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Abstract

It is well known that stochastically modeled reaction networks that are complex balanced
admit a stationary distribution that is a product of Poisson distributions. In this paper, we
consider the following related question: supposing that the initial distribution of a stochastically
modeled reaction network is a product of Poissons, under what conditions will the distribution
remain a product of Poissons for all time? By drawing inspiration from Crispin Gardiner’s
“Poisson representation” for the solution to the chemical master equation, we provide a necessary
and sufficient condition for such a product-form distribution to hold for all time. Interestingly,
the condition is a dynamical “complex-balancing” for only those complexes that have multiplicity
greater than or equal to two (i.e. the higher order complexes that yield non-linear terms to
the dynamics). We term this new condition the “dynamical and restricted complex balance”
condition (DR for short).

1 Introduction

Reaction networks are commonly utilized in the modeling of biological processes such as gene
regulatory networks, signaling networks, viral infections, cellular metabolism, etc., and their
dynamics are typically modeled in one of three ways [5, 18]. If the counts of the constituent
molecules are low, then the dynamics of the abundances is typically modeled stochastically
with a discrete-space, continuous-time Markov chain in Zd≥0, where d is the number of species

in the system. If the counts are moderate (perhaps between order 102 and order 104), then
the concentrations of the constituent species may be approximated by some form of continuous
diffusion process. If the counts of the constituent species are high, then the evolution of their
concentrations is often modeled deterministically via a system of ordinary differential equations.

Analytic treatments of such models are rarely possible, and most existing approaches analyze
steady states: fixed points of the concentrations in the deterministic modeling regime and
stationary distributions in the stochastic regime. However, most biological processes are not in
steady state and experiments typically measure transient dynamics. To identify the underlying
interactions, time-dependent solutions of the relevant dynamical equations are needed [16, 20].
For stochastic systems modeled as discrete space, continuous time Markov chains, there are no
known explicit formulas for the time dependent distribution of the process, except in the case
of monomolecular systems [15]. Because of this, either stochastic simulations or approximation
methods are typically employed in the stochastic setting [17, 19, 21]. However, these approaches
are computationally expensive and/or give rise to uncontrolled estimation errors [18]. To the
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best of our knowledge, the results presented in this article are the first that provide the exact
time dependent distribution for a general class of reaction networks with higher order complexes.

In the series of papers [9, 13, 14], Feinberg, Horn, and Jackson introduced the notion of
network deficiency and proved that if the reaction network (i) is weakly reversibility and (ii)
has a deficiency of zero, then the resulting deterministically modeled system endowed with mass
action kinetics is “complex balanced,” regardless of the choice of rate parameters. See [3, 4, 5]
for terminology. In [3], Anderson, Craciun, and Kurtz proved a corresponding result for the
associated jump Markov models. In particular, they showed that any stochastic model whose
deterministic counterpart is complex balanced (which, by the works cited above, includes all
models whose network is weakly reversible and has a deficiency of zero) admits a stationary
distribution that is a product of Poissons. The specific distribution is

π(x) =

d∏
i=1

e−c̃i
c̃xi
i

xi!
, x ∈ Zd≥0, (1)

where c̃ ∈ Rd>0 is a complex balanced fixed point of the corresponding deterministically modeled
system. See also [1], where the processes considered in [3] were shown to be non-explosive, and
[2], where the main result from [3] was generalized to a class of models with non-mass action
kinetics. Finally, the interested reader may also see [7], where a converse to the main theorem
in [3] is shown. Specifically, they show that if a system admits the stationary distribution (1),
then the associated deterministic model is complex balanced.

In this paper we study a related question. Consider a reaction network endowed with stochas-
tic mass action kinetics and let Xt denote the vector whose ith coordinate gives the count of
species i at time t. We ask the following: when is it the case that

P (X0 = x) =

d∏
i=1

e−c̃i
c̃xi
i

xi!
, (2)

where c̃ ∈ Rd>0, implies there is a function of time c : [0,∞)→ Rd>0 with c(0) = c̃, for which

P (Xt = x) =

d∏
i=1

e−ci(t)
ci(t)

xi

xi!
, for all t ≥ 0? (3)

That is, when can the model admit a time dependent distribution that is always a product of
Poissons? Further, when (3) does hold, what is the function c?

A partial answer to this question has been known for quite some time. In particular, in
[11] Gardiner showed that if all complexes of the network are either zeroth or first order (which
implies linear dynamics), then (2) implies (3) where c is the solution to the associated determin-
istic model with initial concentration levels given by c(0). In this paper, we fully characterize
which models have this desired property. In particular, we introduce a dynamical and restricted
(DR) complex balance condition (see Definition 2.3), and prove in Theorem 3.1 that this is a
necessary and sufficient condition for (2) to imply (3), with c being the solution to the associated
deterministic model.

The outline of the remainder of the paper is as follows. In Section 2, we formally introduce
the relevant mathematical models, giving the formal definition of a reaction network together
with both the stochastic and deterministic model. We also introduce our new DR condition.
In Section 3, we provide our main results, together with their motivation from the physics
literature. In particular, we demonstrate how Gardiner’s Poisson Representation (PR), equation
(10), implies a mathematical conjecture pertaining to which systems of order two can admit a
distribution that is a product of Poissons for all times. We then prove this conjecture while also
generalizing to models of order two or higher. In Section 4, we provide a series of examples.
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2 Mathematical model

We formally introduce the mathematical models considered in this paper, together with some
key terminology.

Definition 2.1. A reaction network is a triple of finite sets, usually denoted {S, C,R}, satisfying
the following:

(i) the species, S = {S1, . . . , Sd}, are the components whose abundances we wish to model
dynamically;

(ii) the complexes, C, are linear combinations of the species over the nonnegative integers.
Specifically, if y ∈ C, then

y =

d∑
i=1

yiSi, (4)

with yi ∈ Z≥0.

(iii) The reactions, R, are a binary relation on the complexes. The relation is typically denoted
with “→”, as in y → y′.

We often enumerate the reactions by k, and for yk, y
′
k ∈ C with yk → y′k ∈ R, we call yk

and y′k the source and product complexes, respectively, of that reaction.

