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Recent technological advances allow us to view chemical mass-action systems as analog 
computers. In this context, the inputs to a computation are encoded as initial values of certain 
chemical species while the outputs are the limiting values of other chemical species. In this 
paper, we design chemical systems that carry out the elementary arithmetic computations of: 
identfication, inversion, 𝑚th roots (for 𝑚 ≥ 2), addition, multiplication, absolute difference, 
rectfied subtraction over non-negative real numbers, and partial real inversion over real numbers. 
We prove that these ``elementary modules'' have a speed of computation that is independent of 
the inputs to the computation. Moreover, we prove that finite sequences of such elementary 
modules, running in parallel, can carry out composite arithmetic over real numbers, also at a rate 
that is independent of inputs. Furthermore, we show that the speed of a composite computation 
is precisely the speed of the slowest elementary step. Specifically, the scale of the composite 
computation, i.e. the number of elementary steps involved in the composite, does not affect 
the overall asymptotic speed -- a feature of the parallel computing nature of our algorithm. 
Our proofs require the careful mathematical analysis of certain non-autonomous systems, and 
we believe this analysis will be useful in different areas of applied mathematics, dynamical 
systems, and the theory of computation. We close with a discussion on future research directions, 
including numerous important open theoretical questions pertaining to the field of computation 
with reaction networks.

1. Introduction

An increasingly active area of scientific research is the study of chemical reaction systems as computational machines [1--9]. 
The broad goal of this nascent field is to develop systems that can operate in the niche of a (wet) cellular environment, rather than 
to directly compete with modern digital computers. Methods for the physical implementation of these systems include DNA-strand 
displacement, which was developed largely by Lulu Qian, David Soloveichik, and Erik Winfree [7,9]. While this research area is still 
in its relative infancy, it is critical that the theoretical (mathematical) foundation of these methods and systems keeps pace with the 
physical implementations so as to (i) keep the algorithmic aspects of this field on a firm mathematical footing from the beginning, 
and (ii) provide a reliable (proof based) method for the development of the appropriate reaction network-based software design.

✩ This article belongs to Section C: Theory of natural computing, Edited by Lila Kari.
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Under the assumptions that the chemical system is well-stirred and at a constant temperature, deterministic mass-action chemical 
systems are mathematically modeled as autonomous systems of ordinary differential equations [10]. To utilize such a system as a 
computational machine, we associate the inputs and outputs of the desired computation with certain state variables of the dynamical 
system. Most often, the desired output is encoded as a limiting value of a subset of the state variables that converge asymptotically 
to this limiting value. Since by necessity any recording of the system is at a finite time it is important to bound the error, which in 
this case is the deviation from the asymptotic value. The rate of this convergence, or alternatively the rate at which the error decays, 
determines the speed of the computation. The time chosen for the recording will in general be determined by the required level of 
accuracy, but should not be so large as to render the method impractical.

Because mass-action systems are modeled via systems of differential equations, they can naturally be viewed as analog computers. 
While digital computers now dominate the computational landscape in our society, it is interesting to note that analog computers 
have certain advantages over digital computers. For example, consider the problem of numerically solving the initial value problem

𝑥̇(𝑡) = 1 − 𝑥(𝑡), 𝑥(0) = 𝑥0 ∈ℝ>0. (1)

If you were using a digital computer, you would naturally utilize some sort of discretization method (such as Euler’s method or a 
Runge-Kutta method) to approximate the solution to some desired accuracy. No matter the method, however, the key point is that 
one must discretize, as digital computers can only handle discrete computations. An incredible amount of scientific effort has gone 
into discretization methods for the numerical solution of ODEs, PDEs, and SDEs via digital computers over the past many decades, 
with such work still dominating portions of applied mathematics.

On the other hand, the system (1) above is quite naturally ``solved'' by simply considering the chemical reaction network modeled 
via

∅⇄𝑋,

with an initial concentration of 𝑥0 , so long as the rate constants are chosen to be equal to one (see section 2.1 for the details of 
mass-action models). In short: many problems that are difficult to solve for digital computers are quite simple to solve for a chemical 
system.

However, there is a natural converse to the above observation. While chemical systems will naturally be able to solve systems 
that are described via differential equations (see section 2.1 for the exact class of differential equations they solve), it is more difficult 
to use them to compute things that are naturally discrete, such as basic arithmetic (addition, multiplication, finding roots, division, 
etc.). Hence, while it took much thought by many people to develop algorithmic methods for the solution of continuous problems 
with digital computers, it is natural that we will require a fair amount of work to develop efficient methods for the use of chemical 
systems to solve these discrete problems.

We therefore focus here on algorithmic aspects of chemistry-based analog computing of arithmetic operations, as these operations 
are a cornerstone of discrete computation. Specifically, we focus on the development of elementary ``chemical modules'' that carry 
out basic arithmetic operations (such as inversion, roots, addition, multiplication, etc.) and we prove that the developed modules 
have a speed of computation that is independent of the inputs.1 Moreover, we prove that these elementary modules can be run in 
parallel so as to carry out any desired arithmetic computation, also at speed that is independent of input.

There is existing work on algorithmic aspects of analog computation of arithmetic operations, even from the specific vantage 
point of reaction network implementation. Our work is closest in approach to the one taken by [2]. However, while the authors of 
[2] considered algorithms for arithmetic computations using reaction networks, they did not include speed of computation in their 
consideration. Our stated purpose is to remedy this. We frame a general arithmetic computation as a finite sequence of elementary 
computations that are running in parallel. Since every element of the sequence is being computed in parallel, we need to consider 
time-evolving inputs to the elementary modules, where the output of a previous step is providing input into the next step even without 
having converged to its asymptotic value. We show input-independence of speed of any overall computation that is composed from 
multiple, but finitely many, elementary arithmetic operations.

Throughout this work, we assume that the rate constants of our models (which are the key system parameters, see section 2.1) are 
all exactly equal to 1. Our main results of this paper, Theorem 5.1 and Corollary 5.2, then conclude that any arithmetic computation 
carried out in the manner specfied herein, even those consisting of a finite number of composite calculations being carried out in 
parallel, has a rate of convergence of at least 1 (loosely, this means the deviation of the model from the desired output decreases 
like 𝑒−𝑡). While it is important to our work that all the rate constants be equal, the choice of setting them equal to 1 is arbitrary. We 
discuss in Remark 5.4 how setting them all to 𝜎 > 0 is simply a time-change of our model and leads to a rate of convergence of 𝜎. We 
discuss the possibility of generalizing to the situation of non-equal rate constants in section 7.

There are several bodies of research, outside the world of chemical reactions, on designing efficient hardware and software for 
analog as well as analog-digital hybrid computing [11--14]. While we develop our results for a chemistry-based computer, the results 
apply equally well to any computational system that computes via nonlinear polynomial differential equations. We therefore hope 
that our theoretical results will find use in the broader sphere of computation.

The remainder of the paper is organized as follows. In the next subsection, section 1.1, we point out that there are two natural 
ways to use chemical systems as computational machines and compare/contrast their strengths and weaknesses. In section 2, we 

1 More specifically, we prove that the speed of computation for the elementary modules has a lower bound that is independent of inputs.
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(i) formally introduce the mathematical models that will serve as our algorithms for analog computation, which are deterministic 
chemical reaction networks with mass-action kinetics, (ii) discuss issues related to these models, and (iii) demonstrate, via example, 
the central purpose of this paper: the development of reaction network modules that can carry out arithmetic at speeds that are 
independent of inputs. In section 3, we provide the main mathematical analysis of this paper. In particular, we provide a rather 
detailed analysis of certain non-autonomous dynamical systems. The work of section 3 is general enough that we hope and expect it 
to have applications in other areas of applied mathematics. In section 4, we provide the chemical reaction network modules that carry 
out the basic elementary operations discussed above (identfication, addition, multiplication, inversion, etc.) and use the mathematical 
results of section 3 to prove that they have computational speeds that are independent of inputs. In section 5, we demonstrate how 
any calculation carried out via a combination of elementary operations using our constructions also has a computational speed that 
is independent of inputs. In section 6, we demonstrate how to expand the constructions to handle calculations involving all real 
numbers (as opposed to non-negative numbers). Finally, in section 7 we provide a discussion, including many directions for future 
research.

1.1. Arithmetic with reaction networks: comparing existing schemata

There are at least two schemata that have been used for carrying out arithmetic with reaction networks. We refer to the first 
schema as conservation law-based, with examples found in [4,15]. See also [16], which uses a fractional representation to represent real 
numbers in the interval [0,1]. General functions can then be implemented via the methods in [16] by first approximating the desired 
function by a Taylor series and then implementing the resulting polynomial function with the relevant reaction network. The second 
schema, which we refer to as positive steady state-based is the focus of the current paper (see also [2]).

To understand one way that addition could be performed in the conservation law schema, we consider a simple analogy. Suppose 
we have two ‘input’ buckets and one ‘output’ bucket. The contents of the buckets may be discrete (e.g., marbles) or continuous (e.g., 
water). Pouring the contents of the two input buckets into an initially empty output bucket will result in the sum of the two inputs 
as the eventual volume of the output bucket. A reaction network based on this simple idea is

𝐴→𝑋, 𝐵→𝑋. (2)

Here 𝐴 and 𝐵 are input species while 𝑋 is the output species. Clearly, if the initial population of 𝑋, represented by 𝑥, is 0, we will 
have that, asymptotically, 𝑥 converges to the sum of the initial populations of the input species:

lim
𝑡→∞

𝑥(𝑡) = 𝑎(0) + 𝑏(0). (3)

This is true regardless of the specific choice of rate constants for the chemical reactions (see section 2.1). In fact, it is true independent 
of whether the underlying model is discrete (integer counts) or continuous (concentrations), deterministic or stochastic. Consequently, 
the conservation law based schema has the potential to be used in both digital as well as analog computing.

Despite the simplicity and potential use in both digital- and analog-computing, the conservation law based schema does have 
significant drawbacks which we now discuss. Perhaps the most significant one is the ‘loss of memory’ suffered by the input species. 
At the end of the addition computation, all memory of what the inputs contained is lost forever. In fact, if addition is one of several 
elementary steps in a longer sequence of computations, then all inputs and all intermediate steps are forgotten. Only the final output 
is retained. This may become an issue if the same input is required multiple times. There are methods for remedying this. One idea is 
to introduce back-up species which re-record the lost input. For instance, the reaction network for addition (2) may be replaced by 
the following reaction network

𝐴→𝐴+𝑋, 𝐵→ 𝐵 +𝑋. (4)

Here the species 𝐴 and 𝐵 back up the input species 𝐴 and 𝐵, because in the long run

lim
𝑡→∞

𝑎(𝑡) = 𝑎(0), lim
𝑡→∞

𝑏̃(𝑡) = 𝑏(0), and lim
𝑡→∞

𝑥(𝑡) = 𝑎(0) + 𝑏(0), (5)

so long as we began with 𝑎(0) = 𝑏̃(0) = 0.

The positive steady state based schema utilized in the present paper does not suffer from loss of inputs, and so separate back up 
species are not required at every step. For every elementary operation, we explicitly require that all inputs are preserved while the 
output is computed and stored as the concentration of a dedicated new species.

To illustrate the ‘positive steady state based’ schema utilized in this paper let us once again consider the operation of addition, 
now accomplished with the reaction network

𝐴→𝐴+𝑋, 𝐵→ 𝐵 +𝑋, 𝑋 → 0. (6)

Assuming rate constants that are equal to one, the mass action differential equation for these reactions is (see section 2.1)

𝑥̇(𝑡) = 𝑎(𝑡) + 𝑏(𝑡) − 𝑥(𝑡).

