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A PROOF OF THE GLOBAL ATTRACTOR CONJECTURE IN THE
SINGLE LINKAGE CLASS CASE*
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Abstract. This paper is concerned with the dynamical properties of deterministically modeled
chemical reaction systems. Specifically, this paper provides a proof of the Global Attractor Conjecture
in the setting where the underlying reaction diagram consists of a single linkage class, or connected
component. The conjecture dates back to the early 1970s and is the most well-known and important
open problem in the field of chemical reaction network theory. The resolution of the conjecture has
important biological and mathematical implications in both the deterministic and stochastic settings.
One of our main analytical tools, which is introduced here, will be a method for partitioning the
relevant monomials of the dynamical system along sequences of trajectory points into classes with
comparable growths. We will use this method to conclude that if a trajectory converges to the
boundary, then a whole family of Lyapunov functions decrease along the trajectory. This will allow
us to overcome the fact that the usual Lyapunov functions of chemical reaction network theory are
bounded on the boundary of the positive orthant, which has been the technical sticking point to a
proof of the Global Attractor Conjecture in the past.
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1. Introduction. This paper is concerned with the qualitative behavior of de-
terministically modeled chemical reaction systems with mass-action kinetics. We will
provide multiple results pertaining to weakly reversible reaction systems that will al-
low us to conclude that the Global Attractor Conjecture, the most well-known and
important open problem in the field of chemical reaction network theory, holds in the
single linkage class case. That is, the conjecture holds when the underlying reaction
diagram consists of a single connected component.

1.1. Background and statement of the problem. Natural questions about
the qualitative behavior of deterministically modeled chemical reaction systems in-
clude the existence of positive equilibria (fixed points), stability properties of equi-
libria, and the nonextinction, or persistence, of species, which are the constituents
of the system. As the exact values of key system parameters, termed rate constants,
which we will denote by ki, are usually difficult to find experimentally and, hence,
are oftentimes unknown, it would be best to answer these questions independently of
the values of these parameters. Building off the work of Horn, Jackson, and Feinberg
[13, 14, 16, 21, 22, 23] the mathematical theory termed Chemical Reaction Network
Theory has been developed over the previous thirty-five years to answer these types
of questions.

Early work by Feinberg, Horn, and Jackson showed that if a reaction network with
deterministic mass-action kinetics admits a so called “complex-balanced” equilibrium
(see Definition 2.8), then there exists a unique complex-balanced equilibrium within
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the interior of each positive compatibility class or invariant manifold [16, 21, 23]
(throughout, we will often refer to the invariant manifolds of the systems of interest
as compatibility classes, or stoichiometric compatibility classes, to stay in line with
the terminology of chemical reaction network theory). Horn and Jackson also proved
the existence of a strict, entropy type, Lyapunov function that gives local asymptotic
stability of each such equilibrium relative to its compatibility class. Later, Horn,
Jackson, and Feinberg proved what is best known as the Deficiency Zero Theorem:
that regardless of the choice of parameters ki, a reaction network with deterministic
mass-action kinetics that is both weakly reversible and has a deficiency of zero must
admit a complex-balanced equilibrium [13, 14, 16]. Here, a reaction network is weakly
reversible if each of the connected components of its reaction diagram is strongly
connected (see Definition 2.4); the deficiency of a network is defined in Definition 2.10.
Collecting ideas shows that the results pertaining to complex-balanced systems, for
example, those in [16, 21, 23], apply to this (deficiency zero and weakly reversible)
large class of networks.

It was conjectured at least as early as 1974 that complex-balanced equilibria of
reaction networks are globally asymptotically stable relative to the interior of their
positive compatibility classes [22]. This problem was given the name Global Attractor
Conjecture by Craciun et al. [9], and is considered to be one of the most important
open problems in the field of chemical reaction network theory [1, 3, 9, 10, 31].

GLOBAL ATTRACTOR CONJECTURE. A complez-balanced equilibrium contained
in the interior of a positive compatibility class is a global attractor of the interior of
that positive class.

Using the Lyapunov function of Horn and Jackson it is relatively straightforward
to show that each trajectory of a complex-balanced system remains bounded and
converges either to the unique equilibrium within the interior of its invariant manifold,
or to the boundary of the positive orthant, JRY,. Therefore, the global attractor
conjecture will be proven if it can be shown that any complex-balanced system is
persistent in the sense of Definition 1.1 below.

DEFINITION 1.1. Fort > 0 denoting time, let ¢(t,xzo) be a trajectory to a dy-
namical system in RN with initial condition xo. A trajectory ¢(t, zo) with state space
RY, is said to be persistent if

llgégf oi(t, o) >0

for alli € {1,..., N}, where ¢;(t,xo) denotes the ith component of ¢(t,xg). A dy-
namical system is said to be persistent if each trajectory with positive initial condition
s persistent.

We will use the notation ¢(t,z¢) for trajectories throughout the paper. We
see in Definition 1.1 that persistence corresponds to a nonextinction requirement.
Some authors refer to dynamical systems satisfying the above condition as strongly
persistent [33]. In their work, persistence requires only the weaker condition that
limsup,_, . ¢i(t,z0) > 0 for each ¢ € {1,...,N}.

DEFINITION 1.2. Fort > 0, let ¢(t,x0) be a trajectory to a dynamical system in
RN with initial condition xo. The set of w-limit points for this trajectory is the set of
accumulation points:

w(o(-, o)) dof {x € RN : @(tn,xz0) — = for some sequence t,, — oo}.

Note that for bounded trajectories, persistence is equivalent to the condition that
w(p(-,z0)) N GR]ZVO = 0.
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It can be shown that a complex-balanced network is necessarily weakly reversible
[12, 13, 20]. Therefore, in light of the above discussion, the Global Attractor Con-
jecture is implied by the following, more general, conjecture of Feinberg (see Remark
6.1.E in [14]).

PERSISTENCE CONJECTURE. Any weakly reversible reaction network with mass-
action kinetics and bounded trajectories is persistent.

Other formulations of the Persistence Conjecture leave out the assumption of
bounded trajectories, and the above is, therefore, a weaker version of the usual con-
jecture. In fact, it is an open problem as to whether or not weakly reversible networks
give rise to only bounded trajectories, and we feel it is best to separate these two
conjectures. Note that the Persistence Conjecture makes no assumption as to the
choice of rate constants.

Both conjectures remain open. However, in recent years there has been much ac-
tivity aimed at their resolution. It is known that only certain faces of the boundaries of
the invariant manifolds can admit w-limit points, those associated with a semi-locking
set (using the terminology of [1]), which is a subset of the species whose absence is
forward invariant. (Semi-locking sets were termed siphons in the earlier paper [5],
in which their concept was formally introduced. However, see Proposition 5.3.1 and
Remark 6.1.E of [14] for an even earlier treatment that anticipated these definitions.)
This fact has typically focused attention on understanding the behavior of these sys-
tems near different faces of the boundaries of the invariant manifolds. For example,
Anderson [1] and Craciun et al. [9] used different methods to independently conclude
that vertices of the positive compatibility classes (which are polyhedra, see [3]) can-
not be w-limit points even if they are associated with a semi-locking set. In [3], it
was shown that weak reversibility of the network guarantees that facets—faces of
one dimension less than the compatibility class itself; that is, a face of codimension
one—of the positive classes “repel,” in a certain sense, trajectories. This fact was
used to prove the Global Attractor Conjecture when the stoichiometric compatibility
classes, or invariant manifolds, are two-dimensional. More recently, Craciun, Pantea,
and Nagzarov proved that two-species, weakly reversible systems are both persistent
and permanent (trajectories eventually enter a fixed, compact subset of the strictly
positive orthant Rgo). They then used this fact to prove that the Global Attractor
Conjecture holds for three-species systems [10]. Pantea then extended these ideas to
prove the Global Attractor Conjecture for all systems for which the stoichiometric
compatibility class has dimension less than or equal to three [29].