We also include the following usual conditions in this definition: every species must appear
in at least one complex, every complex must appear as the source or product of at least one
reaction, and we do not allow reactions of the type y → y ∈ R (i.e., we do not allow the source
and product complex of a given reaction to be the same).

Allowing for a slight abuse of notation, we will let y denote both the linear combination of
the species, as in (4), and the vector whose ith component is yi, i.e. y = (y1, y2, · · · , yd)T ∈ Zd≥0.

For example, when S = {S1, S2, . . . , Sd}, we correspond 2S1 +S2 with (2, 1, 0, 0, . . . , 0)T ∈ Zd≥0.

For a vector u ∈ Rd, we let ‖u‖1 =
∑d
i=1 |ui|. We will say that a reaction network is of first

order if ‖y‖1 ≤ 1 for ∀y ∈ C, is of second order if ‖y‖1 ≤ 2 for ∀y ∈ C, etc. For example, the
network 4S1 + S2 � 3S3 is of 5th order.

A reaction network is said to be weakly reversible if for any given reaction, y → y′ ∈ R say,
there are reactions, y1 → y′1, . . . , y` → y′` ∈ R with y′ = y1, y′i = yi+1 for each i ∈ {1, . . . , `− 1},
and y′` = y. That is, a model is weakly reversible if each connected component of the reaction
diagram is strongly connected when each complex is written exactly one time.

When working in a theoretical setting, the set of species is often denoted {S1, . . . , Sd}.
However, when working with specific examples one often adopts more suggestive notation such
as E for an enzyme, P for a protein, etc.

We provide a number of examples to demonstrate the terminology.

Example 2.1. If in our system we have only three species, which we denote by S1, S2, and S3,
and the only transition type we allow is the merging of an S1 and an S2 molecule to form an S3

molecule, then we may depict this network by the directed graph

S1 + S2 → S3.

For this very simple model our network consists of species S = {S1, S2, S3}, complexes C =
{S1 + S2, S3}, and reactions R = {S1 + S2 → S3}. 4
Example 2.2. The simplest model for gene transcription and translation assumes the following
set of reactions,

G→ G+M (transcription)

M →M + P (translation)

M → ∅ (degradation)

P → ∅ (degradation).
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Here, the set of species is {G,M,P}, representing the gene, mRNA, and Protein, respectively,
the set of complexes is {G, G + M, M, M + P, P, ∅}, and the set of reactions is R = {G →
G+M, M →M + P, M → ∅, P → ∅}. 4

We now define the two most popular modeling choices for reaction networks: the discrete-
space, continuous-time Markov chain model and the deterministic model.

Discrete-space, continuous-time Markov chain model. The usual stochastic model for a
reaction network treats the system as a continuous-time Markov chain whose state Xt ∈ Zd≥0 is
a vector whose ith component gives the abundance of species Si at time t ≥ 0, and with each
reaction modeled as a possible transition of the chain. For the kth reaction, we let yk ∈ Zd≥0 and

y′k ∈ Zd≥0 be the vectors whose ith components gives the multiplicity of species i in the source and

product complexes, respectively, and let λk : Zd≥0 → R≥0 give the transition intensity, or rate,
at which the reaction occurs. The transition intensities are often referred to as the propensities.
Specifically, if the kth reaction occurs at time t, then the old state, Xt−, is updated by addition
of the reaction vector ζk = y′k − yk and

Xt = Xt− + ζk.

For example, for the reaction S1 + S2 → S3, we have

yk =

 1
1
0

 , y′k =

 0
0
1

 , and ζk =

 −1
−1

1

 .
We now assume that Xt is a continuous-time Markov chain on Zd≥0 with transition rates

q(x, x′) =
∑

k:ζk=x′−x

λk(x),

where the sum is over all reactions with reaction vector equal to x′ − x. The reason for the
sum is that different reactions can gave the same reaction vector. For example, the reactions
S1 → S2 and 2S1 → S1 + S2 have the same reaction vector. The most common form for the
intensity functions λk is given by stochastic mass action kinetics, in which case

λk(x) = κk

d∏
i=1

xi!

(xi − yki)!
1{xi≥yki}, x ∈ Zd≥0, (5)

where yk is the source complex and κk ∈ R≥0 is the rate constant.

Other ways to characterize the stochastic model. The model described above is a continuous-time
Markov chain in Zd≥0 with infinitesimal generator

(Af)(x) =
∑
k

λk(x)(f(x+ ζk)− f(x)), (6)

where f : Zd → R [5, 8]. Kolmogorov’s forward equation, termed the chemical master equation
in much of the biology and chemistry literature, for this class of models is [4, 6, 12]

d

dt
Pµ(x, t) =

∑
k

λk(x− ζk)Pµ(x− ζk, t)1{x−ζk∈Zd
≥0
} −

∑
k

λk(x)Pµ(x, t), (7)

where Pµ(x, t) represents the probability that Xt = x ∈ Zd≥0, given an initial distribution of µ.
Note that there is one such equation (7) for each state in the system (so there are often an infinite
number of equations). So long as the process is non-explosive, the different characterizations
for the relevant processes are equivalent [4, 5, 8].
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Deterministic model. The usual deterministic model with mass action kinetics is the solution
to the following ordinary differential equation in Rd≥0

d

dt
c(t) =

∑
k

κkc(t)
yk(y′k − yk), (8)

where for two vectors u, v ∈ Rd≥0 we define uv ≡
∏
i u

vi
i and adopt the convention that 00 = 1.

Definition 2.2. An equilibrium value c ∈ Rd≥0 is said to be complex balanced if for each complex
z ∈ C, ∑

k:yk=z

κkc
z =

∑
k:y′k=z

κkc
yk ,

where the sum on the left (respectively, right) is over those reactions with source (respectively,
product) complex z.

Here we will introduce a new definition, which is closely related to that of a complex balanced
equilibrium. Below and throughout, we denote the 1-norm of a vector u by ‖u‖1 =

∑
i |ui|.