We first consider the case where the reactions in (6) stand in isolation. Note that the concentrations of 𝐴 and 𝐵 are not changed by 
any of the reactions in (6). In particular, this means that the input species 𝐴 and 𝐵 retain their initial values, 𝑎(𝑡) = 𝑎(0) and 𝑏(𝑡) = 𝑏(0)
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for all time 𝑡 ≥ 0. Meanwhile, the concentration of the output species 𝑋 asymptotically converges to 𝑎(0) + 𝑏(0). Now imagine that 
the reactions in (6) are only some reactions in a much larger network. The inputs 𝐴 and 𝐵 may be outputs of some other subnetwork 
and may as yet be in the process of converging to their asymptotic values. Then, assuming the limits on the right exist, we have

lim
𝑡→∞

𝑥(𝑡) = lim
𝑡→∞

(𝑎(𝑡) + 𝑏(𝑡)) .

This example illustrates how an output from one computation may be fed into another computation as well as how inputs may be 
simultaneously used in several different computations since they are not degraded.

2. Introducing the basic problem

In this paper, we consider the task of carrying out the following common arithmetic functions via deterministic mass-action 
chemical systems: addition, multiplication, inversion, division, 𝑚th root (for integers 𝑚 ≥ 2), absolute difference of two numbers, the 
maximum of two numbers, and subtraction. Our particular goal, which we will describe more fully below, is to provide mass-action 
chemical reaction network modules for each such operation whose ``speed of computation'' is independent of the inputs (and hence 
outputs) to the problem and which can be combined to run in parallel so that any sequence of arithmetic computations (e.g., the 
square root of the inverse of the sum of two numbers: 

√
1∕(𝑎+ 𝑏)) will have a speed of computation that is also independent of inputs.

There are a number of questions/issues we wish to highlight from the start and are the focus of the present section.

1. What is the class of differential equation models we use in this paper? Said differently, what class of differential equations arise 
from deterministically modeled mass-action chemical systems?

2. Chemical concentrations are naturally non-negative. Hence, it is natural to consider problems such as the addition or division of 
two positive reals since the inputs and outputs are positive reals. However, how should one handle the situation in which one or 
more of the inputs are negative? Similarly, how should one handle the operation of minus, whose output can be negative even 
when the inputs are both positive?

3. Is it possible to ensure that the speed of the computation does not depend on the inputs and/or outputs to the problem? It is the 
recognition of this problem and its resolution in the affirmative that we consider to be the main contribution of this paper.

We handle each of the above questions in turn before moving to our general theory and constructions. Before proceeding, however, 
we first note that efficiency, accuracy, and speed are essential, pragmatic considerations when implementing computers. We need 
some assumptions, however, regarding the interface with a chemistry-based ``CPU.'' Specifically, we assume that we have (i) the 
ability to initiate chemical species with arbitrary precision, and (ii) the ability to measure chemical species with arbitrary precision.

2.1. Mass-action chemical systems and their associated ODEs

Consider an ordinary differential equation of the form

𝑥̇(𝑡) = 𝑓 (𝑥(𝑡)),

with 𝑥(𝑡) ∈ℝ𝑑 and 𝑓 ∶ℝ𝑑 →ℝ𝑑 . When does such an equation arise from a mass-action model of a chemical system?

Before answering, we first introduce mass-action models. Consider a finite number of chemical ``species,'' which we will denote 
by {𝑋1,… ,𝑋𝑑}, undergoing transformations via a finite number of possible reaction types. Reactions can be understood intuitively: 
they require certain numbers of the different species as inputs, and they output a different number of the various species. They are 
most naturally visualized in graphical format. For example, consider a system with three species, {𝑋1,𝑋2,𝑋3}, and the following 
three reaction types

𝑋1 +𝑋2 →𝑋3

𝑋3 →𝑋1 +𝑋2

2𝑋3 → 0.

(7)

In the first reaction, one molecule of 𝑋1 and one molecule of 𝑋2 are converted to one molecule of 𝑋3. The second reaction reverses 
the first. The third reaction consists of the destruction of two 𝑋3 molecules (perhaps they merge to become a fourth type of species 
that we are not modeling). In general, a chemical system will have a finite number of such reactions of the form

𝜈 ⋅𝑋 → 𝜈′ ⋅𝑋, (8)

where 𝜈, 𝜈′ ∈ ℤ𝑑≥0 and by 𝜈 ⋅𝑋 we mean the dot product: 𝜈 ⋅𝑋 = 𝜈1𝑋1 +⋯ + 𝜈𝑑𝑋𝑑 . Note that if we were explicitly counting the 
numbers of molecules of each species, then one instance of the reaction (8) would change the system by addition of the vector 
𝜈′ − 𝜈 ∈ℤ𝑑 .

A differential equation model for the chemical concentrations arises by associating to each reaction a rate function. For example, 
if we denote the above reaction (8) by 𝜈 → 𝜈′ and denote the rate of that reaction when the system is in state 𝑥 ∈ℝ𝑑≥0 by 𝜆𝜈→𝜈′ (𝑥), 
then the differential equation governing the dynamics is
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𝑥̇(𝑡) =
∑
𝜈→𝜈′

𝜆𝜈→𝜈′ (𝑥(𝑡))(𝜈′ − 𝜈), (9)

where the sum is over all reaction types (enumerated by 𝜈 → 𝜈′). The system is said to be governed by mass-action kinetics when the 
functions {𝜆𝜈→𝜈′ } have the following form,

𝜆𝜈→𝜈′ (𝑥) = 𝑐𝜈→𝜈′

𝑑∏
𝑖=1

𝑥
𝜈𝑖
𝑖
,

where each 𝑐𝜈→𝜈′ is a positive constant and where we interpret 00 to be 1. Hence, for mass-action kinetics the rate of a reaction is a 
monomial in which the exponent for the 𝑖th species is the coefficient of 𝑋𝑖 in 𝜈 ⋅𝑋. For example, assuming mass-action kinetics the 
differential equations governing the system (7) are

𝑥̇(𝑡) = 𝑐1𝑥1𝑥2

⎛⎜⎜⎝
−1
−1
1

⎞⎟⎟⎠+ 𝑐2𝑥3

⎛⎜⎜⎝
1
1

−1

⎞⎟⎟⎠+ 𝑐3𝑥
2
3

⎛⎜⎜⎝
0
0

−2

⎞⎟⎟⎠ ,
where 𝑐1, 𝑐2, and 𝑐3 are some positive constants, and where we enumerated the constants sequentially (as opposed to the reaction 
𝜈 → 𝜈′)). It is common to incorporate the rate constants into the network graph, such as (7), by placing them next to the associated 
arrow.

We can now answer the first question posed above. If 𝑓 ∶ℝ𝑑 →ℝ satifies the two properties below, then there is a mass-action 
chemical system whose associated ODE (9) is given by 𝑥̇(𝑡) = 𝑓 (𝑥(𝑡)).

1. The function 𝑓 is a polynomial. That is, for each 𝑖 ∈ {1,… , 𝑑},

𝑓𝑖(𝑥) =
𝑁∑

𝑎1=0
⋯

𝑁∑
𝑎𝑑=0

𝑐𝑖,𝑎1 ,…,𝑎𝑑
𝑥
𝑎1
1 ⋯𝑥

𝑎𝑑
𝑑
, (10)

where 𝑁 <∞ is a maximum exponent in the model, and the 𝑐𝑖,𝑎1 ,…,𝑎𝑑
are constants (which can be negative or zero).

2. If 𝑐𝑖,𝑎1 ,…,𝑎𝑑
< 0 in (10), then 𝑎𝑖 ≥ 1 for the associated monomial. In plain English, 𝑥𝑖 must appear in any monomial of 𝑓𝑖(𝑥) that 

has a negative coefficient.

Note that the final condition guarantees that the non-negative orthant ℝ𝑑≥0 is forward invariant under the dynamics. That is, so long 
as 𝑥(0) ∈ℝ𝑑≥0, then 𝑥(𝑡) ∈ℝ𝑑≥0 for all 𝑡 ≥ 0.

It should be clear that any mass-action system satifies the two conditions above. To see the converse, that is to see that for 
any dynamical system 𝑥̇(𝑡) = 𝑓 (𝑥(𝑡)) satisfying the conditions above there is a mass-action chemical system with 𝑓 as the governing 
dynamics, see [17] or, for a more modern treatment, [10].

2.2. The issue of negativity and the dual rail representation

Chemical concentrations are non-negative, but we wish to be able to represent negative values within our framework. To do 
so, we represent real numbers as the difference between two given chemical species. This is sometimes referred to as the dual rail 
representation of real numbers. The introduction we give to this topic in this section will be brief. See, for example, [4] for a more 
thorough discussion.

One of the early works to utilize the dual rail representation is [5], where, for example, they labeled 𝑌 𝑃 and 𝑌 𝐶 the amounts 
that a particular species, 𝑌 , had been ``P''roduced and ``C''onsumed, respectively. Then, the total amount of 𝑌 was 𝑌 𝑃 − 𝑌 𝐶 . In this 
example, if, for example, 𝑌 𝑃 = 10 and 𝑌 𝐶 = 8, then the total amount of 𝑌 is clearly 2. However, we could also represent the value 2 
by having 𝑌 𝑃 = 2 + 𝑐 and 𝑌 𝐶 = 𝑐 for any 𝑐 ≥ 0. Thus, how we represent a given real number is a bit ambiguous, a priori.

For our purposes, we wish to do away with such ambiguity. Hence, we will split a number into its positive and negative parts. 
That is, we dfine the dual rail map 𝜑 ∶ℝ→ℝ2≥0 via

𝑎↦ (𝑎𝑝, 𝑎𝑛) =

{
(𝑎,0), if 𝑎 > 0,
(0,−𝑎), if 𝑎 ≤ 0.

Here 𝑎𝑝 and 𝑎𝑛 are referred to as the positive and negative parts, respectively, of 𝑎. The map 𝜑 is injective and

Im(𝜑) = {(𝑎𝑝, 𝑎𝑛) ∈ℝ2≥0 | 𝑎𝑝𝑎𝑛 = 0} = {(𝑎𝑝, 𝑎𝑛) ∈ℝ2≥0 | 𝑎𝑝 = 0 or 𝑎𝑛 = 0}.

Dfine the map 𝜓 ∶ℝ2≥0 →ℝ via (𝑎𝑝, 𝑎𝑛)↦ 𝑎 = 𝑎𝑝 − 𝑎𝑛. The map resulting from restricting the domain of 𝜓 to Im(𝜑) is the inverse of 
𝜑. We will refer to (𝑎𝑝, 𝑎𝑛) as the canonical representation of 𝑎 when 𝑎𝑝𝑎𝑛 = 0, and write 𝑎= (𝑎𝑝, 𝑎𝑛), for brevity.
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2.3. Input independent speed of computation

Suppose we want to compute the reciprocal of a positive real 𝑎 ∈ ℝ>0 as the long-term solution of a mass-action differential 
equation. A natural attempt would be to consider the reaction network

0→𝑋, 𝐴+𝑋 →𝐴 (11)

whose mass-action differential equation, assuming all reaction rate constants are equal to 1 and that the concentration of species 𝐴
is 𝑎, is

𝑥̇ = 1 − 𝑎𝑥. (12)

The differential equation has a unique solution for all time given by

𝑥(𝑡) = 1
𝑎
+
(
𝑥(0) − 1

𝑎

)
𝑒−𝑎𝑡.