In [4] the authors studied persistence by introducing the notion of dynamic non-
emptiability for semi-locking sets, which corresponds to a dominance ordering of the
monomials near a given face of the compatibility class. These ideas were expanded
in [25] where the concept of weak dynamic nonemptiability was introduced, and a con-
nection was made to the work on facets in [3]. This work should also be compared to
the use of strata in both [24] and [9], where monomial dominance is again considered
near faces of the invariant manifold. Later, we will see that monomial dominance is
at the heart of the current paper as well. However, and importantly, the dominance
is no longer sequestered to individual faces of the invariant manifold and is instead
considered along sequences of trajectory points in time. Further, the monomials are
grouped into classes of comparable growth, which allows for a greater understanding
of the behavior of the system.

Biological models in which the nonexistence of w-limit points on the bound-
ary implies global convergence include the ligand-receptor-antagonist-trap model of
Gnacadja et al. [18, 17], the enzymatic mechanism of Siegel and MacLean [30], and
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McKeithan’s T-cell signal transduction model [28] (the mathematical analysis appears
in the work of Sontag [31] and section 7.1 in the Ph.D. thesis of Chavez [8]). Recently,
Gopalkrishnan showed that any network that violates the Persistence Conjecture must
be “catalytic” in a precise sense [19].

Complex-balanced systems also play an important role in the study of stochasti-
cally modeled reaction networks. In [2], Anderson, Craciun, and Kurtz showed that
a stochastically modeled system admits a product form stationary distribution if the
associated deterministically modeled system admits a complex-balanced equilibrium
(see also [27], in which the same results were derived independently by Lubensky).
Also, in the study of stochastically modeled reaction systems with multiple scales,
which is the norm as opposed to the exception in the stochastic setting, it is often
desirable to perform a reduction to the system using asymptotic analysis (usually
averaging and law of large number techniques); see, for example, [7] or [26]. If one
component of the system can be shown to behave deterministically in the asymptotic
limit, then knowing that this component converges to a steady state (i.e., knowing
that the conclusions of the current paper hold) may allow for the proof of results
pertaining to the dynamics of the other components.

1.2. Results in this paper. In this paper, we will provide multiple results
pertaining to deterministically modeled, weakly reversible systems. Most results will
pertain to the dynamics of individual trajectories. These results will allow us to
conclude that the Global Attractor Conjecture holds in the case when the underlying
reaction network consists of one linkage class or connected component. It is worth
noting that we will not provide a proof of the Persistence Conjecture in the one linkage
class case. As will become apparent, the technical difference between the conjectures
will be captured by a condition whereupon the w-limit points of a trajectory can
reside; see Theorem 4.10.

To prove our results, we will introduce a method for partitioning the relevant
monomials of the dynamical system along sequences of trajectory points into classes
with comparable growths. This method will allow us to conclude that if a trajectory
converges to the boundary, then a whole family of Lyapunov functions decrease along
the trajectory. We will then be able to overcome the fact that the usual Lyapunov
functions of chemical reaction network theory are bounded on the boundary of the
positive orthant, which has been the technical sticking point to a proof of the Global
Attractor Conjecture in the past. The methods developed should prove useful in
future contexts, both deterministic and stochastic, as well as the current one. Also, it
will be natural to focus our attention on systems with generalized mass-action kinetics
in which the rate constants are allowed to be functions of time. This context is useful
because the projection of a trajectory of a reaction system onto some relevant subset
of the species can itself be viewed as a trajectory of a reaction system with generalized
mass-action kinetics.

The outline of this paper is as follows. In section 2, we will provide the requisite
definitions and terminology from chemical reaction network theory. In section 3, we
will discuss projected dynamics, and introduce and develop the basic properties of
reduced reaction networks and generalized mass-action systems. In section 4, we will
give our main results together with their proofs. In section 5, we present an example
to demonstrate our results.

2. Preliminary concepts and definitions. Most of the following definitions
are standard in chemical reaction network theory. The interested reader should see
[13] or [20] for a more detailed introduction.
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Reaction networks. An example of a chemical reaction is 257 + S — S3,
where we interpret the above as saying two molecules of type S; combine with a
molecule of type S5 to produce a molecule of type S3. For now, assume that there are
no other reactions under consideration. The S; are called chemical species and the
linear combinations of the species found at either end of the reaction arrow, namely
251 + S and S3, are called chemical complexes. Assigning the source (or reactant)
complex 257 4+ S5 to the vector y = (2,1,0) and the product complex S3 to the vector
y' = (0,0,1), we can formally write the reaction as y — y’.

In the general setting we denote the number of species by N, and for i €
{1,...,N} we denote the ith species as S;. We then consider a finite set of reac-
tions with the kth denoted by yr — v, where yi,y) € Z%, are (nonequal) vectors
whose components give the coefficients of the source and product complexes, respec-
tively. Using a slight abuse of notation, we will also refer to the vectors y; and yj,
as the complexes. Note that if y, = 0 or Y = 0 for some k, then the kth reaction
represents an input or output, respectively, to the system. Note also that any complex
may appear as both a source complex and a product complex in the system. We will
usually, though not always (for example, see condition 3 in Definition 2.1 below), use
the prime ’ to denote the product complex of a given reaction.

As an example, suppose that the entire system consists of the two species S7 and
So and the two reactions

(21) Sl — 52 and 52 — Sl,
where S; — 9 is arbitrarily labeled as “reaction 1.” Then N = 2 and
y1 = (1,0), y;=(0,1) and yo = (0,1), yh=(1,0).

Thus, the vector (1,0), or, equivalently, the complex Si, is both y;, the source of the
first reaction, and yj, the product of the second.

For ease of notation, when there is no need for enumeration we will typically drop
the subscript k£ from the notation for the complexes and reactions.

DEFINITION 2.1. Let S = {S;}Y,, C = {y} with y € Z¥,, and let R =
{y — 4’} denote finite sets of species, complexes, and reactions, respectively. The
triple {S,C, R} is called a chemical reaction network so long as the following three
natural requirements are met:

1. For each S; € S, there exists at least one complex y € C for which y; > 1.

2. There is no trivial reaction y — y € R for some complex y € C.

3. For anyy € C, there must exist ay’ € C for whichy —y € R ory’ -y € R.
If the triple {S,C, R} satisfies all of the above requirements except 1 above, then we
say {S,C, R} is a chemical reaction network with inactive species.

Notation. We will use each of the following choices of notation to denote a
complex from C: vy, ¥/, Yk, Yk, ¥is Yj, Ye, and even z;. However, there will be other
times in which we wish to denote the ith component of a complex. If the complex
in question has been denoted by y, then we will write yx ;. However, if the complex
has been denoted by y, then we would write its ith component as y;, which, through
context, should not cause confusion with a choice of complex y;. See, for example,
condition 1 in Definition 2.1 above.

DEFINITION 2.2. To each reaction network {S,C, R} we assign a unique directed
graph called a reaction diagram constructed in the following manner. The nodes of the
graph are the complexes, C. A directed edge (y,y') exists if and only if y — y' € R.
Each connected component of the resulting graph is termed a linkage class of the graph.
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For example, the system described in and around (2.1) has reaction diagram
S1 = S2, which consists of a single linkage class.