Definition 2.3. We say that a solution c(t) to the deterministic dynamics in (8) satisfies the
dynamical and restricted (DR, for short) complex balance condition if the following holds: for
all complexes z ∈ C with ‖z‖1 ≥ 2 and all t ≥ 0,∑

k:yk=z

κkc(t)
z =

∑
k:y′k=z

κkc(t)
yk , (9)

where the sum on the left (respectively, right) is over those reactions with source (respectively,
product) complex z.

Thus, the DR conditions is the same as the complex balanced condition except it allows for
time dependence (i.e., is dynamical) and is restricted to those complexes that have non-linear
intensity functions. Note that the DR condition holds trivially in the case that ‖z‖1 ≤ 1 for all
z ∈ C.
Lemma 2.1. Consider a reaction network endowed with deterministic mass action kinetics. Let
c(t) be the solution to the system (8). If for c̃ = c(0) ∈ Rd>0 we have that c(t) satisfies the DR
condition of Definition 2.3, then, for this particular choice of initial condition, the right-hand
side of (8) is linear and c(t) ∈ Rd>0 for all t ≥ 0.

Proof. Denote C = {yk : ‖yk‖1 ≥ 2}. We may rewrite the deterministic equation (8) in the
following manner,

d

dt
c(t) =

∑
k

κkc(t)
yk(y′k − yk) =

∑
k:yk∈C

κkc(t)
yk(y′k − yk) +

∑
k:yk 6∈C

κkc(t)
yk(y′k − yk)

=
∑
z∈C

z

 ∑
k:y′k=z

κkc(t)
yk −

∑
k:yk=z

κkc(t)
yk

+
∑

k:yk 6∈C

κkc(t)
yk(y′k − yk)

=
∑

k:yk 6∈C

κkc(t)
yk(y′k − yk).

Where the third equality uses the DR condition of Definition 2.3. Notice that if yk 6∈ C, we have
‖yk‖1 ≤ 1, which guarantees that each of the remaining terms of the form c(t)yk are linear.

We must now show that c(t) ∈ Rd>0 for all t ≥ 0 if c(0) ∈ Rd>0. This follows by observing
that for each i, the differential equation governing the dynamics of ci(t) is of the form

d

dt
ci(t) =

∑
j 6=i

βjcj(t)− βici(t),

where βj , βi ∈ R≥0, and comparing with the solution to the ODE d
dtx(t) = −βix(t).
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Remark 2.1. The previous lemma gives us one feasible approach to check whether the DR
condition holds for a given model. Specifically if the DR condition holds, then by Lemma 2.1
the system governing the dynamics of c(t) is linear and can therefore be solved explicitly. We
can then check whether the solution so found satisfies the DR condition (9). We will utilize this
idea in Section 4 on a number of examples.

3 Motivation and results

3.1 Motivation from the physics literature

In the physics literature, there is an alternative representation for the solution to the chemical
master equation (7) and is given by Gardiner’s Poisson representation (PR) [11]. One form of
the PR (the “positive PR” [10]) can be derived by first making the following ansatz for Pµ(x, t)
from (7):

Pµ(x, t) =

∫
Cd

d∏
i=1

P(xi;ui)πν(u, t)du, u = (u1, . . . , ud), (10)

where P(xi;ui) = (e−uiuxi
i )/xi! is a Poisson distribution in xi with mean ui, and where πν(·, ·)

is a function on Cd × R≥0 satisfying πν(u, 0) = ν(u). Note that the integrals in (10) are taken
over the whole complex plane for each ui. Under certain conditions one can use the ansatz (10),
together with the chemical master equation (7), to derive an evolution equation for πν(u, t) [11].
Specifically, under the further assumption that for each complex y ∈ C we have ‖y‖1 ≤ 2 (i.e. the
system is binary), one can formally derive that πν(u, t) fulfills the Fokker-Planck equation [11]

∂

∂t
πν(u, t) = −

d∑
i=1

∂

∂ui
[Ai(u)πν(u, t)] +

1

2

d∑
i,j=1

∂

∂ui

∂

∂uj
[Bij(u)πν(u, t)] , (11)

with drift vector A(u) and diffusion matrix B(u) given by

Ai(u) =
∑
k

κku
ykζki, (12)

Bij(u) =
∑
k

κku
yk(y′kiy

′
kj − ykiykj − δi,jζki), (13)

where δi,j denotes the Kronecker delta, and where the initial condition is πν(u, 0) = ν(u).
Now suppose that B(u) ≡ 0 and that the initial condition satisfies ν(u) = δ(u−u0), i.e. is the

Dirac delta function, for some constant u0 ∈ Zd≥0. Note that, from (10), having ν(u) = δ(u−u0)
corresponds to a product of Poissons for an initial distribution of the process Xt, i.e. Pµ(x, 0) =

µ(x) =
∏d
i=1 P(xi;u

0
i ). Now note that because B(u) ≡ 0 the equation for πν in (11) reduces

to a Liouville equation and πν remains a delta distribution for all times centered around the
deterministic process u(t), which fulfills the ordinary differential equation (8). This means that

Xt has a distribution given by a product of Poissons for all times: Pµ(x, t) =
∏d
i=1 P(xi;ui(t)).

Collecting thoughts, we have shown that the PR representation in the physics literature
implies the following conjecture.

Conjecture 1. Suppose that the following three conditions hold:

(i) the reaction network is binary, i.e. ‖y‖1 ≤ 2 for each complex,

(ii) the initial distribution of the stochastically modeled reaction network is a product of Pois-
sons,

(iii) B(u(t)) = 0, where u(t) solves (8) and B is as in (13).

Then the distribution of the process Xt is a product of Poissons for all time.
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Note that we trivially have B(u) = 0 for all u if the model is unimodal (i.e. if ‖y‖1 ≤ 1 for
each y ∈ C). We will show that Conjecture 1 is correct. Moreover, we will show that the first
condition stated (that the network is binary) is not needed, and then fully characterize those
networks that can admit a distribution that is a product of Poissons for all time.

3.2 Main results

Our main result, Theorem 3.1, shows that a stochastically modeled reaction network has a
product form distribution for all time if and only if the initial distribution is a product of
Poissons and the DR condition from Definition 2.3 holds for the associated deterministic model.