Clearly, 𝑥(𝑡)
𝑡→∞
←←←←←←←←←←←←←←←←←←←→ 1∕𝑎. Moreover, since 𝑎 is the coefficient of 𝑡 in the exponential decay 𝑒−𝑎𝑡, the rate of convergence to the long 

term solution is 𝑎. The rate of convergence is directly related to the speed of computing the reciprocal. Indeed, suppose that 𝑇𝑛 is the 
smallest time required to compute 1∕𝑎 accurately up to 𝑛− 1 digits. Then we have that

||𝑥(𝑇𝑛) − 1∕𝑎|| = |𝑥(0) − 1∕𝑎|𝑒−𝑎𝑇𝑛 = 10−𝑛,

which after applying logarithms and rearranging gives us

𝑇𝑛 =
1
𝑎
ln (|𝑥(0) − 1∕𝑎|) + 𝑛 ln(10)

𝑎
.

In particular, we have that

lim
𝑛→∞

𝑇𝑛

𝑛 ln(10)
= 1
𝑎
, (13)

so that the time required to compute 𝑛 decimal digits of 1∕𝑎 scales not only with 𝑛 but with the output 1∕𝑎. Alternatively, the 
reciprocal

lim
𝑛→∞

𝑛 ln(10)
𝑇𝑛

= 𝑎, (14)

gives the speed of computation. We will say that the variable 𝑥 computes the reciprocal of 𝑎 at speed 𝑎.

We will now show that we can remove this dependence of speed of computation of the reciprocal on the input (and output) to the 
system. Then, over the rest of the paper, we will show that this input-independence can be achieved for an arbitrary computation.

Consider the following reaction network

𝑋 → 2𝑋, 𝐴+ 2𝑋 →𝐴+𝑋 (15)

whose mass-action differential equation, assuming rate constants are equal to 1 and that the concentration of species 𝐴 is 𝑎, is

𝑥̇ = 𝑥(1 − 𝑎𝑥). (16)

For 𝑥(0) = 𝑥0, the unique solution for all time 𝑡 ≥ 0 is given by

𝑥(𝑡) =
𝑥0∕𝑎

(1∕𝑎− 𝑥0)𝑒−𝑡 + 𝑥0
,

and so the distance from the attracting steady state 1∕𝑎 is

|𝑥(𝑡) − 1∕𝑎| = |||| 𝑥0∕𝑎
(1∕𝑎− 𝑥0)𝑒−𝑡 + 𝑥0

− 1
𝑎

|||| = 1
𝑎

( ||𝑥0 − 1∕𝑎||
𝑥0𝑒

𝑡 − (𝑥0 − 1∕𝑎)

)
.

This converges to zero like 𝑒−𝑡, and after a brief calculation, it is straightforward to see that

lim
𝑛→∞

𝑛 ln(10)
𝑇𝑛

= 1, (17)

where, again, 𝑇𝑛 is the smallest time needed to compute 1∕𝑎 to 𝑛−1 decimal places. That is, 𝑥 computes the reciprocal of 𝑎 at speed 1. 
A comparison of equations (13) and (17) highlights the input independence of the reciprocal computation in the latter construction.

3. Rate of convergence for certain non-autonomous systems

In this section, which holds much of the mathematics, we provide a rather detailed analysis of certain non-autonomous dynamical 
systems. These systems will have a structure like
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𝑥̇(𝑡) = 𝑓 (𝑔1(𝑡), 𝑔2(𝑡), 𝑥(𝑡)),

where 𝑔1 and 𝑔2 are best viewed as forcing functions that are themselves the output from another such system. We will prove that for 
the particular systems we consider the following holds: global exponential convergence of the forcing functions, such as 𝑔1 and 𝑔2, 
imply that the system solution also enjoys global exponential convergence. That is, that property is ``fed forward'' from the forcing 
functions to the solution. We will also demonstrate that, in most cases, the rate of convergence for the system solution is at least as 
large as the minimum rate of convergence of the forcing functions.

To make these notions precise we provide here a definition and a lemma. Roughly speaking, ``rate of convergence'' of a function 
𝑔 to a value 𝑔∗ is 𝜌 if 𝑔(𝑡) − 𝑔∗ = 𝑓 (𝑡)𝑒−𝜌𝑡, with 𝑓 (𝑡) growing at most sub-exponentially, as 𝑡→∞. Below, the reader may notice some 
connection with the commonly used ``big O'' notation. However, we avoid this notation since it is necessary to be precise and make 
fine distinctions such as between ``rate that is at least 𝜌'' and ``rate that is greater than 𝜌''.

Definition 3.1. Let 𝑔 ∶ℝ≥0 →ℝ be a real-valued function that converges to a real number 𝑔∗ ∈ℝ. The rate of convergence of 𝑔 to 𝑔∗
is dfined to be

𝜌 = −limsup
𝑡→∞

ln |𝑔(𝑡) − 𝑔∗|
𝑡

(18)

whenever 𝜌 ∈ (0,∞]. Alternatively, in the context of computation, we say that 𝑔(𝑡) computes 𝑔∗ at speed 𝜌.

Lemma 3.2. Let 𝑔 ∶ℝ≥0 →ℝ be a real-valued function that converges to a real number 𝑔∗ ∈ℝ. Suppose there exist 𝑐 > 0, 𝜌 > 0, and 𝑚≥ 0
such that for all 𝑡≥ 0

||𝑔(𝑡) − 𝑔∗|| ≤ 𝑐𝑡𝑚𝑒−𝜌𝑡,

then 𝑔 converges to 𝑔∗ at a rate that is at least 𝜌.

Conversely, if 𝑔 converges to 𝑔∗ at a rate greater than 𝜌 then there exists a 𝑐 > 0 such that for all 𝑡≥ 0

||𝑔(𝑡) − 𝑔∗|| ≤ 𝑐𝑒−𝜌𝑡.

Proof. To see the first conclusion, take logarithms, divide by 𝑡, apply limit superiors to both sides and apply Definition 3.1.

For the converse, suppose that 𝑔 converges to 𝑔∗ at rate 𝜌𝑔 > 𝜌, and let 𝜀 = 𝜌𝑔 − 𝜌. Then there is a 𝑇 > 0 such that for any 𝑡 ≥ 𝑇 , 
we have

ln |𝑔(𝑡) − 𝑔∗|
𝑡

< −𝜌𝑔 + 𝜀 = −𝜌. (19)

Hence, for 𝑡 ≥ 𝑇 , we have |𝑔(𝑡) − 𝑔∗| < 𝑒−𝜌𝑡. Defining

𝑐 =
(
1 + max

𝑡∈[0,𝑇 ]
{|𝑔(𝑡) − 𝑔∗|}) 𝑒𝜌𝑇 ,

we have |𝑔(𝑡) − 𝑔∗| ≤ 𝑐𝑒−𝜌𝑡 for all 𝑡 ≥ 0. □

3.1. Simple convergence results

We begin with three lemmas.

Lemma 3.3. For each of 𝑖 ∈ {1,2}, let 𝑔𝑖 ∶ℝ≥0 →ℝ be a real-valued function that converges to 𝑔∗
𝑖
∈ℝ at a rate that is at least 𝜌𝑔𝑖 . Then 

the following hold.

1. For 𝑖 ∈ {1,2}, 𝛼 ∈ℝ ⧵ {0}, the scalar product 𝛼𝑔𝑖 converges to 𝛼𝑔∗
𝑖

at rate that is at least 𝜌𝑔𝑖 .
2. The sum 𝑔1(𝑡) + 𝑔2(𝑡) converges to 𝑔∗1 + 𝑔∗2 at rate that is at least

min{𝜌𝑔1 , 𝜌𝑔2}. (20)

3. The product 𝑔1(𝑡)𝑔2(𝑡) converges to 𝑔∗1𝑔
∗
2 at rate that is at least

⎧⎪⎪⎨⎪⎪⎩
min{𝜌𝑔1 , 𝜌𝑔2 }, if 𝑔∗1 ≠ 0, 𝑔∗2 ≠ 0,
𝜌𝑔1 , if 𝑔∗1 = 0, 𝑔∗2 ≠ 0,
𝜌𝑔2 , if 𝑔∗1 ≠ 0, 𝑔∗2 = 0,
𝜌𝑔1 + 𝜌𝑔2 , if 𝑔∗1 = 0, 𝑔∗2 = 0.

(21)

Proof. We first prove the conclusions assuming that the rate of convergence of the functions 𝑔𝑖 is greater than 𝜌𝑔𝑖 . In that case, 
Lemma 3.2 implies that there exist positive constants 𝑐1 and 𝑐2 such that
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||𝑔𝑖(𝑡) − 𝑔∗𝑖
|| ≤ 𝑐𝑖𝑒

−𝜌𝑔𝑖 𝑡, 𝑖 ∈ {1,2}.

For the scalar product, we get the desired result from

||𝛼𝑔𝑖(𝑡) − 𝛼𝑔∗𝑖
|| ≤ |𝛼|𝑐𝑖𝑒−𝜌𝑔𝑖 𝑡, 𝑖 ∈ {1,2},

and then applying the first part of Lemma 3.2.

Applying the triangle inequality to the sum of 𝑔1 and 𝑔2, we have|||𝑔1(𝑡) + 𝑔2(𝑡) − (𝑔∗1 + 𝑔∗2 )
||| ≤ |||𝑔1(𝑡) − 𝑔∗1

|||+ |||𝑔2(𝑡) − 𝑔∗2
|||

≤ 𝑐1𝑒
−𝜌𝑔1 𝑡 + 𝑐2𝑒

−𝜌𝑔2 𝑡,

and so the result again follows from Lemma 3.2.

Turning to the product, we note first that for 𝑖 ∈ {1,2},

||𝑔𝑖(𝑡)||− ||𝑔∗𝑖 || ≤ ||||𝑔𝑖(𝑡)||− ||𝑔∗𝑖 |||| ≤ ||𝑔𝑖(𝑡) − 𝑔∗
𝑖
|| ≤ 𝑐𝑖𝑒

−𝜌𝑔𝑖 𝑡,

and so

||𝑔𝑖(𝑡)|| ≤ ||𝑔∗𝑖 ||+ 𝑐𝑖𝑒
−𝜌𝑔𝑖 𝑡.

Now for the product 𝑔1(𝑡)𝑔2(𝑡) consider,|||𝑔1(𝑡)𝑔2(𝑡) − 𝑔∗1𝑔
∗
2
||| ≤ |||𝑔1(𝑡)𝑔2(𝑡) − 𝑔∗1𝑔2(𝑡)

|||+ |||𝑔∗1𝑔2(𝑡) − 𝑔∗1𝑔
∗
2
|||

= ||𝑔2(𝑡)|||||𝑔1(𝑡) − 𝑔∗1
|||+ |||𝑔∗1 ||||||𝑔2(𝑡) − 𝑔∗2

|||
≤ (|||𝑔∗2 |||+ 𝑐2𝑒

−𝜌𝑔2 𝑡
)
𝑐1𝑒

−𝜌𝑔1 𝑡 + |||𝑔∗1 |||𝑐2𝑒−𝜌𝑔2 𝑡,
and therefore the result follows.

To complete the proof, we now assume that one or both of the functions 𝑔𝑖 converge to their limiting values exactly at rates 𝜌𝑔𝑖 . 
Then for an arbitrary 𝜀 > 0, the functions 𝑔𝑖 converge to their limiting value at rates greater than 𝜌𝑔𝑖 − 𝜀. Then by what is proved 
earlier, the sum 𝑔1(𝑡) + 𝑔2(𝑡) converges to 𝑔∗1 + 𝑔∗2 at rate that is at least min{𝜌𝑔1 , 𝜌𝑔2 } − 𝜀. But since 𝜀 > 0 is arbitrary, the rate of 
convergence is at least min{𝜌𝑔1 , 𝜌𝑔2 }. Similar considerations for the other two cases: scalar product and product of functions, complete 
the proof of the desired result. □

Lemma 3.4. Let 𝑔 ∶ℝ≥0 →ℝ be a real-valued function that converges to a nonzero real constant 𝑔∗ ∈ℝ ⧵ {0} at a rate that is at least 𝜌𝑔 . 
Then 1∕𝑔(𝑡) converges to 1∕𝑔∗ at rate that is at least 𝜌𝑔 .