DEFINITION 2.3. Let {S,C, R} denote a chemical reaction network. Denote the
complexes of the ith linkage class by L; C C. We say a T C C consists of a union of
linkage classes if T = U;erL; for some nonempty index set I.

DEFINITION 2.4. The chemical reaction network {S,C, R} is said to be weakly
reversible if each linkage class of the corresponding reaction diagram is strongly con-
nected. A network is said to be reversible if y' — y € R whenever y —y' € R.

It is easy to see that a chemical reaction network is weakly reversible if and only
if for each reaction y — y’ € R, there exists a sequence of complexes, y1,...,y. € C,
such that y w1 € R, 1 >y €R, ..., yr_1 = yr ER,and y, >y € R.

Dynamics. A chemical reaction network gives rise to a dynamical system by
way of a rate function for each reaction. That is, for each yr — yj € R, or simply
k€ {1,...,|R[}, we suppose the existence of a function R, = R,, ., that deter-
mines the rate of that reaction. The functions Ry are typically referred to as the
kinetics of the system and will be denoted by K, or IC(¢) in the nonautonomous case.
The dynamics of the system is then given by the following coupled set of (typically
nonlinear) ordinary differential equations:

(2:2) #(t) = > Ri@(t), ) (yh — yn),
k

where k enumerates over the reactions and z(t) € RY, is a vector whose ith component
represents the concentration of species S; at time ¢ > 0.

DEFINITION 2.5. A chemical reaction network {S,C, R} together with a choice
of kinetics IC is called a chemical reaction system and is denoted via the quadruple
{S,C,R,K}. In the nonautonomous case where the Ry, can depend explicitly on t, we
will write {S,C, R, K(t)}. We say that a chemical reaction system is weakly reversible
if its underlying network is.

Integrating (2.2) with respect to time yields

o) =20+ ([ ' Re(als). 5)ds) (= ).
k

Therefore, x(t) — (0) remains within S = span{y;, — yx }re1,...,ry for all time.

DEFINITION 2.6. The stoichiometric subspace of a network is the linear space
S = span{y, — Yk tre{1,...|r|}- The vectors y; — yy are called the reaction vectors.

Under mild conditions on the rate functions of a system, a trajectory x(t) with
strictly positive initial condition x(0) € R]>VO remains in the strictly positive orthant
RY, for all time (see, for example, Lemma 2.1 of [31]). Thus, the trajectory remains
in the relatively open set (z(0) + S) NRY,, where z(0)+ S := {z € RV | z = 2(0) + v,
for some v € S}, for all time. In other words, this set is forward-invariant with
respect to the dynamics. It is also easy to show that under the same mild conditions
on Ry, (z(0) + S) NRY is forward invariant with respect to the dynamics. The sets
(z(0)+S)NRY, will be referred to as the positive stoichiometric compatibility classes,
or simply as the positive classes.

The most common kinetics is that of mass-action kinetics. A chemical reaction
system is said to have mass-action kinetics if all rate functions Ry = R, ., take the
multiplicative form

(2.3) Ry (x) = kpai™ ad™? - afpN,



GLOBAL ATTRACTOR CONJECTURE FOR ONE LINKAGE CASE 1493

where kj is a positive reaction rate constant and yj is the source complex for the
reaction. For u € RY; and v € RV, we define

vl ol
where we have adopted the convention that 0° = 1, and the above is undefined if u; = 0
when v; < 0. Mass-action kinetics can then be written succinctly as Ry (z) = kpa¥*.

Combining (2.2) and (2.3) gives the following system of differential equations, which
is the main object of study in this paper:

(2.4) () = Y mrw(t)”* (yh — yn)-
k

While the properties of solutions to the system (2.4) are of most interest to us,
it will be natural for us to consider systems with a generalized form of mass-action
kinetics. The following definition is similar to Definition 2.6 in [10] for “k-variable
mass-action systems.” See also [6] for a recent treatment of chemical reaction systems
with nonautonomous dynamics.

DEFINITION 2.7. We say that the nonautonomous system {S,C,R,K(t)} has
bounded mass-action kinetics if there exists an n > 0 such that for each k € {1,...,|R|}

Ry (z,t) = ki (t)z¥*,

where n < ki (t) < 1/n for allt >0 and k € {1,...,|R|}.

2.1. Complex balanced equilibria and the deficiency of a network. The
Global Attractor Conjecture, which was stated in section 1.1, is concerned with the
asymptotic stability of complex-balanced equilibria for mass-action systems. For each
complex y € C we will write {k | y» = y} and {k | y}, = y} for the subsets of reactions
yr — Yj, € R for which y is the source and product complex, respectively.

DEFINITION 2.8. We say c is an equilibrium of the dynamical system @(t) =
f(z@)) if f(c) =0. An equilibrium c € RY, of (2.4) is said to be complex-balanced
if the following equality holds for each complexr y € C:

E Kpclc = E KrcY*.

{k | ye=y} {k | =y}

Note that on the right-hand side of the above equality, y; represents the source
complex for a given reaction for which y is the product complex, whereas on the left-
hand side each source complex is identically equal to y. Thus, ¢ is a complex-balanced
equilibrium if for all complexes y € C, at concentration ¢ the sum of rates for reactions
for which y is the source is equal to the sum of rates for reactions for which y is the
product. That is, crudely, the total flux into complex y is equal to the total flux out
of complex y. A complex-balanced system is a mass-action system {S,C, R, K} that
admits a complex-balanced equilibrium with strictly positive components.

In [9], complex-balanced systems are called toric dynamical systems in order to
highlight their inherent algebraic structure. There are two important special cases
of complex-balanced systems: the detailed-balanced systems and the zero deficiency
systems.

DEFINITION 2.9. An equilibrium c € R]>VO of a reversible system with dynamics
given by mass-action kinetics (2.4) is said to be detailed-balanced if for any pair of
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reversible reactions yi = vy, with forward reaction rate ki and backward rate . the
following equality holds: kyc¥* = Ksﬁccy;.

A detailed-balanced system is a reversible system with dynamics given by mass-
action kinetics (2.4) that admits a strictly positive detailed-balanced equilibrium. Tt
is clear that detailed-balancing implies complex-balancing.

DEFINITION 2.10. For a chemical reaction network {S,C, R}, let n denote the
number of complexes, | the number of linkage classes, and s the dimension of the
stoichiometric subspace, S. The deficiency of the reaction network is the integer
n—1—s.

The deficiency of a reaction network is nonnegative because it can be interpreted
as either the dimension of a certain linear subspace [13] or the codimension of a
certain ideal [9]. Note that the deficiency depends only on the reaction network and
not the choice of kinetics. The Deficiency Zero Theorem tells us that any weakly
reversible reaction system (2.4) whose deficiency is zero is complex-balanced and that
this fact is independent of the choice of rate constants ky [13]. On the other hand, a
reaction diagram with a deficiency that is positive may give rise to a system that is
both complex- and detailed-balanced, complex- but not detailed-balanced, or neither,
depending on the values of the rate constants xy [9, 12, 15, 21].

Complex-balanced systems have the property that there is a unique, complex-
balanced equilibrium within the interior of each positive stoichiometric compatibility
class [21, 22, 23]. Thus, proving that each such equilibrium is globally asymptotically
stable relative to its positive class, i.e., showing the conclusion of the Global Attrac-
tor Conjecture holds, would completely characterize the long-time behavior of these
systems.

3. Projected dynamical systems and reduced reaction networks. The
two related concepts presented below, projected dynamics and reduced reaction net-
works, will be used in the proofs of the main theorems of section 4. There, we will
consider a bounded trajectory of a system and incorporate the dynamics of those
species which do not approach the boundary of the positive class into the rate con-
stants, thereby yielding a system with bounded mass-action kinetics. This will be the
projection of the dynamics onto those species that do approach the boundary. The
resulting reaction network will be the reduced network.