Theorem 3.1. Consider a stochastically modeled reaction network with intensity functions given
by stochastic mass action kinetics (5). Suppose that X0 has a distribution that is a product of
Poissons, i.e. there is a c̃ ∈ Rd>0 for which

µ(x) =

d∏
i=1

e−c̃i
c̃xi
i

xi!
, (14)

where µ(x) = Pµ(X0 = x). Then the following three statements are equivalent:

(i) the solution to the ODE (8) with c(0) = c̃ satisfies the DR condition of Definition 2.3;

(ii) the solution to the chemical master equation Pµ(x, t) satisfies

Pµ(x, t) =

d∏
i=1

e−ci(t)
ci(t)

xi

xi!
for x ∈ Zd≥0 and all t ≥ 0, (15)

for some deterministic process c(t) with c(0) = c̃;

(iii) the solution to the chemical master equation Pµ(x, t) satisfies

Pµ(x, t) =

d∏
i=1

e−ci(t)
ci(t)

xi

xi!
for x ∈ Zd≥0 and all t ≥ 0, (16)

for c(t) satisfying (8) with c(0) = c̃.

Remark 3.1. Note that if a reaction network is weakly reversible and if the rate constants are
chosen so that the equilibrium concentration is complex balanced, then the stationary distribu-
tion for the model is given by (1), where c̃ is the complex balanced equilibrium [3]. Hence, if we
choose c(0) = c̃ (the complex balanced equilibrium) we have that c(t) = c̃ for all t ≥ 0 and that
(16) also holds for all time (with c(t) = c̃). These time-independent solutions are not of interest
to us, and we call such solutions trivial solutions throughout.

Before proving Theorem 3.1, we note that the next logical question would be: when will the
DR condition hold? The following lemma answers this question for binary networks: the DR
condition holds if and only if B(u(t)) = 0 where u(t) solves the ODE (8).

Lemma 3.1. Consider a binary reaction network, i.e. ‖y‖1 ≤ 2 for all y ∈ C. Then the DR
condition from Definition 2.3 holds for the associated deterministic model (8) if and only if
B(u(t)) = 0 with u(t) satisfying (8).

Note that taken together, Theorem 3.1 and Lemma 3.1 show that Conjecture 1 stated in the
previous section holds.

Proof of Lemma 3.1. First note that if ‖z‖1 ≤ 1 for all z ∈ C, then both conditions hold. We
may therefore consider the case where ‖z‖1 ≤ 2 for each z ∈ C and ‖z‖1 = 2 for at least one
complex z ∈ C.
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First, let us rewrite the expression in the parentheses of B(u) in (13) as

y′kiy
′
kj − ykiykj − δijζki = fij(y

′
k)− fij(yk) where fij(yk) = ykiykj − δijyki.

It is straightforward to show that for given indices i and j, the expression fij(yk) is non-zero
if and only if yk = ei + ej , where ei denotes the vector with the ith entry equal to 1 and zero
otherwise. This means we can rewrite Bij(u) as

Bij(u(t)) =
∑
k

κku(t)yk(fij(y
′
k)− fij(yk))

=
∑

k:y′k=ei+ej

κku(t)ykfij(ei + ej)−
∑

k:yk=ei+ej

κku(t)ykfij(ei + ej)

= fij(ei + ej)

 ∑
k:y′k=ei+ej

κku(t)yk −
∑

k:yk=ei+ej

κku(t)yk

 . (17)

where the first sum is over those reactions with product complex ei + ej and the second sum
is over those reactions with source complex ei + ej . Since each fij(ei + ej) > 0, we see that
B(u(t)) = 0 if and only if the term in parentheses in (17) is zero for each choice of i and j. The
equivalence of the two conditions then follows.

The following proposition will be of use.

Proposition 3.1. Consider a stochastically modeled reaction network with intensity functions
given by stochastic mass action kinetics (5). Suppose there is a deterministic function c(t),
defined for t ≥ 0, for which Pµ(x, t), the solution to the Kolmogorov forward equation (7),
satisfies (15). Then, E[X(t)] = c(t) is the solution to the deterministic equation (8) with
c̃ = c(0).

Proof. The infinitesimal generator of the continous-time markov chain model is the operator A
given by (6). Since the distribution of X(t) is given by (15), we know that E[Xi(t)] = ci(t).
Moreover,

E[λk(X(s))] = κkE
[

X(s)!

(X(s)− yk)!

]
= κkE

[
d∏
i=1

Xi(s)!

(Xi(s)− yki)!

]
= κk

∑
x∈Zd

≥0

d∏
i=1

xi!

(xi − yki)!

d∏
i=1

e−ci(s)
ci(s)

xi

xi!

= κk
∑
x∈Zd

≥0

d∏
i=1

e−ci(s)
ci(s)

xi

(xi − yki)!
= κkc(s)

yk
∑
x∈Zd

≥0

d∏
i=1

e−ci(s)
ci(s)

xi−yki

(xi − yki)!
= κkc(s)

yk ,

(18)

where the final equality holds since we are summing a probability mass function over all of Zd≥0.
For m > 0, applying Dynkin’s formula with the function fm(x) = xi ∧m ≡ min{xi,m} yields

E[Xi(t) ∧m] = E[X(0) ∧m] + E
[∫ t

0

Afm(X(s))ds

]
= E[Xi(0) ∧m] +

∫ t

0

E

[
K∑
k=1

λk(X(s))((Xi(s) + ζki) ∧m−Xi(s) ∧m)

]
ds.

Noting that supx∈Zd
≥0
|(xi + ζki) ∧m− xi ∧m| ≤ max` ‖ζ`‖∞ for all i, we may let m→∞ and

apply the Dominated convergence theorem to conclude

E[X(t)] = E[X(0)] +

∫ t

0

E

[
K∑
k=1

λk(X(s))ζk

]
ds. (19)
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Combining (19) with (18), together with the fact that c(t) = E[X(t)], yields

c(t) = c̃+

∫ t

0

K∑
k=1

κkc(s)
ykζkds.

Differentiating both sides shows that c(t) is the solution to (8).