Proof. As in the proof of Lemma 3.3, we first assume that the convergence rate of 𝑔 is greater than 𝜌𝑔 . As in the previous lemma,

||𝑔∗||− |𝑔(𝑡)| ≤ |||𝑔(𝑡)|− ||𝑔∗|||| ≤ ||𝑔(𝑡) − 𝑔∗|| ≤ 𝑐𝑒−𝜌𝑔𝑡,

for some positive constant 𝑐 > 0, and so

|𝑔(𝑡)| ≥ ||𝑔∗||− 𝑐𝑒−𝜌𝑔𝑡.

In particular, there is a finite time 𝑇0 ≥ 0 such that for all 𝑡 > 𝑇0, |𝑔(𝑡)| ≥ |𝑔∗|∕2. It then follows that for any 𝑡 > 𝑇0,|||| 1
𝑔(𝑡)

− 1
𝑔∗
|||| = ||||𝑔(𝑡) − 𝑔∗

𝑔(𝑡)𝑔∗
|||| ≤ 2𝑐𝑒−𝜌𝑔𝑡

(𝑔∗)2
.

But then, and as in the proof of Lemma 3.2, we can choose a 𝑐′ > 0 sufficiently large so that for all 𝑡 ≥ 0,|||| 1
𝑔(𝑡)

− 1
𝑔∗
|||| ≤ 𝑐′𝑒−𝜌𝑔𝑡.

Finally, arguing similarly to the proof of Lemma 3.3, we get the conclusion for the case when the convergence rate of 𝑔 is exactly 
𝜌𝑔 . □

Lemma 3.5. Let 𝑔 ∶ ℝ≥0 → ℝ be a real-valued function that converges to a non-negative constant 𝑔∗ ∈ ℝ≥0 at a rate that is at least 𝜌𝑔 . 
Then for any 𝑚 ∈ℝ>0, 𝑔(𝑡)1∕𝑚 converges to (𝑔∗)1∕𝑚 at rate that is at least{

𝜌𝑔, if 𝑔∗ > 0,
𝜌𝑔∕𝑚, if 𝑔∗ = 0.

(22)

Proof. Similar to the proof of Lemma 3.3, it suffices to assume that the convergence rate of 𝑔 is greater than 𝜌𝑔 . By Lemma 3.2 there 
exists a 𝑐 > 0 such that
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||𝑔(𝑡) − 𝑔∗|| < 𝑐𝑒−𝜌𝑔𝑡.

Suppose first that 𝑔∗ > 0. Then there exists a 𝑇0 ≥ 0 such that 𝑔(𝑡) > 𝑔∗∕2 for all 𝑡 > 𝑇0. Then for 𝑡 > 𝑇0, we have

||𝑔(𝑡) − 𝑔∗|| = |||𝑔(𝑡)1∕𝑚 − (𝑔∗)1∕𝑚|||||||||
𝑚−1∑
𝑖=0

𝑔(𝑡)𝑖(𝑔∗)𝑚−𝑖−1
||||||.

≥ |||𝑔(𝑡)1∕𝑚 − (𝑔∗)1∕𝑚|||𝑚−1∑
𝑖=0

1
2𝑖
(𝑔∗)𝑖(𝑔∗)𝑚−𝑖−1

= |||𝑔(𝑡)1∕𝑚 − (𝑔∗)1∕𝑚||| (2𝑚 − 1)
(
𝑔∗

2

)𝑚−1
.

So for 𝑡 > 𝑇0

|||𝑔(𝑡)1∕𝑚 − (𝑔∗)1∕𝑚||| ≤
(

2
𝑔∗

)𝑚−1 1
2𝑚 − 1

𝑐𝑒−𝜌𝑔𝑡,

and, again by reasoning similar to the end of the proof of Lemma 3.2, 𝑔(𝑡)1∕𝑚 converges to (𝑔∗)1∕𝑚 > 0 at rate that is at least 𝜌𝑔 .

When 𝑔∗ = 0, there is a 𝑐 > 0 such that

|𝑔(𝑡)| < 𝑐𝑒−𝜌𝑔𝑡,

and so taking the 𝑚th root on both sides gives the result immediately. □

3.2. Analysis of certain non-autonomous systems

Here we present our main mathematical results. These will be applied to our chemical systems in section 4.

Lemma 3.6. Let 𝑔1 ∶ ℝ≥0 → ℝ be a real-valued function that converges to 𝑔∗1 ∈ ℝ at a rate that is at least 𝜌𝑔1 ; let 𝑔2 ∶ ℝ≥0 → ℝ be a 
real-valued function that converges to a positive limit 𝑔∗2 ∈ℝ>0 at a rate that is at least 𝜌𝑔2 . We assume that the 𝑔1, 𝑔2 are smooth enough so 
that for any 𝑥(0) = 𝑥0 ≥ 0, the following non-autonomous differential equation has a unique solution 𝑥 ∶ℝ≥0 →ℝ for all time

𝑥̇(𝑡) = 𝑔1(𝑡) − 𝑔2(𝑡)𝑥(𝑡). (23)

Then 𝑥(𝑡) converges to 𝑔∗1∕𝑔
∗
2 at rate that is at least

min{𝜌𝑔1 , 𝜌𝑔2 , 𝑔
∗
2}. (24)

Proof. As in the proof of Lemma 3.3, we will assume that the convergence rates of 𝑔1 and 𝑔2 are greater than 𝜌𝑔1 and 𝜌𝑔2 respectively, 
and then just as in the proof of that lemma, the result will follow immediately for the case of equality. We first show that 𝑥(𝑡) is 
bounded above for all time 𝑡 ≥ 0. Since 𝑔2(𝑡)→ 𝑔∗2 > 0, there is a 𝑇0 > 0 such that 𝑔2(𝑡) > 𝑔∗2∕2 for all 𝑡 > 𝑇0. Moreover, note that there 
must be a positive constant 𝑐1 such that for all time 𝑡 > 0, we have

𝑔1(𝑡) ≤ 𝑔∗1 + 𝑐1𝑒
−𝜌𝑔1 𝑡 ≤ 𝑔∗1 + 𝑐1.

Combining the two bounds gives an upper bound for 𝑥(𝑡). Since for any 𝑡 > 𝑇0,

𝑥̇(𝑡) = 𝑔1(𝑡) − 𝑔2(𝑡)𝑥(𝑡) ≤ 𝑔∗1 + 𝑐1 −
1
2
𝑔∗2 ⋅ 𝑥(𝑡),

we have that for any 𝑡 ≥ 0

𝑥(𝑡) ≤max

{
𝑥
(
[0, 𝑇0]

)
,
2(𝑔∗1 + 𝑐1)

𝑔∗2

}
. (25)

Now we show that 𝑥(𝑡) has the claimed rate of convergence to its limiting value 𝑔∗1∕𝑔
∗
2 . First consider the differential equation 

obtained by replacing 𝑔2(𝑡) with its limiting value 𝑔∗2

𝑧̇(𝑡) = 𝑔1(𝑡) − 𝑔∗2 ⋅ 𝑧(𝑡), (26)

which has the unique solution

𝑧(𝑡) = 𝑒
−𝑔∗2 𝑡
⎛⎜⎜⎝𝑧(0) +

𝑡

∫
0

𝑒
𝑔∗2 𝑠𝑔1(𝑠)𝑑𝑠

⎞⎟⎟⎠ .
Therefore,
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𝑧(𝑡) −
𝑔∗1
𝑔∗2

= 𝑒
−𝑔∗2 𝑡
⎛⎜⎜⎝𝑧(0) +

𝑡

∫
0

𝑒
𝑔∗2 𝑠𝑔1(𝑠)𝑑𝑠

⎞⎟⎟⎠−
𝑔∗1
𝑔∗2

= 𝑒
−𝑔∗2 𝑡
⎛⎜⎜⎝𝑧(0) −

𝑔∗1
𝑔∗2

+

𝑡

∫
0

𝑒
𝑔∗2 𝑠
(
𝑔1(𝑠) − 𝑔∗1

)
𝑑𝑠

⎞⎟⎟⎠ ,
and so

|||||𝑧(𝑡) −
𝑔∗1
𝑔∗2

||||| ≤ 𝑒
−𝑔∗2 𝑡
⎛⎜⎜⎝
|||||𝑧(0) −

𝑔∗1
𝑔∗2

|||||+
𝑡

∫
0

𝑒
𝑔∗2 𝑠|||𝑔1(𝑠) − 𝑔∗1

|||𝑑𝑠⎞⎟⎟⎠
≤ 𝑒

−𝑔∗2 𝑡
⎛⎜⎜⎝
|||||𝑧(0) −

𝑔∗1
𝑔∗2

|||||+ 𝑐

𝑡

∫
0

𝑒

(
𝑔∗2−𝜌𝑔1

)
𝑠
𝑑𝑠

⎞⎟⎟⎠ , (27)

for some 𝑐 > 0. The integral on the right hand side evaluates to

𝑡

∫
0

𝑒

(
𝑔∗2−𝜌𝑔1

)
𝑠
𝑑𝑠 =

{(
𝑒
(𝑔∗2−𝜌𝑔1 )𝑡 − 1

)
∕(𝑔∗2 − 𝜌𝑔1 ), if 𝑔∗2 ≠ 𝜌𝑔1

𝑡, if 𝑔∗2 = 𝜌𝑔1 ,
(28)

and so

|||||𝑧(𝑡) −
𝑔∗1
𝑔∗2

||||| ≤
⎧⎪⎪⎨⎪⎪⎩
𝑒
−𝑔∗2 𝑡
|||||𝑧(0) −

𝑔∗1
𝑔∗2

|||||+ 𝑐

𝑔∗2 − 𝜌𝑔1

(
𝑒
−𝜌𝑔1 𝑡 − 𝑒

−𝑔∗2 𝑡
)
, if 𝑔∗2 ≠ 𝜌𝑔1 ,

𝑒
−𝑔∗2 𝑡
|||||𝑧(0) −

𝑔∗1
𝑔∗2

|||||+ 𝑐𝑡𝑒
−𝑔∗2 𝑡, if 𝑔∗2 = 𝜌𝑔1 .

(29)

After taking logarithms, then limit superiors and applying Definition 3.1, in either case, we have that 𝑧(𝑡) converges to 𝑔∗1∕𝑔
∗
2 at 

least at rate min{𝑔∗2 , 𝜌𝑔1}.

Now suppose that 𝑥(𝑡) is the solution to (23) with 𝑥(0) = 𝑥0 and 𝑧(𝑡) is the solution to (26) with 𝑧(0) = 𝑥0. We have

𝑑

𝑑𝑡
(𝑧(𝑡) − 𝑥(𝑡)) = −𝑔∗2𝑧(𝑡) + 𝑔2(𝑡)𝑥(𝑡)

= −𝑔∗2 (𝑧(𝑡) − 𝑥(𝑡)) + (𝑔2(𝑡) − 𝑔∗2 )𝑥(𝑡).

