
Product-form stationary distributions for deficiency zero
networks with non-mass action kinetics: Errata in

Example 1

David F. Anderson∗†, Simon Cotter‡†

January 16, 2017

Abstract

Post-publication a small error was found in Example 1, a typo which also lead
to comparing the QSSA and constrained approximations to the wrong distribution.
Below we represent this material with the amendments highlighted in red, along with
a corrected Figure 1. This didn’t overly affect the presentation of the example, but did
underplay the accuracy of the constrained approach for this example.

1 Examples

1.1 Example 1: Motivating Example

First we consider a motivating example arising from model reduction, through con-
strained averaging [2, 3, 4], of the following system:

2S1
κ1x1(x1 − 1)−−−−−−−−⇀↽−−−−−−−−

κ2x2
S2, ∅ κ3−−→ S2, S2

κ4x1−−−→ ∅, (1)

where the intensity functions are again placed next to the reaction arrows. Note that
the intensities of all the reactions follow mass action kinetics. We consider this system
in a parameter regime where the reversible dimerization reactions 2S1 −−⇀↽−− S2 are
occurring more frequently than the production and degradation of S2. Both S1 and
S2 are changed by the fast reactions, but the quantity S = S1 + 2S2 is invariant with
respect to the fast reactions, and as such is the slow variable in this system. We wish
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to reduce the dynamics of this system to a model only concerned with the possible
changes in S:

∅ λ̄3(s)−−−→ 2S, S
λ̄4(s)−−−→ ∅, (2)

where λ̄3(s) and λ̄4(s) are the effective rates of the system.
Using the QE approximation (QEA), λ̄3(s) = κ3 and λ̄4(s) = κ4EπQEA(s)[X1], where

πQEA(s) is the stationary distribution for the system

2S1
κ1x1(x1 − 1)−−−−−−−−⇀↽−−−−−−−−

κ4x2
S2, (3)

under the assumption that X1(0) + 2X2(0) = s. Since the system (3) satisfies the
necessary conditions of the results of [1] (weak reversibility and deficiency of zero), the
invariant distribution πQEA(s) is known exactly.

In comparison, the constrained approach requires us to find the invariant distribu-
tion πCon of the following system:

2S1

κ1x1(x1 − 1) + κ31{x1>1}−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−
(κ2 + κ4)x2

S2, (4)

subject to X1(0) + 2X2(0) = s. Readers interested in seeing how this is derived should
refer to [2]. This network is weakly reversible, and has a deficiency of zero. However,
the form of the rates in this system do not satisfy the conditions specified in [1]. In
the context of constrained averaging, this lack of a closed form for the stationary dis-
tribution would result in the need for some form of approximation of the stationary
distribution. There are two common methods utilized for performing this approxi-
mation. One possibility would be to perform exhaustive stochastic simulation of the
system (4). Another option involves finding the distribution by finding the null space
of the adjoint of the generator (see the discussion in and around (5)). However, as the
state space of (4) will typically be huge, the latter method often involves truncating
the state space and approximating the actual distribution with that of the stationary
distribution of the truncated system [2]. Both approaches will lead to approximation
errors and varying amounts of computational cost. However, note that the system (4)
does satisfy Assumption 1, with α1 = 2 and α2 = 1. We denote the rate of dimerization
by λD and its reverse by λ−D. Therefore

λD(x) = k1x1(x1 − 1) + k31{x1>1},

= k1

(
x1(x1 − 1) +

k3

k1
1{x1>1}

)
,

= k1θ1(x1),

with θ1 defined in the final equality. The form of the rate of the reverse reaction is
much simpler, and is given by

λ−D(x) = (k2 + k4)x2 = (k2 + k4)θ2(x),

which defines θ2.
By Theorem 2, we can write down the stationary distribution of this system. The

complex balanced equilibrium of the associated deterministically modeled system with
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c1 + 2c2 = 1, is given by (c1, c2) =

(√
(k2+k4)(k2+8k1+k4)−k2−k4

4k1
, 1−c1

2

)
. Then by Theo-

rem 2, and by recalling that all states (x1, x2) in the domain satisfy s = x1 + 2x2, the
stationary distribution for S2 is given by

πCon(x2) =
1

ΓCon

c
(s−2x2)
1∏b(s−2x2)/2c−1

j=0

(
(s− 2x2 − 2j)(s− 2x2 − 2j − 1) + k3

k1

) cx22

x2!
, (5)

where ΓCon is a normalization constant and s is the conserved quantity. Note that the
indicator function in θ1 (in the denominator) has disappeared since it is always equal
to one over the domain of the product.

