2.372 for the midpoint method, and 2.3 for the
trapezoidal method. We point out that all of the plots above represent results per-
taining to the nonnormalized processes, as the simulation methods themselves make
no use of the scalings.

Example 2. Consider a model of gene transcription and translation:

G
25→ G+M, M

1000→ M + P, 2P
0.001→ D, M

0.1→ ∅, P
1→ ∅.

Here a single gene is being translated into mRNA, which is then being transcribed
into proteins, and finally the proteins produce stable dimers. The final two reactions
represent degradation of mRNA and proteins, respectively. Suppose we start with
one gene and no other molecules, and that we want to estimate the expected number
of dimers at time T = 1 to an accuracy of ± 1.0 with 95% confidence. Therefore, we
want the variance of our estimator to be smaller than (1/1.96)2 = .2603.

While ε = 1 for the unscaled version of this problem, the simulation of just a few
paths of the system will show that there will be somewhere in the magnitude of 3,500
dimers at time T = 1. Therefore, for the scaled system, we are asking for an accuracy
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Table 7.1

Performance of an exact algorithm with crude Monte Carlo estimator (1.2). Approximation is
the 95% confidence interval.

Approximation # paths CPU time # updates

3714.2 ± 1.0 4,740,000 149,000 CPU S 8.27 ×1010

Table 7.2

Performance of Euler’s method with crude Monte Carlo. Approximation is the 95% confidence
interval.

Step size Approximation # paths CPU time # updates

h = 3−7 3,712.3 ± 1.0 4,750,000 13,374.6 CPU s 6.2× 1010

h = 3−6 3,707.5 ± 1.0 4,750,000 6,207.9 CPU s 2.1× 1010

h = 3−5 3,693.4 ± 1.0 4,700,000 2,803.9 CPU s 6.9× 109

h = 3−4 3,654.6 ± 1.0 4,650,000 1,219 CPU s 2.6× 109

of ε̃ = 1/3500 ≈ 0.0002857. Also, a few paths (100 is sufficient) show that the order
of magnitude of the variance of the normalized number of dimers is approximately
0.11. Thus, the approximate number of exact sample paths we will need to generate
can be found by solving

1

n
Var(normalized # dimers) = (ε̃/1.96)2 =⇒ n = 5.18× 106.

Therefore, we will need approximately five million independent sample paths gener-
ated via an exact algorithm. Implementing the modified next reaction method [1] on
our machine (using MATLAB), each path takes approximately 0.03 CPU s to gen-
erate. Therefore, the approximate amount of time to solve this particular problem
will be 155,000 CPU s, which is about 43 hours. The outcome of such a simulation is
detailed in Table 7.1, where “# updates” refers to the total number, over all paths,
of updates to the system performed, and random variables generated, and is used
as a quantification for the computational complexity of the different methods under
consideration. In terms of software and hardware, the authors used MATLAB for all
computations, which were performed on an Apple machine with a 2.2 GHz Intel i7
processor.

Next, we solved the problem using Euler’s method, the approximate midpoint
method, and the weak trapezoidal method with θ = 1/2. We note that, for each of
the three approximations, we used the most naive implementation possible by simply
setting the value of any component that goes negative in the course of a step to zero,
and by using a fixed step size, h > 0. Thus, improvements can be gained on the
stated results by using a more sophisticated implementation [2, 8]. However, we did
produce our approximate paths in batches of 50,000, which greatly reduces the cost of
generating the Poisson random variables with the built-in MATLAB Poisson random
number generator.

In Table 7.2 we provide data on the performance of Euler’s method with various
step sizes, combined with a crude Monte Carlo estimator (1.8). Note that the bias in
Euler’s method is apparent even for very small h. In Table 7.3 we provide data on the
performance of the midpoint method with various step sizes, combined with a crude
Monte Carlo estimator (1.8). Note that the solution has a much higher variance when
h = 1/3, thereby necessitating significantly more paths to get a desired tolerance. This
demonstrates the stability concerns discussed in section 6.2. This problem does not
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Table 7.3

Performance of the midpoint method with crude Monte Carlo. Approximation is the 95%
confidence interval.

Step size Approximation # paths CPU time # updates

h = 3−4 3,713.6 ± 1.0 4,650,000 1,269.1 CPU s 2.3× 109

h = 3−3 3,713.9 ± 1.0 4,500,000 497.5 CPU s 7.6× 108

h = 3−2 3,722.4 ± 1.0 4,050,000 177.6 CPU s 2.2× 108

h = 3−1 3,986.1 ± 1.0 18,500,000 376.0 CPU s 3.3× 108

Table 7.4

Performance of the weak trapezoidal method with θ = 1/2, with crude Monte Carlo. Approxi-
mation is the 95% confidence interval.

Step size Approximation # paths CPU time # updates

h = 3−4 3,714.4 ± 1.0 4,750,000 2,120.5 CPU s 4.6× 109

h = 3−3 3,714.6 ± 1.0 4,750,000 898.2 CPU s 1.6× 109

h = 3−2 3,725.6 ± 1.0 4,800,000 349.8 CPU s 5.2× 108

h = 3−1 3,673.3 ± 1.0 8,850,000 238.2 CPU s 3.2× 108

Table 7.5

Approximation of P{XDimer(1) ≥ 6, 000} using different methods and different step sizes. As
expected, the weak trapezoidal method demonstrates significantly less bias than the Euler and mid-
point methods. Approximation is the 95% confidence interval.

Method Step size # paths Approximation

Exact N.A. 4,520,000 0.02843 ± 0.00015

Euler h = 3−7 4,750,000 0.02818 ± 0.00015

Euler h = 3−6 4,750,000 0.02782 ± 0.00015

Midpoint h = 3−4 4,650,000 0.02718 ± 0.00015

Midpoint h = 3−3 4,500,000 0.02537 ± 0.00015

Weak trap, θ = 1/2 h = 3−4 4,750,000 0.02840 ± 0.00015

Weak trap, θ = 1/2 h = 3−3 4,750,000 0.02838 ± 0.00015

Weak trap, θ = 1/2 h = 3−2 4,800,000 0.02946 ± 0.00015

arise as much when using the weak trapezoidal method. In Table 7.4 we provide data
on the performance of the weak trapezoidal method with various step sizes, combined
with a crude Monte Carlo estimator (1.8). We see that for this example the midpoint
method and the weak trapezoidal method are, overall, comparable. However, the weak
trapezoidal method performs, in terms of bias and required CPU time, significantly
better than the midpoint method for h = 1/3.

It is worth noting that both the midpoint and the weak trapezoidal methods
compare decently on this example with the multilevel Monte Carlo method developed
recently for stochastic chemical kinetic systems [4]. The choice of which method (an
explicit solver discussed herein or a multilevel Monte Carlo solver) a user wishes to
implement will therefore often be problem, and user, specific.

We next used each of the methods above to estimate the probability that the
number of dimers at time 1 is greater than or equal to 6,000. Note that this probabil-
ity is the expected value of the indicator function 1{XDimer(1)≥6,000}. The results are
presented in Table 7.5, which provides 95% confidence intervals for a few choices of
h for each method. Note that in computing this approximation the weak trapezoidal
method has significantly less bias than the midpoint method for comparable step sizes,
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making it the method of choice for this particular choice of function f . The necessary
CPU time for each of the methods is the same as those reported above.
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