Since 𝑥(𝑡) is bounded above, see (25), we have that 𝛼(𝑡) ∶= (𝑔2(𝑡) − 𝑔∗2 )𝑥(𝑡) converges to 0 at least at rate 𝜌𝑔2 . Let ℎ(𝑡) ∶= 𝑧(𝑡) − 𝑥(𝑡), 
and so ℎ(0) = 0 and ℎ(𝑡) satifies the differential equation

ℎ̇(𝑡) = 𝛼(𝑡) − 𝑔∗2ℎ(𝑡). (30)

Comparing (30) with (26), ℎ(𝑡) = 𝑧(𝑡) − 𝑥(𝑡) converges to 0 at least at rate min{𝑔∗2 , 𝜌𝑔2 }. Finally, since 𝑥(𝑡) = 𝑧(𝑡) − ℎ(𝑡), a simple use 
of the triangle inequality gives us that 𝑥(𝑡)→ 𝑔∗1∕𝑔

∗
2 at rate that is at least min{𝜌𝑔1 , 𝜌𝑔2 , 𝑔

∗
2}. □

Lemma 3.7. For 𝑖 ∈ {1,2}, let 𝑔𝑖 ∶ℝ≥0 →ℝ be a real-valued function that converges to a positive limit 𝑔∗
𝑖
∈ℝ>0 at a rate that is at least 

𝜌𝑔𝑖 . We assume that the 𝑔1, 𝑔2 are smooth enough so that for any 𝑥(0) = 𝑥0 > 0, the following non-autonomous differential equation has a 
unique solution 𝑥 ∶ℝ≥0 →ℝ≥0 for all time

𝑥̇(𝑡) = 𝑥(𝑡)(𝑔1(𝑡) − 𝑔2(𝑡)𝑥(𝑡)𝑚), (𝑚 ∈ℤ>0). (31)

Then 𝑥(𝑡) converges to 
(
𝑔∗1∕𝑔

∗
2
)1∕𝑚

at rate that is at least

min{𝜌𝑔1 , 𝜌𝑔2 ,𝑚𝑔
∗
1}. (32)

Proof. Similar to Lemma 3.3 and Lemma 3.6, it suffices to assume that the convergence rate of 𝑔𝑖 is greater than 𝜌𝑔𝑖 for 𝑖 ∈ {1,2}. 
Note that the positive 𝑥-axis, 𝑥 > 0, is invariant, i.e. if 𝑥(0) > 0, then 𝑥(𝑡) > 0 for all 𝑡 > 0. In fact, we argue that 𝑥(𝑡) has a positive 
lower bound as well as a positive upper bound for all time 𝑡 ≥ 0. The reasoning is similar to the one used in the previous lemma. 
Let 𝑖 ∈ {1,2}. Since 𝑔𝑖(𝑡)→ 𝑔∗

𝑖
> 0, there is a 𝑇𝑖 > 0 such that 𝑔𝑖(𝑡) > 𝑔∗

𝑖
∕2 for all 𝑡 > 𝑇𝑖. Moreover, note that there must be a positive 

constant 𝑐𝑖 such that for all time 𝑡 > 0, we have

𝑔𝑖(𝑡) ≤ 𝑔∗
𝑖
+ 𝑐𝑖𝑒

−𝜌𝑔𝑖 𝑡 ≤ 𝑔∗
𝑖
+ 𝑐𝑖.

For the upper bound of 𝑥(𝑡), consider that
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𝑥̇(𝑡) = 𝑥(𝑡)
(
𝑔1(𝑡) − 𝑔2(𝑡)𝑥(𝑡)𝑚

) ≤ 𝑥(𝑡)
(
𝑔∗1 + 𝑐1 −

1
2
𝑔∗2 ⋅ 𝑥(𝑡)

𝑚
)
,

for any 𝑡 > 𝑇2. Then we have that for any 𝑡 > 0

𝑥(𝑡) ≤max
⎧⎪⎨⎪⎩𝑥
(
[0, 𝑇2]

)
,

(
2(𝑔∗1 + 𝑐1)

𝑔∗2

)1∕𝑚⎫⎪⎬⎪⎭ . (33)

For the positive lower bound of 𝑥(𝑡), consider that

𝑥̇(𝑡) = 𝑥(𝑡)
(
𝑔1(𝑡) − 𝑔2(𝑡)𝑥(𝑡)𝑚

) ≥ 𝑥(𝑡)
(
𝑔∗1∕2 − (𝑔∗2 + 𝑐2) ⋅ 𝑥(𝑡)𝑚

)
,

for any 𝑡 > 𝑇1. Then we have that for any 𝑡 > 0

𝑥(𝑡) ≥min
⎧⎪⎨⎪⎩𝑥
(
[0, 𝑇1]

)
,

(
𝑔∗1

2(𝑔∗2 + 𝑐2)

)1∕𝑚⎫⎪⎬⎪⎭ . (34)

To show that we have the desired rate of convergence, we let

𝑦(𝑡) ∶= 1
𝑥(𝑡)𝑚

.

Differentiating yields

𝑦̇(𝑡) = − 𝑚

𝑥(𝑡)𝑚+1
⋅ 𝑥̇(𝑡) =𝑚𝑔2(𝑡) −𝑚𝑔1(𝑡)𝑦(𝑡).

The functions 𝑚𝑔2 and 𝑚𝑔1 satisfy the hypotheses of Lemma 3.6, and so we have that 𝑦(𝑡) converges to 𝑔∗2∕𝑔
∗
1 at rate that is 

at least min{𝜌𝑔1 , 𝜌𝑔2 ,𝑚𝑔
∗
1}. Then applying Lemma 3.4 gives us that the reciprocal of 𝑦(𝑡), i.e. 𝑥(𝑡)𝑚 converges to 𝑔∗1∕𝑔

∗
2 at rate 

that is at least min{𝜌𝑔1 , 𝜌𝑔2 ,𝑚𝑔
∗
1}. Finally applying Lemma 3.5 gives us that 𝑥(𝑡) converges to 

(
𝑔∗1∕𝑔

∗
2
)1∕𝑚

at rate that is at least 
min{𝜌𝑔1 , 𝜌𝑔2 ,𝑚𝑔

∗
1}. □

Lemma 3.8. Let 𝑔1 ∶ ℝ≥0 → ℝ be a real-valued function that converges to a negative limit 𝑔∗1 ∈ ℝ<0 at a rate that is at least 𝜌𝑔1 ; let 
𝑔2 ∶ℝ≥0 →ℝ be a real-valued function that converges to a positive limit 𝑔∗2 ∈ℝ>0 at a rate that is at least 𝜌𝑔2 . We assume that 𝑔1 and 𝑔2
are smooth enough so that for any 𝑥(0) = 𝑥0 > 0, the following non-autonomous differential equation has a unique solution 𝑥 ∶ℝ≥0 →ℝ≥0
for all time

𝑥̇(𝑡) = 𝑥(𝑡)(𝑔1(𝑡) − 𝑔2(𝑡)𝑥(𝑡)𝑚), (𝑚 ∈ℤ>0). (35)

Then 𝑥(𝑡) converges to 0 at rate that is at least

min{𝜌𝑔1 ,−𝑔
∗
1}. (36)

Proof. Similar to the previous results, it suffices to assume that the convergence rate of 𝑔𝑖 is greater than 𝜌𝑔𝑖 for 𝑖 ∈ {1,2}. Since 
𝑔2(𝑡)→ 𝑔∗2 > 0, there is a 𝑇0 > 0 such that 𝑔2(𝑡) > 𝑔∗2∕2 for all 𝑡 ≥ 𝑇0. So for any 𝑡≥ 𝑇0, we have that

𝑥̇(𝑡) ≤ 𝑔1(𝑡)𝑥(𝑡),

which implies that 0 ≤ 𝑥(𝑡) ≤ 𝑧(𝑡) where 𝑧(𝑡) satifies 𝑧(𝑇0) = 𝑥(𝑇0) and for any 𝑡 ≥ 𝑇0,

𝑧̇(𝑡) = 𝑔1(𝑡)𝑧(𝑡).

This last equation satifies the hypotheses of Lemma 3.6 with 𝑔1(𝑡) of the lemma taken to be identically 0 and 𝑔2(𝑡) of the lemma 
replaced with −𝑔1(𝑡). The conclusion is that 𝑧(𝑡) and therefore 𝑥(𝑡) converges to 0 at rate that is at least min{𝜌𝑔1 ,−𝑔

∗
1}. □

Lemma 3.9. Let 𝑔 ∶ℝ≥0 →ℝ be a real-valued function that converges to 0 at a rate that is at least 𝜌𝑔 . We assume that 𝑔 is smooth enough 
so that for any 𝑥(0) = 𝑥0 > 0, the following non-autonomous differential equation has a unique solution 𝑥 ∶ℝ≥0 →ℝ≥0 for all time

𝑥̇(𝑡) = 𝑥(𝑡)(1 − 𝑔(𝑡)𝑥(𝑡)𝑚), (𝑚 ∈ℤ>0).

Then for any 𝜀 > 0, there is a 𝑐𝜀 > 0 such that

𝑥(𝑡) ≥ 𝑐𝜀𝑒
(min{𝜌𝑔∕𝑚,1}−𝜀)𝑡, for all 𝑡 ≥ 0.
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Proof. Note that the positive 𝑥-axis is invariant. We may therefore dfine

𝑦(𝑡) ∶= 1
𝑥(𝑡)𝑚

,

which satifies the differential equation

𝑦̇(𝑡) =𝑚𝑔(𝑡) −𝑚𝑦(𝑡).

Since 𝑦(𝑡) satifies the hypotheses of Lemma 3.6 with 𝑔1(𝑡) ∶=𝑚𝑔(𝑡) and 𝑔2(𝑡) ≡𝑚, we have that 𝑦(𝑡) converges to 0 at rate that is at 
least min{𝜌𝑔,𝑚}. Hence, for every 𝜀 > 0 there is a positive constant 𝑐𝜀 such that

𝑦(𝑡) ≤ 𝑐𝜀𝑒
−(min{𝜌𝑔 ,𝑚}−𝑚⋅𝜀)𝑡.

In terms of the original variable 𝑥(𝑡) we have that

1
𝑥(𝑡)𝑚

≤ 𝑐𝜀𝑒
−(min{𝜌𝑔 ,𝑚}−𝑚⋅𝜀)𝑡.

Taking the reciprocal and then the 𝑚th root gives the desired inequality. □

4. Elementary operations

We construct reaction network modules that can carry out the elementary arithmetic operations of: identfication, inversion, 𝑚th 
root (for 𝑚 ≥ 2), addition, multiplication, absolute difference, rectfied subtraction, and partial real inversion (for reals represented 
via the dual rail representation). These operations form the core of basic arithmetic. Compositions of them will be taken up in the next 
section. Each of the elementary operations that we consider has one or two non-negative real inputs, hence referred to as a unary or 
binary operation, and one non-negative real output. In this section, we will show that the performance of each elementary operation 
retains from the input function the desired features of global exponential convergence, and convergence speed that is bounded from 
below independent of the inputs and output of computation. We will apply results from the previous section to prove these properties.

Throughout this section all rate constants are assumed to be equal to 1. Moreover, we assume throughout that the input functions 
(typically denoted as 𝑎(𝑡) or 𝑏(𝑡)) are assumed to be smooth enough so that the associated differential equations have unique solutions 
for all relevant initial conditions and all time.

4.1. Identfication

Lemma 4.1 (Identfication). Consider the reaction network and mass-action system

{𝐴 ←←→𝐴+𝑋, 𝑋 ←←→ 0}, 𝑥̇(𝑡) = 𝑎(𝑡) − 𝑥(𝑡), (37)

where 𝑎(𝑡) is a non-negative-valued function of time that converges to a non-negative constant 𝑎∗ at a rate that is at least 𝜌𝑎. Then the 
concentration of species 𝑋, i.e. the variable 𝑥, computes identfication 𝑎∗ ↦ 𝑥∗ = 𝑎∗ at speed that is at least min{𝜌𝑎,1}.