We now turn to the proof of Theorem 3.1. We begin by stating two technical lemmas whose
proofs are relegated to Appendix A.

Lemma 3.2. Suppose Pµ(x, t) is given by (15) with c(t) ∈ Rd>0 for all t ≥ 0. Then Pµ(x, t) is
the solution to the Kolmogorov forward equation (7) if and only if c(t) satisfies the deterministic
equation (8) and ∑

k

κkc(t)
yk
[
gx,c(t)(y

′
k)− gx,c(t)(yk)

]
= 0 (20)

where for each x ∈ Zd≥0 and c ∈ Rd>0,

gx,c(yk) =

d∑
j=1

(
xj
cj
− 1

)
ykj −

x!

(x− yk)!
c−yk + 1. (21)

Moreover, if ‖yk‖1 ≤ 1, then gx,c(yk) = 0.

Lemma 3.3. Let {z1, z2, ...., zm} ⊂ C be the collection of complexes that are at least binary
(i.e. ‖zi‖1 ≥ 2). Fix a value c ∈ Rd>0. For each i ∈ {1, . . . ,m} let fi : Zd≥0 → R be defined as

fi(x) = gx,c(zi).

Then {fi}mi=1 are linear independent.

We now prove Theorem 3.1.

Proof of Theorem 3.1. First note that the implication (iii) =⇒ (ii) is trivial. We will now
show that (ii) =⇒ (i) and that (i) =⇒ (iii).

Proof that (ii) =⇒ (i).
By proposition 3.1, E[X(t)] = c(t) solves the deterministic equation (8) with c̃ = c(0) ∈ Rd>0.

Therefore, we just need to show that c(t) will satisfy the DR condition of Definition 2.3 . Since
there is always a positive probability that no reaction takes place by time t > 0, we know that
E[Xi(t)] = ci(t) > 0. Hence, because Pµ(x, t) defined in (15) is the solution to the chemical
master equation (7), Lemma 3.2 allows us to conclude that (20) holds with gx,c(y) defined as in
(21). Since gx,c(t)(z) = 0 if ‖z‖1 ≤ 1, we can rewrite (20) as a summation over complexes which
are at least binary:

∑
z:‖z‖1≥2

gx,c(t)(z)

 ∑
k:y′k=z

κkc(t)
yk −

∑
k:yk=z

κkc(t)
yk

 = 0.

Because the above holds for all x ∈ Zd≥0, Lemma 3.3 allows us to conclude that each term in
brackets is identically equal to zero:∑

k:y′k=z

κkc(t)
yk =

∑
k:yk=z

κkc(t)
yk ,

which is exactly the the DR condition of Definition 2.3.

Proof that (i) =⇒ (iii).
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Suppose that for c(t) satisfying the ODE (8) we have∑
k:y′k=z

κkc(t)
yk =

∑
k:yk=z

κkc(t)
yk ,

for those z with ‖z‖1 ≥ 2. Then for any x ∈ Zd≥0 we may multiply the above by the functions
gx,c(t)(z) defined in (21) and conclude

gx,c(t)(z)
∑

k:y′k=z

κkc(t)
yk = gx,c(t)(z)

∑
k:yk=z

κkc(t)
yk .

Note that the previous step is valid since c(t) ∈ Rd>0 by Lemma 2.1. We now sum over all
complexes z (not just those with ‖z‖1 ≥ 2), while noting that gx,c(t)(z) = 0 if ‖z‖1 ≤ 1, to see

0 =
∑
z

gx,c(t)(z)

 ∑
k:y′k=z

κkc(t)
yk −

∑
k:yk=z

κkc(t)
yk


=

K∑
k=1

κkc(t)
yk
(
gx,c(t)(y

′
k)− gx,c(t)(yk)

)
.

which, by Lemma 3.2, implies Pµ(x, t) in (15) is the solution to the chemical master equation.
Uniqueness of the solution to the chemical master equation follows from Lemma 1.23 in [6].

4 Examples

Theorem 3.1 gives a necessary and sufficient condition (the DR condition of Definition 2.3) for
when a system will admit a distribution that is a product of Poissons for all time. Here we
provide two examples, Example 4.1 and 4.2, satisfying that condition, and hence admit a time
dependent distribution that is a product of Poissons. However, these examples will also make
it clear that satisfying the DR condition is difficult in that the parameters of the model must
be chosen precisely.

It is well known that for every weakly reversible model, there exists a choice of rate constants
for which the model is complex balanced. In Examples 4.3 and 4.4, we demonstrate that in the
time-dependent case there exist networks for which no choice of rate constants will yield a
model that satisfies the DR condition (except in the trivial case–see Remark 3.1–when the
initial condition is equal to a complex balanced equilibrium).

Example 4.1. Consider the reaction network with the following network diagram,

2X
κ1−−−−−⇀↽−−−−−
κ2

2Y, ∅
κ3−−−−−⇀↽−−−−−
κ4

X, ∅
κ5−−−−−⇀↽−−−−−
κ6

Y,

where the rate constants are placed next to their respective reaction arrow. Notice that 2X and
2Y are the only complexes that need to be considered in Definition 2.3. The DR condition for
both complexes simplifies to the same equation

κ1x(t)2 = κ2y(t)2 (22)

where x(t), y(t) is the solution to the associated deterministic model (8). For the DR condition
to be satisfied, we utilize (22) in the deterministic model to get

dx

dt
= −2κ1x

2 + 2κ2y
2 + κ3 − κ4x = κ3 − κ4x, x(0) = x0

dy

dt
= 2κ1x

2 − 2κ2y
2 + κ5 − κ6y = κ5 − κ6y, y(0) = y0.

(23)

10



Notice that the system of linear equations (23) has become decoupled, and we can solve them
exactly:

x(t) =

(
x0 −

κ3
κ4

)
e−κ4t +

κ3
κ4

y(t) =

(
y0 −

κ5
κ6

)
e−κ6t +

κ5
κ6
.

(24)

There are two cases to consider.

1. Suppose x(0) = κ3

κ4
. Then x(t) = κ3

κ4
for all time t ≥ 0. By (22), we must then have

y(t) =

√
κ1
κ2
x(t) =

κ3
κ4

√
κ1
κ2
.