3.1. Projected dynamics. As discussed in section 2, our interest is in the qual-
itative dynamics of an N dimensional, autonomous system of differential equations
with parameters & = (%1, ..., #|g|). That is, we are considering systems of the general
form

{tl(t) = fl(/i,ﬁl(t), e ,$N(t))
(3.1)

{tN(t) = fN(/i,ﬁl(t), e ,{EN(t)).

To study these systems, it will be natural to later consider an associated non-
autonomous set of differential equations constructed by projecting (3.1) onto a sub-
set of the dependent variables. Specifically, let U C {1,..., N} be nonempty with
|[U| = M < N. Without loss of generality, assume for now that U = {1,..., M}. We
now consider the dynamical system in R with state vector x|y, whose ith compo-
nent, denoted x|y, is for all time equal to z;, defined in (3.1). We see that the vector
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valued function x|y satisfies

x.|U,1(t) = fl(’%a 33|U,1(t)7 v 7x|U,M(t)7xM+1(t)v v 7$N(t))
C AR, 2o (t), - 2loa(t)
(3.2)

$|U7M(t) = fM(li,$|U71(t), e ,xlU)M(t),xMJrl(t), e ,{EN(t))

C Far(R(t), 2o (t), - - xloa (1)),

where &(t) = (K, Zar41(t), ..., zn(t)) and fi, i € {1,..., M}, are defined via the above
equalities. Thus, the system x|y; satisfies the same differential equations as does the
system for x;, except any dependence upon the variables x;, for j > M + 1, has been
incorporated into the dynamics as known, time-dependent functions. That is, they
are now viewed as inputs, or perhaps forcing, to the system. We will call the system
(3.2) the projected dynamics of (3.1) with respect to U.

For example, consider the system

. 2
T1 = —K1T1T5 — KoX1X3 + K5T2,
(33) jfz = R3T3 — 2H1$1$% — K5T2,

. 2
T3 = K4 + K1X1T5 — K3T3,

where £ = (k1,...,r5) € R2,. Then for U = {1,3} the projected dynamics of (3.3)
with respect to U is

(3.4) &1 = —k1G1(t)x1 — kox123 + K5C2(t),
' $.3 = K4 + chl(t)lil — K3%3,

where (1(t) = x2(t)?, (2(t) = z2(t), and z2(¢) is still defined via the system (3.3).
The goal now would be to translate any control we can get over x2(t), and hence ((t),
into qualitative information about the behavior of x; and z3. Later, we will simply
incorporate the function ¢ of (3.4) into the variables ki and view each kg(t) as a
function of time.

3.2. Reduced reaction networks. We begin with more notation. Let v € RY
for some N > 1, and let U C {1,..., N} be nonempty. We write U[j] for the jth
component of U. We then write v|y to denote the vector of size |U| with

def
vlu; = (vlv); = vy

for j € {1,...,|U|}. Thus, v|y simply denotes the projection of v onto the components
enumerated by U. For example, if N = 8 and U = {2,4,7}, then for any v € RS,
vl = (va, vq, 7).

DEFINITION 3.1. Consider a reaction network {S,C,R} with S = {S1,...,Sn}
and let U C {1,...,N} be nonempty. The reduced reaction network of {S,C,R}
associated with U is the reaction network {Sy,Cy,Ru} constructed in the following
manner:

1. Set Sy ={S; €S :ie€U}.
2. Set Cy = {ylv : y € C}. We say the complex y reduces to the complex y|y.
3. Set Ru ={ylv = yly : y = ¥ € R, and for which y|lv # v'|v}.
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4. If a resulting linkage class consists of a single complex, we delete that complex
from Cy.

EXAMPLE 3.2. Consider the reaction network with species S = {S1,...,S5} and
reaction diagram

925, + Sy = S5 + 25,

K2

(3.5) S5+ 85 = S1 + S5 = S5 + S

K6

S5 + 259 <:>7 So + 53,
K8

where we have ordered the reactions and incorporated the rate constants into the re-
action diagram. Let U = {1,4,5}. Then, Sy = {S1,54, 55}, Cu = {S5,51 + S4,0},
and the resulting diagram of the reduced reaction network is

(3.6) 0= S5 =5 + 54

Here, both the complexr 251 4+ So and S3 + 251 reduce to 25,. However, by rule 3 in
Definition 3.1 we do not include 251 — 257 in Ry, and by rule 4 we delete 251 from
Cuy. Note also that the original network has three linkage classes whereas the reduced
network has only one.

Note that because of rule 4 in Definition 3.1, it is possible to have S; € Sy,
even though S; does not appear in any complex in Cy. For example, if 1 € U, but
2,3 ¢ U, and the only reactions in which S; participates are S1 + S2 = S1 + Ss,
then S; € Sy, even though S; does not appear in any complex in Cy. In this case,
the reduced reaction network has inactive species; see Definition 2.1. Note, however,
that this situation arises only if the concentration of S; was time independent in the
original system. Thus, the original system could have been reduced by incorporating
S1 into the rate constants. Such an incorporation can have the effect of lowering the
deficiency of the network without changing the dynamics (see [11] to see a treatment
of how different network structures may give rise to the same dynamical system).

The following lemmas give some insight into how the structure of {Sy,Cy,Ru}
depends upon the structure of {S,C, R}. Both will be used in section 4 in the proof
of our main results.

LeMMA 3.3. Let {S,C,R} be a reaction network with S = {S1,...,Sn}. Let
Uc{l,...,N} be nonempty. Then, the reduced reaction network {Sy,Cu,Ru} has
less than or equal to the number of linkage classes as {S,C,R}.

Proof. Condition 3 of Definition 3.1 shows that if y1,y2 € C are in the same linkage
class, then y;|y and ys2|y are also. Thus the result is shown simply by counting the
number of unique linkage classes of {S,C, R} and {Sy,Cy, Ry} by enumerating over
the complexes C and Cy, respectively. O

LEMMA 3.4. Suppose that {S,C, R}, with S = {S1,...,Sn}, is weakly reversible
and that U C {1,..., N} is nonempty. Then {Sy,Cu,Ru} is weakly reversible.

Proof. Suppose y|lu — y|;; € R. By construction there are complexes y,y’ € C,
with y — ¢’ € R, that reduce to y|v, y|;;. By the weak reversibility of {S,C, R}, there
is a sequence of directed reactions, yx — y}, € R, beginning with ¢’ and ending with y.
If for each yi — v}, of this sequence we have yx|v # yj.|u, then, by construction, there
is a sequence of directed reactions in Ry beginning with y|;; and ending with y|y. If
yrlu = ylu for one of the k, such a sequence still exists except now yx|v — ¥4 |U-
Similar reasoning holds when yi|v = v |v for more than one k. O
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We need to provide the reduced network {Sy, Cy, Ry } with natural kinetics. The
kinetics, K(t), are given via the projection of the dynamics, described in section 3.1,
of {S,C, R, K} onto the elements of U. The variables x(t) are now functions of time.
Note that the dynamics of the resulting projected system depends upon the dynamics
of the original system.

EXAMPLE 3.5. Again consider the reaction system with species S = {S1,..., 55}
and reaction diagram (3.5). For U = {1,4,5}, the reduced network was (3.6). Incor-
porating the projected dynamics yields

_ Ra(t) R ()

G = S5 = S +8i,
I%Q(t) I%4(t)

where l%l(t) = Kg$2(t)$3(t), I%g(t) = /€7$2(t)2, /%3(t) = :‘$3!E3(t) + Kﬁxg(t), I%4(t) =
(k4 +K5), and the indezing k of the Ry(t) is over reactions in the reduced network and
not the original network.