Proof. The result follows immediately by applying Lemma 3.6 with 𝑔1(𝑡) ∶= 𝑎(𝑡) and 𝑔2(𝑡) ≡ 1. □

Before proceeding further, we present an example of a composition of two identfications, which is arguably the simplest possible 
composition. We do so to point out how to utilize our results in that context. This topic will be extensively revisited in section 5.

Example 4.2. Consider a sequence of two identfication operations. We will use 𝐴 to denote the input species, whose concentration 
is unchanged over time. Let 𝑌 denote a species whose long-term concentration is identfied with that of 𝐴 and 𝑋 the species whose 
long-term value is identfied with the long-term value of 𝑌 . The reaction network and system of ODEs for this computation are:

𝐴→𝐴+ 𝑌 , 𝑌 → 0, 𝑌 → 𝑌 +𝑋, 𝑋 → 0.

𝑦̇(𝑡) = 𝑎− 𝑦(𝑡)

𝑥̇(𝑡) = 𝑦(𝑡) − 𝑥(𝑡).

We can solve this system explicitly and thereby obtain exact rates of convergence. The solution to the initial value problem with 
𝑥(0) = 𝑥0 and 𝑦(0) = 𝑦0 is

𝑦(𝑡) = 𝑎
(
1 − 𝑒−𝑡

)
+ 𝑦0𝑒

−𝑡

𝑥(𝑡) = 𝑎
(
1 − (1 + 𝑡)𝑒−𝑡

)
+ (𝑥0 + 𝑡𝑦0)𝑒−𝑡

Thus both 𝑦(𝑡) and 𝑥(𝑡) converge to 𝑎 at speed equal to 1. This is, of course, consistent with the conclusion from Lemma 4.1. Since 
the input species 𝐴 is not changing, its rate of convergence is 𝜌𝑎 = +∞. By Lemma 4.1, 𝑦(𝑡) converges at speed 𝜌𝑦 that is at least 
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min{𝜌𝑎,1} = min{∞,1} = 1. Again, by application of Lemma 4.1, 𝑥(𝑡) converges at speed that is at least min{𝜌𝑦,1} = min{1,1} = 
1. △

4.2. Inversion

Lemma 4.3 (Inversion). Consider the reaction network and mass-action system

{𝑋 → 2𝑋, 𝐴+ 2𝑋 →𝐴+𝑋}, 𝑥̇(𝑡) = 𝑥(𝑡)(1 − 𝑎(𝑡)𝑥(𝑡)), (38)

where 𝑎(𝑡) is a non-negative-valued function of time that converges to a non-negative constant 𝑎∗ at a rate that is at least 𝜌𝑎. Then the 
concentration of species 𝑋, i.e. the variable 𝑥, computes inversion 𝑎∗ ↦ 𝑥∗ = 1∕𝑎∗ at speed that is at least min{𝜌𝑎,1}.

Proof. The result follows immediately Lemma 3.7 with 𝑚 = 1, 𝑔1(𝑡) ≡ 1, and 𝑔2(𝑡) ∶= 𝑎(𝑡). □

4.3. 𝑚th root

Lemma 4.4 (𝑚th root). Consider the reaction network and mass-action system

{𝑌 → 2𝑌 , 𝐴+ (𝑚+ 1)𝑌 →𝐴+𝑚𝑌 , 𝑋 → 2𝑋, 𝑌 + 2𝑋 → 𝑌 +𝑋}

𝑦̇(𝑡) = 𝑦(𝑡) (1 − 𝑎(𝑡)𝑦(𝑡)𝑚) ,

𝑥̇(𝑡) = 𝑥(𝑡) (1 − 𝑦(𝑡)𝑥(𝑡)) ,

(39)

where 𝑚 ∈ ℤ≥2 and 𝑎(𝑡) is a non-negative-valued function of time that converges to a non-negative constant 𝑎∗ at a rate that is at least 𝜌𝑎. 
Then the concentration of species 𝑋, i.e. the variable 𝑥, computes the 𝑚th root 𝑎∗ ↦ 𝑥∗ = 𝑚

√
𝑎∗ at speed that is at least{

min{𝜌𝑎,1}, if 𝑎∗ ≠ 0,
min
{

𝜌𝑎
𝑚
,1
}
, if 𝑎∗ = 0.

(40)

Proof. We first consider the case 𝑎∗ > 0. The first differential equation satifies the hypotheses of Lemma 3.7 with 𝑚 ≥ 2, 𝑔1(𝑡) ≡ 1
and 𝑔2(𝑡) ∶= 𝑎(𝑡), and therefore 𝑦(𝑡) converges to (𝑎∗)−1∕𝑚 at rate that is at least min{𝜌𝑎,𝑚}. Application of the same lemma again 
to the second differential equation with 𝑚 = 1, 𝑔1(𝑡) ≡ 1 and 𝑔2(𝑡) ∶= 𝑦(𝑡) gives us that 𝑥(𝑡) converges to 𝑚

√
𝑎∗ at rate that is at least 

min{𝜌𝑎,1}.

Now we consider the case when 𝑎∗ = 0. We apply Lemma 3.9 to the first differential equation with 𝑚 ≥ 2 and 𝑔(𝑡) ∶= 𝑎(𝑡). Fix 
𝜀 > 0. Then by Lemma 3.9, there exists a constant 𝑐𝜀 > 0 such that

𝑦(𝑡) ≥ 𝑐𝜀𝑒
𝛼𝑡,

where 𝛼 ∶= min{𝜌𝑎∕𝑚,1} − 𝜀. Therefore,

𝑥̇(𝑡) ≤ 𝑥(𝑡)
(
1 − 𝑐𝜀𝑒

𝛼𝑡𝑥(𝑡)
)
. (41)

Dfine a change of variables

𝑧(𝑡) = 𝑒𝛼𝑡𝑥(𝑡).

Clearly 𝑧(0) = 𝑥(0) and 𝑧̇(𝑡) = 𝛼𝑧(𝑡) + 𝑒𝛼𝑡𝑥̇(𝑡). Multiplying both sides of (41) with 𝑒𝛼𝑡, we get

𝑒𝛼𝑡𝑥̇(𝑡) ≤ 𝑒𝛼𝑡𝑥(𝑡)
(
1 − 𝑐𝜀𝑒

𝛼𝑡𝑥(𝑡)
)
,

which we may rewrite as

𝑧̇(𝑡) ≤ 𝑧(𝑡)
(
1 + 𝛼 − 𝑐𝜀𝑧(𝑡)

)
.

The solution 𝑧(𝑡) is bounded above by the solution of the autonomous system

𝑤̇(𝑡) =𝑤(𝑡)
(
1 + 𝛼 − 𝑐𝜀𝑤(𝑡)

)
, 𝑤(0) = 𝑧(0).

The explicit solution gives an upper bound for 𝑥(𝑡)

𝑥(𝑡) = 𝑒−𝛼𝑡𝑧(𝑡) ≤ 𝑒−𝛼𝑡𝑤(𝑡) = 1 + 𝛼

𝑐𝜀(𝑒𝛼𝑡 − 𝑒−𝑡) + 1+𝛼
𝑥0

𝑒−𝑡
.

The right hand side converges to 0 at a rate that is at least 𝛼 =min{𝜌𝑎∕𝑚,1} − 𝜀. But since the 𝜀 > 0 is arbitrary, the convergence is 
at rate min{𝜌𝑎∕𝑚,1}. □
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4.4. Addition

Lemma 4.5 (Addition). Consider the reaction network and mass-action system

{𝐴→𝐴+𝑋, 𝐵→ 𝐵 +𝑋, 𝑋 → 0}, 𝑥̇(𝑡) = 𝑎(𝑡) + 𝑏(𝑡) − 𝑥(𝑡), (42)

where 𝑎(𝑡) and 𝑏(𝑡) are non-negative functions of time that converge to non-negative constants 𝑎∗ and 𝑏∗ at rates that are at least 𝜌𝑎 and 
𝜌𝑏, respectively. Then the concentration of species 𝑋, i.e. the variable 𝑥, computes addition (𝑎∗, 𝑏∗)↦ 𝑥∗ = 𝑎∗ + 𝑏∗ at speed that is at least 
min{𝜌𝑎, 𝜌𝑏,1}.

Proof. By Lemma 3.3, the sum 𝑎(𝑡) + 𝑏(𝑡) converges to 𝑎∗ + 𝑏∗ at speed that is at least min{𝜌𝑎, 𝜌𝑏}. The result then follows from 
Lemma 3.6 with 𝑔1(𝑡) ∶= 𝑎(𝑡) + 𝑏(𝑡) and 𝑔2(𝑡) ≡ 1. □

4.5. Multiplication

Lemma 4.6 (Multiplication). Consider the reaction network and mass-action system

{𝐴+𝐵→𝐴+𝐵 +𝑋, 𝑋 → 0}, 𝑥̇(𝑡) = 𝑎(𝑡)𝑏(𝑡) − 𝑥(𝑡), (43)

where 𝑎(𝑡) and 𝑏(𝑡) are non-negative functions of time that converge to non-negative constants 𝑎∗ and 𝑏∗ at rates that are at least 𝜌𝑎 and 𝜌𝑏, 
respectively. Then the concentration of species 𝑋, i.e. the variable 𝑥, computes multiplication (𝑎∗, 𝑏∗)↦ 𝑥∗ = 𝑎∗ ⋅ 𝑏∗ at speed that is at least

⎧⎪⎪⎨⎪⎪⎩
min{𝜌𝑎, 𝜌𝑏,1}, if 𝑎∗ ≠ 0, 𝑏∗ ≠ 0,
min{𝜌𝑎,1}, if 𝑎∗ = 0, 𝑏∗ ≠ 0,
min{𝜌𝑏,1}, if 𝑎∗ ≠ 0, 𝑏∗ = 0,
min{𝜌𝑎 + 𝜌𝑏,1}, if 𝑎∗ = 0, 𝑏∗ = 0.

(44)

Proof. Applying Lemma 3.3 to the product 𝑎(𝑡)𝑏(𝑡) gives the lower bound on its rate of convergence. The result then follows by 
applying Lemma 3.6 with 𝑔1(𝑡) ∶= 𝑎(𝑡)𝑏(𝑡) and 𝑔2(𝑡) ≡ 1. □

4.6. Absolute difference

Lemma 4.7 (Absolute difference). Consider the reaction network and mass-action system

{𝑌 → 2𝑌 , 2𝐴+ 3𝑌 → 2𝐴+ 2𝑌 , 2𝐵 + 3𝑌 → 2𝐵 + 2𝑌 , 𝐴+𝐵 + 3𝑌 →𝐴+𝐵 + 5𝑌 ,

𝑋 → 2𝑋, 𝑌 + 2𝑋 → 𝑌 +𝑋},

𝑦̇(𝑡) = 𝑦(𝑡)
(
1 − (𝑎(𝑡) − 𝑏(𝑡))2𝑦(𝑡)2

)
,

𝑥̇(𝑡) = 𝑥(𝑡) (1 − 𝑦(𝑡)𝑥(𝑡)) ,

(45)

where 𝑎(𝑡) and 𝑏(𝑡) are non-negative functions of time that converge to non-negative constants 𝑎∗ and 𝑏∗ at rates that are at least 𝜌𝑎 and 𝜌𝑏, 
respectively. Then the concentration of species 𝑋, i.e. the variable 𝑥, computes absolute difference (𝑎∗, 𝑏∗)↦ 𝑥∗ = |𝑎∗ − 𝑏∗| at speed that is 
at least

min{𝜌𝑎, 𝜌𝑏,1}. (46)

Proof. By Lemma 3.3, the difference 𝑎(𝑡)−𝑏(𝑡) converges to 𝑎∗ −𝑏∗ at speed that is at least min{𝜌𝑎, 𝜌𝑏}. An application of the product 
part of the same Lemma 3.3 gives that (𝑎(𝑡) − 𝑏(𝑡))2 converges to (𝑎∗ − 𝑏∗)2 at rate that is at least{

min{𝜌𝑎, 𝜌𝑏}, if 𝑎∗ ≠ 𝑏∗

2min{𝜌𝑎, 𝜌𝑏}, if 𝑎∗ = 𝑏∗.