By (24), this only holds true if

y0 =
κ5
κ6

=
κ3
κ4

√
κ1
κ2

Notice that in this case, both x(t) and y(t) start at complex balanced equilibrium and stay
constant for all time t ≥ 0. Hence, this case is trivial as noted in Remark 3.1. A similar
result holds if we had assumed y0 = κ5/κ6.

2. Now suppose that neither x(t) and y(t) start at their complex balanced equilibriums. By
taking the solution (24), plugging it back into (22), and matching terms, we find that the
rate constants need to satisfy the following conditions for the DR condition to hold

κ4 = κ6,

√
κ1√
κ2

=
κ5
κ3

=
y0
x0
.

For example, taking

x0 = 1, y0 = 2, κ1 = 4, κ2 = 1, κ3 = 1, κ4 =
1

2
, κ5 = 2, and κ6 =

1

2
,

yields the solution

x(t) = 2− e−t/2

y(t) = 4− 2e−t/2,

which one can readily check satisfies both the deterministic ODEs (23) and the DR con-
dition (22). Hence, by Theorem 3.1 we have that for any z ∈ Z2

≥0 and t ≥ 0,

Pµ(z, t) = e−(x(t)+y(t))
x(t)z1

z1!

y(t)z2

z2!
.

A few remarks are in order. First, note that for this example the diffusion matrix B from
(13) is

B(u) =

(
−2κ1u

2 + 2κ2u
2
2 0

0 2κ1u
2
1 − 2κ2u

2
2

)
,

which also yields the equation (22) when we set B((x(t), y(t))) = 0.
Second, this model will admit a complex balanced equilibrium if and only if

√
κ1√
κ2

=
κ4
κ6
· κ5
κ3
,

which is a less restrictive condition on the parameters of the model than we have found for the
DR condition to hold. Said differently, there are choices of rate constants (for example when
κ4 6= κ6) for which the underlying model is complex balanced, but for which the DR condition
does not hold. 4
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For some choices of rate constants, the previous model admitted a positive complex balanced
equilibrium. The next example shows that a time dependent distribution that is a product of
Poissons may still exist even if the associated deterministic model admits no positive equilibria
for any choice of rate constants.

Example 4.2. Consider the network with reactions

X
κ1−−−−−⇀↽−−−−−
κ2

2Y, X
κ3−−−−−→ ∅, Y

κ4−−−−−→ ∅.

The DR condition of Definition 2.3 is

κ1x(t) = κ2y(t)2 (25)

where x(t) and y(t) are the solutions to the associated deterministic model (8). We search for
solutions that satisfy the DR condition by plugging (25) into the deterministic model (8)

dx

dt
= −κ1x+ κ2y

2 − κ3x = −κ3x x(0) = x0

dy

dt
= 2κ1x− 2κ2y

2 − κ4y = −κ4y y(0) = y0.

(26)

As in the previous example, the system of equations (26) can be solved exactly yielding a solution
of

x(t) = x0e
−κ3t y(t) = y0e

−κ4t.

Requiring that (25) holds enforces the following conditions

κ3 = 2κ4 and
κ1
κ2

=
y20
x0
. (27)

Hence, any model satisfying the conditions (27) will yield a distribution satisfying (16).
For example, suppose we have

κ1 = 9, κ2 = 1, κ3 = 2, κ4 = 1, x0 = 1, and y0 = 3.

Then the solution to (8) is
x(t) = e−2t, y(t) = 3e−t,

which can be readily checked to satisfy the DR condition (25). Hence, by Theorem 3.1 we have
that for any z ∈ Z2

≥0 and t ≥ 0,

Pµ(z, t) = e−(x(t)+y(t))
x(t)z1

z1!
· y(t)z2

z2!
.

Note that even though 2X(t) + Y (t) is a conserved quantity for the model, the relevant state
space is still all of Z2

≥0 as our initial distribution is the product of Poissons

µ(z) = e−(x0+y0)
xz10
z1!
· y

z2
0

z2!
,

which has support on all of Z2
≥0. 4

For any weakly reversible model, there exists a choice of rate constants that make the re-
sulting model complex balanced. The next two examples demonstrate that there are weakly
reversible networks for which no nontrivial (in the sense of Remark 3.1) solution to the forward
equation is a product of Poissons, regardless of the choice of rate constants.
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Example 4.3. Consider the network

X
κ1−−−−−⇀↽−−−−−
κ2

2Y, ∅
κ3−−−−−⇀↽−−−−−
κ4

X, ∅
κ5−−−−−⇀↽−−−−−
κ6

Y,

where the rate constants have been placed next to their respective reactions. Note that this
model is weakly reversible, and there is therefore a choice of rate constants for which it is
complex balanced. For this model, the DR condition of Definition 2.3 is

κ1x(t) = κ2y(t)2 (28)

where x(t) and y(t) are the solutions to the associated deterministic model (8). To see when
the DR conditions is satisfied, we utilize (28) in the deterministic model to get

dx

dt
= −κ1x+ κ2y

2 + κ3 − κ4x = κ3 − κ4x x(0) = x0

dy

dt
= 2κ1x− 2κ2y

2 + κ5 − κ6y = κ5 − κ6y y(0) = y0.

(29)

Notice that the system of linear equation (29) is exactly the same as the system (23), and we
have

x(t) =

(
x0 −

κ3
κ4

)
e−κ4t +

κ3
κ4

y(t) =

(
y0 −

κ5
κ6

)
e−κ6t +

κ5
κ6
.

(30)

We will now demonstrate that there is not choice of parameters, except in the trivial case,
that will satisfy (28). As before, there are two cases that need consideration.

1. Suppose x(0) = κ3

κ4
. Then x(t) = κ3

κ4
for all time t ≥ 0. By (28), we must then have

y(t) =

√
κ1
κ2
x(t) =

√
κ1κ3
κ2κ4

.

By (30), the above only holds true if

y0 =
κ5
κ6

=

√
κ1κ3
κ2κ4

Notice that in this case, both x(t) and y(t) start at complex balanced equilibrium and
stay constant for all time t ≥ 0. Hence, this is the trivial case discussed in Remark 3.1. A
similar result is found if one assumes first that y0 = κ5

κ6
.