It is important to note that the variables #(t) for the reduced system, which take
the place of the rate constants, are always nonnegative as they consist of positive linear
combinations of nonnegative monomials of the variables x; for which j ¢ U; see (3.7)
below. Also, while the reduced system is a nonautonomous system with generalized
mass-action kinetics, the functions g (t) are not necessarily bounded either above
or below. Finally, note that the functions & (t) depend explicitly on the original
trajectory of the system and, in particular, will be different functions of time for
different initial conditions of the system {S,C, R, K}.

It is useful to have a more formal representation of the projected dynamics. Thus,
let {S,C,R,K} be a reaction network with mass-action kinetics, £ = {rp}. Let
U c{1,...,|S|} be nonempty. The reduced mass-action system of {S,C, R, K} with
respect to U is the nonautonomous mass-action system {Sy,Cy, Ry, Ky (t)}, with
Ky (t) = {ki(t)}, where the indexing k of the ry(t) is over reactions in the reduced
network and not the original network, and where for yz|v — y,.|v € Ru,

(3.7) i (t) = > ki (2(t)|pe) ™17,

{zi—2,€R : yrlu=zilu and y; |lu=z|v}

where z(t) is the solution to (2.4) for the system {S,C, R, K}.

We reiterate the fact that based upon the above definitions, the differential equa-
tions governing the dynamics of x; for ¢ € U for the reduced system are exactly the
same as the differential equations for z; for i € U of the original mass-action system.
In section 4, we will project the dynamics of a bounded trajectory onto the subset
of the species that go to the boundary, thereby producing a trajectory that satisfies
a system with bounded mass-action kinetics. Note that both the resulting reduced
network and the bounds on the kinetics will depend upon the initial condition of the
original system.

4. Main results. We begin in section 4.1 by introducing the concept of parti-
tioning a set of vectors along a sequence, which will be one of our main analytical
tools and will allow us to group the relevant monomials of the dynamical system along
sequences of trajectory points into classes with comparable growths. In section 4.2 our
main results will be stated and proved. The main results will focus on nonautonomous
systems because we will later project our system of interest, which is autonomous, onto
the nonautonomous system consisting of those species that approach the boundary
along a subsequence of times.
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4.1. Partitioning vectors along a sequence. We begin by recalling that for

def
= uj'---uyy, where

any vectors u,v such that u € RY, and v € RY we define u?
we use the convention 0° = 1. All sequences and subsequences will be indexed by
nonnegative integers.

DEFINITION 4.1. Let C denote a finite set of vectors in RN . Let x,, € RY, denote
a sequence of points in the strictly positive orthant. We say that C is partitioned along
the sequence {z,} if there exists T; CC, i =1,..., P, termed tiers, such that T; # 0,
T;NT; =0ifi # j, and U;T; = C (that is, the tiers constitute a partition of C), and
a constant C > 1, such that

(i) if yj,yx € T; for some i € {1,..., P}, then for all n

1, .
695}’5 <l < Ca¥,

which is equivalent to either of the conditions

1 z¥k 1 .
Eéxyjé(f or Eéx%’“ vi <O
n

(ii) if yx € T; and yj € Tyt for some m € {1,..., P — i}, then

Yk
xn

¥

— 00  asn — oQ.

Therefore, we have a natural ordering of the tiers: 77 = T > T3 > --- = Tp, and
we say T is the “highest” tier, whereas Tp is the “lowest” tier.

Throughout this paper, Definition 4.1 will be used in the context of the sequence
{z,} being trajectory points, and the set of vectors C being the complex vectors.

The following lemma, which is critical for our purposes, states that given a set
of vectors and a sequence of points in R]>VO, there always exists a subsequence along
which the vectors are partitioned.

LEMMA 4.2. Let C denote a finite set of vectors in RN . Let x,, be a sequence of
points in ]RJ;/O. Then, there exists a subsequence of {x,} along which C is partitioned.

Proof. Denote the elements of C as y;, 1 <i < r, where |C| = r. Note that there
are r! < oo ways to order the elements of C. Therefore, there exists a reordering of
the vectors in C such that the set of indices n for which

(4.1) ¥ > ¥ > > gl

holds is infinite; letting nj; denote those indices, we obtain the corresponding subse-
quence {zy,}. Thus, we have instituted an ordering y; > y2 > --- > y, along this
subsequence, and y; can be viewed as maximal. The goal now is to simply get more
information about this ordering (along further subsequences) and ask which vectors
stay “close” to each other, and which diverge. This will give us the natural dividing
lines for our tiers.

For i € {1,...,r — 1}, define ¢; : RY; — R by ¢;(z) et a¥i/x¥i+1. By the
inequalities (4.1), for each i € {1,...,r — 1} and for k > 1, we have ¢;(z,,) > 1. We
will construct the tiers. We begin by setting 77 = {y1}. Next, we ask whether

(4.2) liminf ¢y (2, ) < co.
k— o0

If (4.2) holds, we set Ty = {y1,y2} and redefine our sequence {x,,, } as an appropriate
subsequence so that limg_,o0 11 (2y, ) exists, and is finite. Next, we ask whether

liminf 19 (2, ) < 00
k—o00
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along this new subsequence. If so, we set T1 = {y1,y2,y3} and redefine our sequence
appropriately so that limg_,o 12(2y, ) exists and is finite. This process will either
terminate with 77 = C or when lim infy_,o0 ¥p—1(2y, ) = 0o for some b € {2,...,r}. If
such a b exists, we have Ty = {y1,...,yp—1}, and then we begin building the second
tier by setting T = {y5}. Now fill T, in the same manner as we did T} by looking at
the values of lim infy_, o ¥;(2y, ) for the appropriate i’s. Repeat this process, always
redefining the sequence as the subsequence guaranteed to exist at each step, until we
have a sequence of tiers 11,75, ...,Tp.

It remains for us to find the appropriate C' > 1 for Definition 4.1. For each
pair y;,yj+1 € T;, we define C; ; def limy o0 21, /zwi"", which exists and is finite by
construction. For each such i, j, let 5” = (};; + 1 and note that there is a K > 1 so
that

LY _

i,

1< 55 <Cyy
T

for all k > K and all relevant ¢, j (that is, this bound is uniform in ¢ and j). Let

def =~
SRt S U e
{7+ yjyj+1€T3}

Then, restricting ourselves to the subsequence with £ > K, C is now partitioned along
the resulting subsequence with tiers {T;}, ¢ = 1,..., P, and constant C' > 1. ad

The following lemma states that for any set of vectors in R™, either their span
includes a nonzero vector in the nonpositive orthant R”;, or there is a vector normal
to their span that intersects the strictly positive orthant.

LEMMA 4.3 (Stiemke’s theorem, [32]). For i = 1,...,n, let u; € R™. Either
there exists an o € R™ such that

<Zaiui> <0, jg=1,....m
i=1 j

and such that at least one of the inequalities is strict, or there is a w € RTy such that
w-u; =0 for each i € {1,...,n}.

DEFINITION 4.4. Let w € RN, The set {i € {1,...,N} : w; # 0} is called the
support of w.

DEFINITION 4.5. Let C denote a finite set of vectors in RN. Let {T;} denote a
partition of C. Let U C {1,..., N} be nonempty. We say that the vector w € R]>VO 18
a nonnegative conservation relation that respects the pair (U, {T}}) if the following
two conditions hold:

1. w; > 0 if and only if i € U. That is, the support of w is U.
2. Whenever y;,y¢ € T; for some i, we have that w - (y; — y¢) = 0.