Finally, we apply Lemma 4.4 to the system (45) with 𝑚 = 2 and the function 𝑎(𝑡) replaced with (𝑎(𝑡) − 𝑏(𝑡))2. □
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4.7. Rectfied subtraction

Lemma 4.8 (Rectfied subtraction). Consider the reaction network and mass-action system

{𝑌 → 2𝑌 , 2𝐴+ 3𝑌 → 2𝐴+ 2𝑌 , 2𝐵 + 3𝑌 → 2𝐵 + 2𝑌 , 𝐴+𝐵 + 3𝑌 →𝐴+𝐵 + 5𝑌 ,

𝐴+ 𝑌 +𝑋 →𝐴+ 𝑌 + 2𝑋, 𝐵 + 𝑌 +𝑋 → 𝐵 + 𝑌 , 𝑌 + 2𝑋 → 𝑌 +𝑋},

𝑦̇(𝑡) = 𝑦(𝑡)
(
1 − (𝑎(𝑡) − 𝑏(𝑡))2𝑦(𝑡)2

)
,

𝑥̇(𝑡) = 𝑦(𝑡)𝑥(𝑡) (𝑎(𝑡) − 𝑏(𝑡) − 𝑥(𝑡)) ,

(47)

where 𝑎(𝑡) and 𝑏(𝑡) are non-negative functions of time that converge to non-negative constants 𝑎∗ and 𝑏∗ at rates that are at least 𝜌𝑎 and 𝜌𝑏, 
respectively. Then the concentration of species 𝑋, i.e. the variable 𝑥, computes rectfied subtraction

(𝑎∗, 𝑏∗)↦

{
𝑎∗ − 𝑏∗ if 𝑎∗ > 𝑏∗

0 if 𝑎∗ ≤ 𝑏∗

at speed that is at least

min{𝜌𝑎, 𝜌𝑏,1}. (48)

Proof. By Lemma 3.3, the difference 𝑎(𝑡) − 𝑏(𝑡) converges to 𝑎∗ − 𝑏∗ at rate that is at least 𝜌 ∶= min{𝜌𝑎, 𝜌𝑏}.

First suppose that 𝑎∗ ≠ 𝑏∗. Similar to the proof of Lemma 4.7, (𝑎(𝑡)−𝑏(𝑡))2 converges to (𝑎∗ −𝑏∗)2 at rate that is at least min{𝜌𝑎, 𝜌𝑏}. 
The differential equation for 𝑦(𝑡) satifies the hypotheses of Lemma 3.7 with 𝑚 = 2, 𝑔1(𝑡) ≡ 1 and 𝑔2(𝑡) ∶= (𝑎(𝑡) − 𝑏(𝑡))2, and therefore 
𝑦(𝑡) converges to |𝑎∗ − 𝑏∗|−1 > 0 at rate that is at least min{𝜌𝑎, 𝜌𝑏,2}. Now rewrite the differential equation for 𝑥(𝑡) as

𝑥̇(𝑡) = 𝑥(𝑡) (𝑦(𝑡)(𝑎(𝑡) − 𝑏(𝑡)) − 𝑦(𝑡)𝑥(𝑡)) , (49)

and note that by Lemma 3.3, 𝑦(𝑡)(𝑎(𝑡) − 𝑏(𝑡)) converges to either +1 or −1, depending on whether 𝑎∗ > 𝑏∗ or 𝑎∗ < 𝑏∗, at rate that 
is at least min{𝜌𝑎, 𝜌𝑏,2}. When 𝑎∗ > 𝑏∗, we apply Lemma 3.7 with 𝑚 = 1, 𝑔1(𝑡) ∶= 𝑦(𝑡)(𝑎(𝑡) − 𝑏(𝑡)), and 𝑔2(𝑡) = 𝑦(𝑡) to (49), and 
we conclude that 𝑥(𝑡) converges to 𝑎∗ − 𝑏∗ at rate that is at least min{𝜌𝑎, 𝜌𝑏,1}. When 𝑎∗ < 𝑏∗, we apply Lemma 3.8 with 𝑚 = 1, 
𝑔1(𝑡) ∶= 𝑦(𝑡)(𝑎(𝑡) − 𝑏(𝑡)), and 𝑔2(𝑡) = 𝑦(𝑡) to (49), and we conclude that 𝑥(𝑡) converges to 0 at rate that is at least min{𝜌𝑎, 𝜌𝑏,1}. In 
either case, we get the desired result when 𝑎∗ ≠ 𝑏∗.

Now consider the case that 𝑎∗ = 𝑏∗. We have that 𝑎(𝑡) − 𝑏(𝑡) converges to 0 at rate that is at least 𝜌 =min{𝜌𝑎, 𝜌𝑏}. We fix an 𝜀 > 0. 
Then, there is a constant 𝑐𝜀 > 0 such that for all 𝑡 ≥ 0,

|𝑎(𝑡) − 𝑏(𝑡)| < 𝑐𝜀𝑒
−(𝜌−𝜀)𝑡. (50)

Similar to the proof of Lemma 4.7, (𝑎(𝑡) − 𝑏(𝑡))2 converges to 0 at rate that is at least 2min{𝜌𝑎, 𝜌𝑏}. The differential equation for 𝑦(𝑡)
satifies the hypotheses of Lemma 3.9 with 𝑚 = 2, and 𝑔(𝑡) ∶= (𝑎(𝑡) − 𝑏(𝑡))2, and therefore there is a 𝑐′𝜀 > 0 such that for all 𝑡 ≥ 0, we 
have

𝑦(𝑡) ≥ 𝑐′𝜀𝑒
(min{𝜌𝑎,𝜌𝑏,1}−𝜀)𝑡 = 𝑐′𝜀𝑒

𝜈𝑡, (51)

where 𝜈 ∶= min{𝜌𝑎, 𝜌𝑏,1} − 𝜀.

We will now show that 𝑥(𝑡) converges to 0 at rate that is at least 𝜈. As in our previous results, this will be enough to prove the 
result as 𝜀 > 0 is arbitrary. Note that the positive 𝑥-axis is invariant, i.e. for any 𝑥(0) > 0, 𝑥(𝑡) > 0 for all time 𝑡 ≥ 0. Dfine

𝑢(𝑡) ∶= 1
𝐾
𝑥(𝑡)𝑒𝜈𝑡, where 𝐾 ∶= 𝑐𝜀 + (𝜈 + 1)∕𝑐′𝜀,

and so 𝑢(𝑡) > 0 for all 𝑡 ≥ 0 whenever 𝑥(0) > 0. It suffices to show that if 𝑢(𝑡) ≥ 1, then 𝑢̇(𝑡) ≤ −1. Indeed assuming this is true, we first 
show that 𝑥(𝑡) converges at the desired rate. Consider two cases: (i) 𝑢(0) < 1, since the region 𝑢 < 1 is invariant we have that

𝑥(𝑡) =𝐾𝑢(𝑡)𝑒−𝜈𝑡 ≤𝐾𝑒−𝜈𝑡,

and (ii) 𝑢(0) ≥ 1, in which case we have that 𝑢(𝑡) ≤ 𝑢(0) for all 𝑡 ≥ 0, and so

𝑥(𝑡) =𝐾𝑢(𝑡)𝑒−𝜈𝑡 ≤𝐾𝑢(0)𝑒−𝜈𝑡 = 𝑥(0)𝑒−𝜈𝑡.

Combining the two cases, we have that for all 𝑡 ≥ 0,

𝑥(𝑡) ≤max{𝑥(0),𝐾}𝑒−𝜈𝑡,

i.e. 𝑥 converges to 0 at rate that is at least 𝜈. Since 𝜀 > 0 is arbitrary, 𝑥 converges to 0 at rate that is at least min{𝜌𝑎, 𝜌𝑏,1}.

Now we prove the claim that if 𝑢(𝑡) ≥ 1 then 𝑢̇(𝑡) ≤ −1. Note that we have

𝑢̇ = 𝑒𝜈𝑡

𝐾
(𝑥̇+ 𝜈𝑥) = 𝜈𝑢+ 𝑢

𝑥̇

𝑥
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= 𝜈𝑢+ 𝑢𝑦(𝑎− 𝑏−𝐾𝑢𝑒−𝜈𝑡) ≤ 𝜈𝑢+ 𝑢𝑦
(
𝑐𝜀𝑒

(−𝜌+𝜀)𝑡 −𝐾𝑢𝑒−𝜈𝑡
) ≤ 𝜈𝑢+ 𝑢𝑦(𝑐𝜀 −𝐾𝑢)𝑒−𝜈𝑡,

where we used (50), 𝜈 =min{𝜌,1} − 𝜀 ≤ 𝜌− 𝜀, and also that 𝑢(𝑡) and 𝑦(𝑡) are positive for all 𝑡 ≥ 0. Since we are assuming that 𝑢 ≥ 1, 
we then have

𝑢̇ ≤ 𝜈𝑢+ 𝑢𝑦(𝑐𝜀 −𝐾)𝑒−𝜈𝑡 = 𝜈𝑢− 𝑢𝑦

(
𝜈 + 1
𝑐′𝜀

)
𝑒−𝜈𝑡

≤ 𝜈𝑢− 𝑢 (𝜈 + 1) = −𝑢 ≤ −1,

where we used (51) and the assumption 𝑢 ≥ 1. This concludes the proof. □

4.8. Partial real inversion

The input to the elementary operation of partial real inversion is a nonzero real number and can be positive or negative. Thus, the 
dual rail representation is used for the input, see section 2.2.