2. Suppose now that neither x(t) nor y(t) starts at its equilibrium. We then take the solution
(30) and plug it back into (28), yielding

κ1

((
x0 −

κ3
κ4

)
e−κ4t +

κ3
κ4

)
= κ2

(
y0 −

κ5
κ6

)2

e−2κ6t + 2κ2
κ5
κ6

(
y0 −

κ5
κ6

)
e−κ6t + κ2

κ25
κ26
.

The key observation is that in order to balance the three exponential terms, one of them
must have a coefficient that is zero. However, this would imply that we are back in case 1.

Therefore, we may conclude that no nontrivial solution exists and, by Theorem 3.1, there is no
choice of parameters which yields a distribution that is a product of Poissons for all time. 4

Example 4.4. Consider the network

∅
κ1−−−−−⇀↽−−−−−
κ2

X + Y, ∅
κ3−−−−−⇀↽−−−−−
κ4

X, ∅
κ5−−−−−⇀↽−−−−−
κ6

Y, X
κ7−−−−−⇀↽−−−−−
κ8

Y,
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and assume that κ1, κ2 > 0. We will show that this model can not satisfy the DR condition of
Definition 2.3 for any choice of rate constants.

First note that for this model the DR condition reduces to

κ1 = κ2x(t)y(t) ⇐⇒ x(t) =
κ1
κ2
y(t)−1, (31)

where x(t) and y(t) are the solutions to the associated deterministic model (8), and we are
assuming that y(t) > 0 for all t ≥ 0. Assuming the DR condition holds, the associated deter-
ministic model is

dx

dt
= κ3 + κ8y − (κ4 + κ7)x x(0) = x0

dy

dt
= κ5 + κ7x− (κ6 + κ8)y y(0) = y0.

(32)

Instead of solving this system explicitly, which leads to quite a messy solution, we note that
(31) implies

dx

dt
= −κ1

κ2
y−2

dy

dt
.

Plugging (32) into the above equation yields

κ3 + κ8y − (κ4 + κ7)x = −κ1
κ2
y−2 (κ5 + κ7x− (κ6 + κ8)y) ,

which, after again using that we must have x = κ1

κ2
y−1 due to (31), becomes

κ3 + κ8y − (κ4 + κ7)
κ1
κ2
y−1 = −κ5

κ1
κ2
y−2 − κ7

κ21
κ22
y−3 + (κ6 + κ8)

κ1
κ2
y−1

or

κ3y
3 + κ8y

2 −
[
(κ4 + κ7)

κ1
κ2

+ (κ6 + κ8)
κ1
κ2

]
y2 + κ5

κ1
κ2
y + κ7

κ21
κ22

= 0.

We have assumed that y(t) is a nontrivial solution of the system, so the equation above implies
the associated polynomial has an infinite number of roots. Of course, this can not be as a third
degree polynomial has at most 3 roots. Hence, we may conclude that each of the coefficients of
the above polynomial must be zero. Combining this fact with the assumption that κ1, κ2 > 0
we find

κ3 = κ4 = κ5 = κ6 = κ7 = κ8 = 0.

Hence, the only possibility is if the entire network is ∅
κ1−−−−−⇀↽−−−−−
κ2

X + Y . However, then there

can not be a nontrivial solution that satisfies the DR condition as κ1 = κ2x(t)y(t) implies that
x(t), y(t) is at equilibrium (thereby yielding a trivial solution). 4

The logic at the end of the previous example can be used to characterize all one-dimensional
models that satisfy the DR condition.

Proposition 4.1. Consider a reaction network {S, C,R} with one species, i.e., ‖S‖ = 1 and
suppose that the initial distribution of the associated Markov model satisfies (14). Then the
solution to the forward equation (7) is given by (16) for some nontrivial process c(t) if and only
if the reaction network is of first order, in which case C = {∅, X}.

Proof. Of course, if the system is first order, then the DR condition automatically holds and
Theorem 3.1 implies that the solution to the forward equation (7) is given by (16).

We now show the other direction, and the proof will proceed by contradiction. Thus, suppose
that there is a complex of the form z = kX for some k ≥ 2, and suppose that the solution to the
forward equation (7) is given by (16) for some nontrivial process c(t). By Theorem 3.1, we may
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assume that the solution to the deterministic model (8) satisfies the DR condition of Definition
2.3 for the complex z. That is, ∑

k:yk=z

κkc(t)
z =

∑
k:y′k=z

κkc(t)
yk ,

where, as usual, the sum on the left is over those reactions with source complex z and the sum
on the right is over those with product complex z. Consider the function

f(x) =
∑

k:yk=z

κkx
‖z‖1 −

∑
k:y′k=z

κkx
‖yk‖1 .

Note that f is a polynomial in x. Also, each sum is nonempty and, because ‖yk‖1 6= ‖z‖1 for
each term in the second sum, f is not identically equal to zero. Thus, f has a finite number of
roots. However, f(c(t)) = 0, and c(t) is nontrivial, implying f has an infinite number of roots,
which is a contradiction. Thus, the result is shown.
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A Proofs of Lemmas 3.2 and 3.3

We restate Lemma 3.2 for the sake of reference.

Lemma 3.2 Suppose Pµ(x, t) is given by (15) with c(t) ∈ Rd>0 for all t ≥ 0. Then Pµ(x, t) is
the solution to the Kolmogorov forward equation (7) if and only if c(t) satisfies the deterministic
equation (8) and ∑

k

κkc(t)
yk
[
gx,c(t)(y

′
k)− gx,c(t)(yk)

]
= 0 (20)

where for each x ∈ Zd≥0 and c ∈ Rd>0,

gx,c(yk) =

d∑
j=1

(
xj
cj
− 1

)
ykj −

x!

(x− yk)!
c−yk + 1. (21)

Moreover, if ‖yk‖1 ≤ 1, then gx,c(yk) = 0.

Proof. We will first assume that Pµ(x, t) is as in (15) and that it is the solution to the Kol-
mogorov forward equation(7). Our goal is to show that (20) holds.