Note that if each T} consists of a single element, then any vector w whose support
is U satisfies the requirements of the definition as the second condition holds auto-
matically. Also note that if C = T7, then the type of conservation relation described
above is the usual concept in chemical reaction network theory.

If in the following theorem, C is taken to be the set of complexes of a reaction
network, then the theorem guarantees that there must be a conservation relation
among certain subsets of the reactions if a trajectory converges to the boundary of
the positive orthant.
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THEOREM 4.6. Let C denote a finite set of vectors in RN . Let x,, € Rgo denote
a sequence of points with x,, — z € ORY,, as n — oo. Let U = U(z) = {i €
{1,...,N} : z; = 0}. Finally, suppose that C is partitioned along {x,} with tiers
T;, fori =1,..., P, and constant C > 0. Then, there is a nonnegative conservation
relation w € Rgo that respects the pair (U,{T;}).

Proof. We suppose, in order to find a contradiction, that there is no nonnegative
conservation relation that respects the pair (U, {7;}). Define the sets W; ¢ R, for
i=1,...P,and W C R" via

def def
Wi:{yj_yk|ijyken}a W = UWZ’

and denote the elements of W by {uy}. Note that if T; consists of a single element,
then W; consists solely of the vector 0. Let m = |U| > 0 be the number of elements
in U, and let W;|y C R™ and Wy C R™ be, respectively, the restrictions of W; and
W to the components associated with the index set U, as discussed in section 3.2.
Denote the elements of W |y by {v}. Thus, collecting terminology, uj € RY, whereas
vy € R™, and for each u; € W, there is a corresponding v, € W|y for which
ug|u = vi; however, the mapping -|y need not be injective.

The set Wy must contain at least one nonzero vector because otherwise any
nonnegative vector with support U would be a nonnegative conservation relation that
respects the pair (U, {T;}), but we have assumed that no such relation exists.

Because we have assumed there is no conservation relation that respects the pair
(U,{T:}), we may conclude by Lemma 4.3 that span(W|y) must intersect R, in a
nontrivial manner. That is, there exist ¢, € R such that B

(4.3) Z vk | <0
v EW U j
for each j € {1,...,m}, and such that the inequality is strict for at least one j.
For v, € Wy, let my denote the number of vectors of W that reduce to it (recall
that the operation -y need not be injective). Define the function M : RJZVO — R by

M) = I @)

ur €W

where ¢, and my are chosen for ur € W if ugxly = v € W|y. Note that, by
construction and by the definition of partitioning along a sequence, if ux € W, then
there are y;,y¢ € T; for some ¢ such that uy = y, — y; and

¥
— <g¥ =-2-<(C
c— " s =

for all n > 1. Therefore, the sequence M (z,,) is uniformly, in n, bounded both from
above and below. Noting that each x,, has strictly positive components, we may take
logarithms and find

ln(M(xn)):( 3 C—kuk> Iy,

m
up W k
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where for a vector u € RY we define

In(u) < (In(w),. .., In(uy)).

Expanding along elements of U and U¢ yields

(4.4) ln(M(xn)):( 3 ckvk> -ln(xn|U)+( 3 ;—me) n(z|ve).

'UkEW‘U upeW

By construction, z, ¢ is bounded from both above and below for £ € U¢. Thus, the
second term in (4.4) is bounded from above and below. By the inequality (4.3), where
at least one term is strictly negative, and the fact that z, ; — 0 for each j € U along
this sequence, we may conclude that the first term, and hence In(M(x,)) itself, is
unbounded towards 4oo, as n — oo. This is a contradiction with the previously
found fact that the sequence M (z,,) is uniformly bounded above and below, and the
result is shown. d

4.2. Persistence and the Global Attractor Conjecture in the single link-
age class case. For any 7 € RY, define V5 : RY; — R> by

N

(4.5) Va(2) € [2i(In(z:) — In(z;) — 1) + 7]

=1

For z € ORY,, define V() via the continuous extension of (4.5). This is the standard
Lyapunov function of chemical reaction network theory [13, 20] and has commonly
been used in the study of complex-balanced systems where T is typically taken to be
a complex-balanced equilibrium. However, we emphasize that in the current setting
T need not be a complex balanced equilibrium. Note that VVz(xz) =Inz —InZ. It is
relatively straightforward to show that for any 7 € RY, V& is convex with a global
minimum of zero at T [13].

The outline of the technical arguments to come is as follows. In Lemma 4.7 we
will show that for a trajectory of a nonautonomous, weakly reversible system with
bounded kinetics to approach the boundary, at least one of two conditions, C1 or C2,
must hold. In Lemma 4.8 we will show that condition C2 cannot hold for trajectories
of systems of interest in this paper. Condition C1 of Lemma 4.7 will then essentially
tell us that a whole family of Lyapunov functions decrease along the trajectory. This
is a substantially stronger condition than having a single Lyapunov function decrease
along a trajectory, and will eventually allow us, with the help of Lemma 4.9, to
overcome the fact that Vi(z) does not diverge to 400 as x — ORY,, which has been
the technical sticking point to a proof of the Global Attractor Conjecture in the past.

LEMMA 4.7. Let {S,C,R,K(t)}, with S = {S1,...,Sn}, be a weakly reversible,
nonautonomous mass-action system with bounded kinetics. For t > 0, let x(t) =
d(t,xo) be the solution to the system with initial condition xo. Suppose xg € R]>VO 18
such that ¢(t,z0) remains bounded and dist(¢(t,xo), ORY,) — 0, as t — oo. Then at
least one of the following two conditions hold for this trajectory:

Cl: For any T € RJ!O, there exists a T = Tx > 0 such that t > T implies

%Vf(x(t)) = wk(®)x()" (47, — yr) - (In(z(t)) — In(F)) < 0.
k
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C2: There exists a sequence of times, t, — oo, such that x, def O(tn, o) € RJ!O
converges to a point z € w(¢(-,z0)) NORY,, and
(i) C is partitioned along x, with tiers {T;}1_,, and constant C, and
(ii) Ty consists of a union of linkage classes.
Proof. We suppose condition C1 does not hold, and will conclude that condition
(2 then must hold. Because condition C1 does not hold, there is an 7 € RY and a
sequence t, — oo such that

(4.6) > mnltn)al (i — yi) - (Inzn) — In(x)) > 0,
k

where z,, = ¢(t,,, xo9). We now fix .

Combining dist(¢(tn, z0), ORY,) — 0, as t, — oo, with the boundedness of the
trajectory allows us to conclude that there exists a convergent subsequence of {z,,},
which we take to be the sequence itself, with limit point z € w(¢(-,z¢)) N ORY,.
Note that by construction the inequality (4.6) holds for all z,, of the subsequence.
Applying Lemma 4.2, we partition the complexes along an appropriate subsequence
of the sequence, which we will again denote {x,}, with tiers T3, i« = 1,..., P, and
constant C' > 1.

In the following, for tier ¢ € {1,..., P}, we denote by

e {i — i} all reactions with both source and product complex in Tj,
e {i — i+ m} all reactions with source complex in T; and product complex in
Tixm forme {1,..., P —i},
e {i — i — m} all reactions with source complex in T; and product complex in
T forme {1,...,i—1}.
Defining u/v def (u1/v1,...,un/oN) for u,v € RY;, we may rewrite the left-hand side
of the inequality (4.6)

(4.7) /
Z ki (tn) T8 (Y — yx) - In (%) = ZP: [ Z K (tn) T8> [1n <i§;> + Ck]
k i=1

P—i i,
(4.8) + 33 mlta)a [m (ig) -l—ck]

m=1 {i—i+m}

m=1{i—i—m}

where for the kth reaction ¢ In(ZV* /7Y% ) = —(y}, —yx) - InT. Note that supy, |cx| <
0o because T is fixed. Note also that, by construction, for lalcge enough n any compo-
nent in the enumeration (4.8) is negative, and, in fact, In(zp* /zY%) — —00 as n — oo
for these terms. We will now show that the total summation above (that is, the
left-hand side of (4.7) and, hence, (4.6)) must also, for large enough n, be strictly
negative unless condition C2 holds. This will then conclude the proof as it shows
“not C1 = (C2.”