We can compare (5) with the distribution of (3), which arises from the QEA, and
also with the distribution of the full system (1) conditioned on S1 + 2S2 = s (which
can be approximated by finding the null space of the adjoint of the generator of the
full system on the truncated domain). First we consider the QEA approximation. The
invariant distribution of the fast subsystem (3) can be found using Theorem 1, and is
given by

πQEA(x) =
1

ΓQEA

ds−2x2
1

(s− 2x2)!

dx22

x2!
, (6)

where (d1, d2) =

(√
k4(8k1+k4)−k4

4k1
, 1−d1

2

)
is the complex balanced equilibrium for this

system satisfying d1 + 2d2 = 1, and ΓQEA is a normalizing constant.
Since the full system (1) does not have a deficiency of zero, we are not able to find its

invariant distribution directly. However, by truncating the state space appropriately,
we are able to approximate the full distribution by constructing the generator on this
truncated state space and finding the null space of the adjoint.

Once we have approximated the null space of the truncated generator, we can find
the approximation of P(X2 = x2|X1 +2X2 = s) by taking the probabilities of all states
with x1 + 2x2 = s and renormalizing. In what follows, we truncated the domain of the
generator to x ∈ {0, 1, . . . , 1000} × {0, 1, . . . , 500}.

We consider the system (1) with parameters given by:

k1 = 1, k2 = 100, k3 = 1500, k4 = 30. (7)

Note that it is not obvious from these rates that the reactions with rates k3 and k4 are in
fact the slow reactions in this system. The invariant density is largely concentrated in
a small region centered close to the point x = (99, 114). By using the approximation of
the invariant density that we have computed on the truncated domain, we can compute
the expected ratio between occurrences of the fast reactions with rates k1 and k2 with
the slow reactions with rates k3 and k4. For this choice of parameters, the expected
proportion of the total reactions which are fast reactions (dimerization/disassociation)
is 82.68%. This indicates a difference in timescales between these reactions, but the
difference is not particularly stark, and as such we would expect there to be significant
error in any approximation relying on the QEA.

Figure 1 shows the three approximations of the distribution P(X2 = x2|X1 +2X2 =
300) for the system (1) with parameters given by (7). The constrained and QEA
approximations are computed using (5) and (6) respectively, with the normalizing
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Figure 1: Approximations of the distribution P(X2 = x2|X1 + 2X2 = 300) for the system
(1) with parameters given by (7) using constrained averaging, QEA averaging, and through
approximation of the invariant distribution of the full system on x ∈ {0, 1, . . . , 1000} ×
{0, 1, . . . , 500}.

constants computed numerically. As would be expected in this parameter regime, the
constrained approximation is far more accurate than the QEA.

We can quantify the accuracy of each of the approximations by computing the
relative l2 differences with the distribution computed using the full generator on the
truncated domain. This relative difference was 4.760 × 10−1 for the QEA, in com-
parison with 1.0897 × 10−2 for the constrained approximation. The Kullback-Leibler
divergences of these two approximations with respect to the true distribution were
2.2291×10−1 and 1.5304e×10−4 for the QEA and constrained approximations respec-
tively. This demonstrates the improvement in approximation that can be achieved by
using constrained averaging, and which motivates the need for results like Theorem 2
which take non-mass action kinetics into account.

References

[1] David F. Anderson, Gheorghe Craciun, and Thomas G. Kurtz. Product-form sta-
tionary distributions for deficiency zero chemical reaction networks. Bull. Math.
Biol., 72(8):1947–1970, 2010.

[2] Simon L. Cotter. Constrained approximation of effective generators for multiscale
stochastic reaction networks and application to conditioned path sampling. Journal
of Computational Physics, 323:265 – 282, 2016.

[3] Simon L. Cotter and Radek Erban. Error analysis of diffusion approximation meth-
ods for multiscale systems in reaction kinetics. SIAM J. Sci. Comp., 38(1):144–163,
2016.

[4] Simon L. Cotter, Konstantinos C. Zygalakis, Ioannis G. Kevrekidis, and Radek
Erban. A constrained approach to multiscale stochastic simulation of chemically
reacting systems. J. Chem. Phys., 135(9):094102, 2011.

4