By Proposition 3.1, c(t) satisfies (8). In particular, it is differentiable. Because Pµ(x, t) is as
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in (15), the left-hand side of (7) satisfies

d

dt
Pµ(x, t) =

d

dt

(
d∏
i=1

e−ci(t)
ci(t)

xi

xi!

)

=

d∑
j=1

∏
i6=j

e−ci(t)
ci(t)

xi

xi!

(
−c′j(t)e−cj(t)

cj(t)
xj

xj !
+ xje

−cj(t) cj(t)
xj−1

xj !
c′j(t)

)

=

d∏
i=1

e−ci(t)
ci(t)

xi

xi!

d∑
j=1

(
−c′j(t) + xj

c′j(t)

cj(t)

)

= e−c(t)
c(t)x

x!

d∑
j=1

c′j(t)

(
xj
cj(t)

− 1

)

= e−c(t)
c(t)x

x!

d∑
j=1

K∑
k=1

κkc(t)
yk(y′kj − ykj)

(
xj
cj(t)

− 1

)

=

(
e−c(t)

c(t)x

x!

) K∑
k=1

κkc(t)
yk

d∑
j=1

(
xj
cj(t)

− 1

)
(y′kj − ykj). (33)

The right hand side of (7) is

K∑
k=1

λk(x− ζk)Pµ(x− ζk, t)−
K∑
k=1

λk(x)Pµ(x, t)

=

K∑
k=1

κk

(
(x− ζk)!

(x− ζk − yk)!
e−c(t)

c(t)x−ζk

(x− ζk)!

)
−

K∑
k=1

κk

(
x!

(x− yk)!
e−c(t)

c(t)x

x!

)

=

(
e−c(t)

c(t)x

x!

) K∑
k=1

κk

(
x!

(x− ζk − yk)!
c(t)−ζk − x!

(x− yk)!

)

=

(
e−c(t)

c(t)x

x!

) K∑
k=1

κkc(t)
yk

(
x!

(x− y′k)!
c(t)−y

′
k − x!

(x− yk)!
c(t)−yk

)
. (34)

Since Pµ(x, t) is the solution to (7), we must have that (33) and (34) are equal. That is,

K∑
k=1

κkc(t)
yk

 d∑
j=1

[(
xj
cj(t)

− 1

)
(y′kj − ykj)−

(
x!

(x− y′k)!
c(t)−y

′
k − x!

(x− yk)!
c(t)−yk

)] = 0.

(35)

Define the following function

fx,c(yk) =

d∑
j=1

(
xj
cj
− 1

)
ykj −

x!

(x− yk)!
c−yk

and let gx,c(yk) = fx,c(yk) + 1. Then we can rewrite equation (35) above as

K∑
k=1

κkc(t)
yk
[
gx,c(t)(y

′
k)− gx,c(t)(yk)

]
= 0,

which shows (20) holds.
To show the other direction, suppose c(t) is the solution to the deterministic equation (8) and

that (20) is satisfied. We must show that Pµ(x, t) as in (16) is the solution to the Kolmogorov
forward equation (7). However, this follows by reversing the steps above.
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All that remains is to demonstrate that if ‖yk‖1 ≤ 1, then gx,c(yk) = 0. There are only two
cases that need consideration.

Case 1. If yk = ~0, then

gx,c(yk) =

d∑
j=1

(
xj
cj
− 1

)
ykj −

x!

(x− yk)!
c−yk + 1 = 0− 1 + 1 = 0.

Case 2. If yk = e`, the vector whose `th entry is 1 and all other entries are zero, then

gx,c(yk) =

d∑
j=1

(
xj
cj
− 1

)
ykj −

x!

(x− yk)!
c−yk + 1 =

x`
c`
− 1− x`

c`
+ 1 = 0.

Hence, the proof is complete.

We restate Lemma 3.3 for the sake of reference.

Lemma 3.3 Let {z1, z2, ...., zm} ⊂ C be the collection of complexes that are at least binary
(i.e. ‖zi‖1 ≥ 2). Fix a value c ∈ Rd>0. For each i ∈ {1, . . . ,m} let fi : Zd≥0 → R be defined as

fi(x) = gx,c(zi),

where the functions gx,c are defined in the proof of Lemma 3.2. Then {fi}mi=1 are linear inde-
pendent.

The main idea of the proof rests on noticing that this collection of functions consists of
polynomials of different leading orders. An example will be helpful to illustrate. Let us turn to
the binary case with two species, and denote C = {2e1, 2e2, e1+e2}. Then the relevant functions
are

f1(x) = 2

(
x1
c1
− 1

)
− x1(x1 − 1)

c21
+ 1 = −x

2
1

c21
+

(
2 +

1

c1

)
x1
c1
− 1

f2(x) = 2

(
x2
c2
− 1

)
− x2(x2 − 1)

c22
+ 1 = −x

2
2

c22
+

(
2 +

1

c2

)
x2
c2
− 1

f3(x) =

(
x1
c1
− 1

)
+

(
x2
c2
− 1

)
− x1x2
c1c2

+ 1 = −x1x2
c1c2

+
x1
c1

+
x2
c2
− 1.

To see why they are linearly independent, let αi be such that α1f1(x) + α2f2(x) + α3f3(x) = 0
for all x. Since the leading powers of the monomials are different, we therefore conclude that
we must have α1 = α2 = α3 = 0.

Proof of Lemma 3.3. Suppose there exists αi for i = 1, 2, ...,m such that

α1f1(x) + · · ·+ αmfm(x) = 0,

for all x ∈ Zd≥0.

Let s = max
i=1,2,...,m

‖zi‖1 and denote C̃ = {zi : ‖zi‖1 = s}. Notice that for any function fi

where zi ∈ C̃, fi(x) is a polynomial in x and the leading term of the polynomial is 1
czi x

zi . Notice
that for i 6= j, we have zi 6= zj and hence xzi 6= xzj . We may therefore conclude that αi = 0 for

any zi ∈ C̃.
The proof is then concluded by noting that the above procedure can be performed iteratively

as you decrease the 1-norm of the complexes.
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