Suppose condition C2 does not hold. Then, for the specific partition we have
along {x,}, it must be that T} does not consist of a union of linkage classes. Thus, by
the weak reversibility of the system there must be at least one reaction, yr1 — v,
say, such that yy1 € 77 and y;, € T; for j > 2. That is, there is a reaction being
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enumerated in (4.8) with i = 1 and m > 1. As noted above, we have by construction
that 1n(xy“/xyk1) — —00, as n — oo. Further, there is a C' > 1 such that for any
y; € C, a¥1 > (1/C)xy for all n. Finally, the terms In(z ’“/x%’“) on the right-hand
side of (4 7) are uniformly bounded in n and k. Combining these ideas shows that

for n large enough
(4.10)

1 a:%/’“
Enkl(tn)x,%“ [ln < ) + cm} + Z Z Kk (tn)xlE { <x%’“> + ck} < —q1 ik,

=1 {i—i}

where g1, — 00 as n — co. Thus, we have used one half of a single term enumerated
in (4.8) to bound every term enumerated on the right-hand side of (4.7).

Since we already know that the terms in (4.8) are all strictly negative for large
enough n, all that remains for us to show is that the terms in (4.9), which are all
positive for large enough n, are also dominated, in a similar manner as (4.10), by
some terms in (4.8), as n — oo.

Pick a reaction from (4.9), yo — ¥}, say. Suppose that the source of the reaction
is a complex in tier T;, and the product is in tier T;_,, for some m > 0. By the weak
reversibility of the network, there is a series of reactions beginning with y;, and ending
with yo such that no reaction is enumerated more than once (that is, there is a path
along the directed diagram with no yx — yj, used multiple times). We now claim
that there must be a subset of these reactions, enumerated as r1,..., 7y, satisfying
the following conditions (below, we denote the tier of the source complex for reaction
rj as Ty, . and the tier for the corresponding product complex as Ty, ,):

1. dl,s S T —m

2. For ¢ € {1,...,b}, the source complex of ry is in a strictly higher tier than
the corresponding product complex; that is, d¢,s < dgp.

3. For £ > 2, we have d¢ s < dg—1,p.

4. dyp > i
5. For ¢ € {1,...,b}, we have dy s < i.
Note that, for example, the series of reactions r1,...,7, above can be constructed

from the original series only by taking the first b reactions for which the source is in a
strictly higher tier than the product, but stopping (i.e., pick b) once a product complex
is in a tier that is equal to or lower than that of yo. If yg — yj is a reversible reaction,
then we may take b = 1 with the reaction r; simply being the reverse reaction y{, — yo
from tier T;_,, to tier T;.

By condition 2 we know that each of the reactions r1,...,7, are enumerated in
(4.8). Let dy = maxe{ds s}, and let yq, € Ty, be a choice of complex from tier Ty, .
Note that dy < ¢ by condition 5, and so

(4.11) Ty’ /z¥ = 00 as n — oo,

By construction and an application of the triangle inequality, there is a constant
Cy > 0 such that for n large enough (so that the In terms dominate the ¢,, terms)

a:y,” b Ve b
Zﬁre Uw |:1 (xyrl) + Cf’e:| > 770133#0 l:ln (H ) Zcre :|

(=1 fn (=1
where the apparent “flip” of the ratio comes from taking the absolute value of a
negative term, and where > 0 is the parameter used to bound all the functions

(4.12)




1504 DAVID F. ANDERSON

ki(t): n < Kki(t) < 1/n for all ¢ > 0. By condition 2 in the construction above we
have that each term in the product on the right-hand side of (4.12) goes to 400, as
n — oo, and hence the entire product does. Further, by conditions 1, 3, and 4 above,
there is a Cy > 0 such that

by

Tt S 20
H . 2 Ca—ys,s
=1 xn( n

uniformly in n. We now may conclude that there is a C3 > 0 so that

(1) [

(=1 Tn
for all n. Let M be the number of reactions enumerated in (4.9) over alli € {1,..., P}.
Combining (4.13) with (4.12) and (4.11), we see that for n large enough
(4.14)

UW Q:Zw Yo x%(l) ydo
2MZ“T@ In U + Cry | + Ko(tn)zy? | In —wo | T | = —q2nan

n

} > Cs In(x /x“o) + ¢

where g2, — 00, as n — oco. Note that the first term on the left-hand side of (4.14)
is the left-hand side of (4.12) divided by 2M, and the second term is the summand
of (4.9) associated with the reaction yo — yj. As yo — y{, was arbitrary, we may
conclude that for n large enough,

%é[i > ok x“k{ln<z—§§>+ck}

m=1{i—i+m}

i-1 Vi
Tn
+ E E K (tn)xd [ln <ﬁ> + ck” <0,

m=1 {i—i—m}

(4.15)

which are the terms of (4.8) plus the terms of (4.9).

Combining the inequalities (4.10) and (4.15) shows that for n large enough, the
summation found on the left-hand side of (4.7), or, equivalently, on the left-hand side
of (4.6), must be strictly negative. This is a contradiction with (4.6) holding for all n.
Therefore, we must have that condition C2 holds. O

LEMMA 4.8. Let {S,C,R,K(t)}, with & = {S1,...,Sn}, be a nonautonomous
mass-action system with bounded kinetics and a single linkage class. Suppose xg € R]>Vo
is such that ¢(t, o) remains bounded and dist(¢(t,zo), ORY,) — 0 as t — co. Then,

there does not exist a subsequence of times t, — 0o such that C is partitioned along

d—ef d(tn, o) in which Ty consists of a union of linkage classes.

Proof. Note that in the one linkage class case 717 can only consist of a union of
linkage classes if 77 = C. We suppose there is such a sequence of times, t,, — oo, such

that C is partitioned along zy, def @(tn, o) with T3 = C (and there are no other tiers).
By the boundedness of the sequence, we may consider a convergent subsequence with
limit point z. Let U =U(2) = {i € {1,..., N} : z; = 0}. Note that U is nonempty
because the trajectory goes to the boundary. Note that C is necessarily partitioned
along this subsequence as well, with the same tiers. By Theorem 4.6 there is a
nonnegative conservation relation w € RY that respects the pair (U, {T}}).
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Because the support of w is U # 0, and ¢;(t,,zo) — 0 for all i € U, we have
that w - ¢(t,,z0) — 0 as n — oo. However, because T7 = C, we also have that
w- (Y, —yx) = 0 for all y — y;, € R. Thus, we see from (2.2) that w - ¢(t,z¢) > 0 is
constant in time ¢, contradicting that w - ¢(t,, o) — 0 as n — oco. O

Lemma 4.8 says that condition C2 of Lemma 4.7 can never hold in our setting, and
so C1 must. The following, final lemma will allow us to conclude that any trajectory
satisfying such a family of Lyapunov functions must converge to a single point.

LEMMA 4.9. Let {S,C,R,K(t)}, with S = {S1,...,Sn}, be a nonautonomous
system with bounded mass-action kinetics. Suppose xy € R]>VO is such that for any
T € RY, there exists a T =Ty > 0 such that t > T implies

Ly (x(t)) <0,
5 Ve (z(t) <
where x(t) = ¢(t,x0) is the solution to the system with x(0) = xo and kinetics K(t).
Then w(¢(-,x0)) is a single point.

Proof. Note that the trajectory remains bounded because each Vz(z(t)) does.
Also, we have that for any T € RY, there exists a cz > 0 such that

Va(z(t)) = ¢z ast — oo,

where the nonnegativeness of ¢z follows by the fact that V&(z) > 0 for all z € RY,,.
The boundedness of z(t) implies there is at least one w-limit point of the trajectory.
The question now is: Can there be more than one? Let us suppose so. That is, we
assume the existence of z1, 20 € wW(P(-, zp)) with 21 # 2.

Note that for any T € RY,, Vi(21) = Va(22) = ¢z, where, if z; € ORY,, we define
Vz on the boundary via its continuous extension to the boundary. Let 1,72 € RJ!O
be arbitrary. Then, after some algebra we have

0= V5, (21) — V&, (22) — (V,(21) — V&, (22))
= (21 — 22) - (In(Z2) — In(T1)) .

But 71,72 € RY, and hence (InZ> —In7;) € RY were arbitrary. Thus, z1 = zo. O

We now have our main result.

THEOREM 4.10. Let {S,C,R,K}, with S = {S1,...,S|s|}, be a weakly reversible,
single linkage class chemical reaction network with mass-action kinetics. We assume
that for xg € Rg the trajectory ¢(t,zo) satisfies the following two conditions:

1. ¢(t, zp) is bounded (int), and
2. w(é(-, o)) is either completely contained in 8R|>SO‘ or completely contained

within the interior of REA.

Then w(o(-,x0)) N 8R|>SO‘ = (), and the trajectory is persistent.

Remark 1. Note that the conclusion of the theorem guarantees that w(¢(-, zo))
is completely contained within the interior of the strictly positive orthant. Said dif-
ferently, w(¢(+,x0)) cannot be contained within 8]1%';%.

Proof. Suppose, in order to find a contradiction, that for this o there is at least
one z € w(g(-,xp)) N GR‘;SOI. Let

U={ie{l,...,|S|} : zi =0 for some z € w(o(-,x0))},

which is nonempty as there is at least one z € 8R|>SO‘. That is, these are all the indices
for the species whose concentrations approach zero along some subsequence of times
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for this specific, fixed trajectory. Therefore, and equivalently, ¢« € U if and only if

liminf ¢;(t,20) =0 and limsup ¢;(t, z0) < oo,
t—o0 t—00

where the second fact follows from the boundedness of trajectories, whereas for j ¢ U
we have

(4.16) 0 < liminf ¢;(t, 20) < limsup ¢;(t, zo) < co.
t—o0 t—o0

Let {Su,Cu, Ry} denote the reduced reaction network of {S,C,R} associated
with U (see Definition 3.1), and let K(t) = Ky (t) denote the projected dynamics (see
section 3.2), with k() denoting the nonautonomous variables defined via (3.7) that
take the place of the rate constants in standard mass-action kinetics. It is important
to note that by (4.16) and the definition of the s (t)’s given in (3.7), we have the
existence of an 1 > 0 such that

(4.17) n < rr(t) <1/n

forallt > 0and all k € {1,...,|R|y|}. That is, {Su,Cu,Ru,K(t)} is a nonautono-
mous system with bounded mass-action kinetics. Another way to see this fact is just
to note that the chemical species whose concentrations are uniformly bounded from
above and below, such as j ¢ U, have been incorporated into the x(t), thereby yield-
ing a bound like (4.17). By Lemmas 3.3 and 3.4, the reduced network {Sy,Cv, Ry}
is weakly reversible and has only one linkage class.

We let |Sy| = N and denote by z(t) € RY the solution to the reduced dynamical
system for this specific trajectory. By condition 2, above, which pertains to the
original system, and by the construction of U, the set of w-limit points of the trajectory
of the reduced system must exist on 8RJ>VO. Combining Lemmas 3.3, 4.7, 4.8, and 4.9
shows that the set of w-limit points of the trajectory of the reduced system, x(t),
must consist of a single point. By construction of U, this point must be the origin
0 € RV, as otherwise there is an i € U for which lim inf,_, x;(t) > 0, a contradiction
with the definition of U. However, we also know by Lemmas 4.7, 4.8, and 4.9 that
4V (x(t)) < 0 for t large enough, where T € RY) is arbitrary. Therefore, because the

origin is a local maximum of V, we cannot have that z(t) — 0 € RY. O

The following corollary, which was the main goal of this paper, states that the
Global Attractor Conjecture holds in the single linkage class case.

COROLLARY 4.11. Let {S,C,R,K} denote a complex-balanced system with one
linkage class. Then, any complex-balanced equilibrium contained in the interior of a
positive compatibility class is a global attractor of the interior of that positive class.

Proof. Trajectories of complex-balanced systems satisfy conditions 1 and 2 in the
statement of Theorem 4.10 [13]. The result then follows by the discussion in section
1.1 after the statement of the Global Attractor Conjecture. O

In particular, if {S,C, R, K} is a weakly reversible, deficiency zero system with a
single linkage class, then the conclusion of the Global Attractor Conjecture holds.

Note that the single linkage class assumption in Theorem 4.10, and hence Corol-
lary 4.11, was used only in conjunction with Theorem 4.6 in the proof of Lemma 4.8
to guarantee that the top tier, 77, could not consist of a union of linkage classes. If
it can be guaranteed in any other way that the top tier, in the construction detailed
in the previous lemmas, cannot consist of a union of linkage classes, then the conclu-
sions of Theorem 4.10 and Corollary 4.11, that complex-balanced equilibria are global
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attractors of their positive classes, will still hold. Also, note that if it can be shown
that condition 2 of Theorem 4.10 is always satisfied by weakly reversible networks
with mass-action kinetics, something we believe to be true, then the Persistence Con-
jecture, as stated in section 1.1 of this paper, will also be proven in the single linkage
class case by the arguments in this paper.

For completeness, we state the following corollary to the proof of Theorem 4.10,
which points out that the rate constants ki are permitted to be bounded functions of
time before the projection.

COROLLARY 4.12. Let {S,C,R,K(t)}, with S = {S1,...,S|s|}, be a weakly
reversible, single linkage class chemical reaction network with bounded mass-action
kinetics. We assume that for xg € Rg the trajectory ¢(t,xo) satisfies the following
two conditions:

1. ¢(t, zp) is bounded (in t), and
2. w(é(-, o)) is either completely contained in 8]1%'50‘ or completely contained

ny o |S]
within the interior of RY,.
Then w(o(-,x0)) N 8RI;SO‘ = (), and the trajectory is persistent.

Proof. The proof is exactly the same as the proof of Theorem 4.10. O

5. Example. We present one example to demonstrate the ease with which the
main results can be applied. Consider the system with reaction network

S+ Sy —5 38,

/<a4/]\ \an )

255 <— 251+ S5
K3

which was recently used as an example of a system whose persistence was beyond the
scope of known theory [25]. This network has four complexes, one linkage class, and
the dimension of the stoichiometric subspace can be checked to be three. Thus, the
deficiency is zero. As the network is clearly weakly reversible, the Deficiency Zero
Theorem implies that, regardless of the choice of kj, the system is complex-balanced.
Theorem 4.10 and Corollary 4.11 tell us that the system is persistent, and that each of
the complex-balanced equilibria are global attractors of their positive stoichiometric
compatibility classes. Thus, the long term behavior of the system is now completely
known.
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