Lemma 4.9 (Partial real inversion). Consider the reaction network and mass-action system

{𝑌 → 2𝑌 , 𝐴𝑝 + 2𝑌 →𝐴𝑝 + 𝑌 , 𝐴𝑛 + 2𝑌 →𝐴𝑛 + 𝑌 ,

𝐴𝑝 + 𝑌 +𝑋 →𝐴𝑝 + 𝑌 + 2𝑋, 𝐴𝑛 + 𝑌 +𝑋 →𝐴𝑛 + 𝑌 , 2𝐴𝑝 + 𝑌 + 2𝑋 → 2𝐴𝑝 + 𝑌 +𝑋},

𝑦̇(𝑡) = 𝑦(𝑡)
(
1 − (𝑎𝑝(𝑡) + 𝑎𝑛(𝑡))𝑦(𝑡)

)
𝑥̇(𝑡) = 𝑦(𝑡)𝑥(𝑡)

(
𝑎𝑝(𝑡)(1 − 𝑎𝑝(𝑡)𝑥(𝑡)) − 𝑎𝑛(𝑡)

)
(52)

where 𝑎𝑝(𝑡) and 𝑎𝑛(𝑡) are non-negative functions of time that converge to non-negative constants 𝑎∗𝑝 and 𝑎∗𝑛 at rates that are at least 𝜌𝑎𝑝 and 
𝜌𝑎𝑛 , respectively. We assume that one and only one of 𝑎∗𝑝 or 𝑎∗𝑛 is positive, while the other is zero. Then the concentration of species 𝑋, i.e. 
the variable 𝑥, computes partial real inversion

(𝑎∗𝑝, 𝑎
∗
𝑛)↦

{
1∕𝑎∗

𝑝
, if 𝑎∗

𝑝
> 0,

0, if 𝑎∗𝑝 = 0,

at speed that is at least

min{𝜌𝑎𝑝 , 𝜌𝑎𝑛 ,1}. (53)

Proof. By Lemma 3.3, the sum 𝑎𝑝(𝑡)+𝑎𝑛(𝑡) converges to 𝑎∗𝑝 +𝑎∗𝑛 > 0 at rate that is at least min{𝜌𝑎𝑝 , 𝜌𝑎𝑛}. The first differential equation 
in (52) satifies the hypotheses of Lemma 3.7 with 𝑚 = 1, 𝑔1(𝑡) ≡ 1 and 𝑔2(𝑡) ∶= 𝑎𝑝(𝑡)+𝑎𝑛(𝑡), and therefore 𝑦(𝑡) converges to (𝑎∗𝑝+𝑎∗𝑛)

−1

at rate that is at least min{𝜌𝑎𝑝 , 𝜌𝑎𝑛 ,1}.

The differential equation for 𝑥(𝑡) can be written as

𝑥̇(𝑡) = 𝑥(𝑡)
(
𝑦(𝑡)(𝑎𝑝(𝑡) − 𝑎𝑛(𝑡)) − 𝑦(𝑡)𝑎𝑝(𝑡)2𝑥(𝑡)

)
By Lemma 3.3, the difference 𝑎𝑝(𝑡) − 𝑎𝑛(𝑡) converges to its limit 𝑎∗𝑝 − 𝑎∗𝑛 at rate that is at least min{𝜌𝑎𝑝 , 𝜌𝑎𝑛}. By the product part of 
the same lemma, the product 𝑦(𝑡)(𝑎𝑝(𝑡) − 𝑎𝑛(𝑡)) converges to +1 or −1, depending on whether 𝑎∗

𝑝
> 0 or 𝑎∗

𝑝
= 0, at rate that is at least 

min{𝜌𝑎𝑝 , 𝜌𝑎𝑛 ,1}.

First consider the case 𝑎∗𝑝 > 0 and 𝑎∗𝑛 = 0. By Lemma 3.3, the product 𝑦(𝑡)𝑎𝑝(𝑡)2 converges to 𝑎∗𝑝 at rate that is at least min{𝜌𝑎𝑝 , 𝜌𝑎𝑛 ,1}. 
The differential equation for 𝑥(𝑡) satifies the hypotheses of Lemma 3.7 with 𝑚 = 1, 𝑔1(𝑡) ∶= 𝑦(𝑡)(𝑎𝑝(𝑡) − 𝑎𝑛(𝑡)) and 𝑔2(𝑡) ∶= 𝑦(𝑡)𝑎𝑝(𝑡)2, 
and therefore 𝑥(𝑡) converges to 1∕𝑎∗𝑝 at rate that is at least min{𝜌𝑎𝑝 , 𝜌𝑎𝑛 ,1}.

Now consider the case 𝑎∗𝑝 = 0 and 𝑎∗𝑛 > 0. Suppose that 𝑧(𝑡) satifies the differential equation 𝑧̇(𝑡) = 𝑧(𝑡)𝑦(𝑡)(𝑎𝑝(𝑡) − 𝑎𝑛(𝑡)), then 
by applying Lemma 3.6 with 𝑔1(𝑡) ≡ 0, and 𝑔2(𝑡) ∶= −𝑦(𝑡)(𝑎𝑝(𝑡) − 𝑎𝑛(𝑡)), we get that 𝑧(𝑡) converges to 0 at rate that is at least 
min{𝜌𝑎𝑝 , 𝜌𝑎𝑛 ,1}. Since we have

𝑥̇(𝑡) = 𝑥(𝑡)
(
𝑦(𝑡)(𝑎𝑝(𝑡) − 𝑎𝑛(𝑡)) − 𝑦(𝑡)𝑎𝑝(𝑡)2𝑥(𝑡)

)
≤ 𝑥(𝑡)𝑦(𝑡)(𝑎𝑝(𝑡) − 𝑎𝑛(𝑡)),

for any 𝑥(0) = 𝑧(0), we must have 𝑥(𝑡) ≤ 𝑧(𝑡) for all 𝑡 ≥ 0, and so 𝑥(𝑡) converges to 0 at rate that is at least min{𝜌𝑎𝑝 , 𝜌𝑎𝑛 ,1}. □
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5. Composite operations

5.1. Main theory

The elementary operations in section 4 can be combined to produce composite operations. Some operations, such as division, 
maximum, subtraction, which may be considered ``elementary'' from the point of view of arithmetic are in fact composite in our 
construction as they are produced by combining the operations in the previous section.

We start with a theorem about the speed of a general arithmetic operation, one that involves finitely many compositions of 
elementary operations. The result presented below is the most consequential theorem of this paper.

Theorem 5.1 (Composite computations). Consider a computation that is composed from a finite number of elementary computations from 
section 4. Then the speed of this composite computation is at least that of the slowest elementary computation.

Proof. The proof only requires combining the results in Lemmas 4.1-4.9. □

Example 4.2 is helpful here. When doing a sequence of two identfications, the intermediate variable converges like 𝑒−𝑡 , while the 
output of the second identfication converges like 𝑡𝑒−𝑡. For both variables, intermediate and output, the speed of convergence is 1.

For all elementary operations, we used the assumption that the mass action reaction rate constants are all equal. In fact, we set the 
rate constants to be equal to 1. If instead, all rate constants are taken to be 𝜎 > 0, a time change argument can be used to make them 
all equal to 1 in the modfied system (see Remark 5.4 below). We now state two corollaries which assume that the rate constants are 
all equal to 1.

Corollary 5.2. Consider a computation that is composed from a finite number of elementary computations from section 4. If none of the 
elementary computations are a root of zero, then the speed of the composite computation is at least 1.

Corollary 5.3. Consider a computation that is composed from a finite number of elementary computations from section 4. Suppose that of 
all the elementary steps in the composite computation, there are 𝑝 elementary steps which require taking the 𝑚𝑗 -th root of zero, 1 ≤ 𝑗 ≤ 𝑝. 
Then the speed of the composite computation is at least

𝑝∏
𝑗=1

1
𝑚𝑗

.

Remark 5.4. Throughout this work, we have always chosen the rate constants of the reactions to be equal to 1. However, the choice 
of the value 1 was arbitrary. For example, suppose that the differential equation for our system, with a rate constant of 1, is

𝑥̇(𝑡) = 𝑓 (𝑥(𝑡)).

Now suppose that we instead choose rate constants of 𝜎 > 0, and denote the system by

𝑧̇(𝑡) = 𝜎𝑓 (𝑧(𝑡)).

We then see that 𝑥 and 𝑧 are related by a simple time-change: 𝑧(𝑡) = 𝑥(𝜎𝑡). You can see this by simply utilizing the chain rule:

𝑑

𝑑𝑡
𝑥(𝜎𝑡) = 𝑓 (𝑥(𝜎𝑡)) ⋅ 𝜎.

Thus, we immediately conclude from Corollary 5.2 that if none of the elementary computations are the root of zero, the speed of the 
composite computation via 𝑧 is 𝜎, whereas from Corollary 5.3, we conclude the speed via 𝑧 is 

∏𝑝

𝑗=1 𝜎∕𝑚𝑗 , when the conditions of 
that corollary are met. We discuss the possibility of having non-equal rate constants in section 7. △

We now show how to compose operations from section 4 to carry out the operations division, maximum, and subtraction. 

Division

Division, 𝑎∗∕𝑏∗, for 𝑎∗, 𝑏∗ > 0, is a composite operation of our elementary operations. First we compute the reciprocal 𝑏∗ ↦ 1∕𝑏∗, 
and then the product (𝑎∗,1∕𝑏∗)↦ 𝑎∗∕𝑏∗, see Fig. 2. The reaction network for computing division can be built simply by taking the 
union of reaction network modules, each of which computes an elementary operation, as follows

{𝑍 → 2𝑍, 𝐵 + 2𝑍 → 𝐵 +𝑍}, 𝑧̇(𝑡) = 𝑧(𝑡)(1 − 𝑏(𝑡)𝑧(𝑡)) (inversion),

{𝐴+𝑍 →𝐴+𝑍 +𝑋, 𝑋 → 0}, 𝑥̇(𝑡) = 𝑎(𝑡)𝑧(𝑡) − 𝑥(𝑡) (multiplication).
(54)

Suppose 𝑎(𝑡) and 𝑏(𝑡) are real-valued functions that converge to 𝑎∗ ≥ 0 and 𝑏∗ > 0, respectively. Then concentration of species 𝑋, 
i.e. the variable 𝑥(𝑡) computes 𝑎∗∕𝑏∗. The minimum speed of convergence can be determined as follows. By combining results from 
Lemmas 4.3, and 4.6, we have that
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Fig. 1. Elementary gates.

𝜌𝑥 ≥min{𝜌𝑎, 𝜌𝑧,1}

≥min{𝜌𝑎,min{𝜌𝑏,1},1} = min{𝜌𝑎, 𝜌𝑏,1}.

In the previous short calculation, we have shown that specifically for a composition involving reciprocation and multiplication, the 
minimum speed of the composite computation is at least the minimum speed of the slowest elementary computation. This is, of 
course, an instance of the general result, Theorem 5.1. 

Maximum

The maximum max{𝑎, 𝑏} of two positive reals 𝑎 and 𝑏 can be found using the following formula

max{𝑎, 𝑏} = 1
2
(𝑎+ 𝑏+ |𝑎− 𝑏|) ,

which is a composition of the absolute difference, two binary additions and a multiplication by 1∕2. By Theorem 5.1, the speed of 
computation is bounded below. 

Subtraction

The output 𝑎− 𝑏 of subtraction for two non-negative reals 𝑎, 𝑏 ≥ 0 is an arbitrary real number, and therefore requires the dual rail 
representation, i.e. two chemical species, the concentration of one is the positive part of 𝑎 − 𝑏 and the concentration of the other is 
the negative part. We may write 𝑎− 𝑏 in dual rail representation as

𝑎− 𝑏 = (𝑎 −̇𝑏, 𝑏 −̇𝑎).

In other words, a subtraction is simply two rectfied subtractions, and therefore by Theorem 5.1, has the same lower bound on the 
speed as either of the two rectfied subtractions.

5.2. Graphical representation for composite operations

Combining elementary arithmetic computations into a composite computation has similarities with how logic gates are combined 
in a Boolean logic operation. Following this analogy, we can set up a visual aid where the elementary operations of section 4 are 
thought of ``elementary gates'' which can be combined in various different ways. We first give a catalogue of the elementary gates, 
shown in Fig. 1.

We can now put the gates together in different ways to generate the composite computations discussed in section 5.1. We start 
with division, shown in Fig. 2 which only requires the elementary operations of identfication, reciprocal, and multiplication. Fig. 3

depicts a diagram of how the operation of taking the maximum of two non-negative reals can be constructed. Fig. 4 shows a pictorial 
way of doing subtraction by combining two rectfied subtractions.

We continue to use the diagrammatic representations of arithmetic computations in section 6. We show that each operation 
over reals can be decomposed into operations whose inputs and outputs are only non-negative reals. We give the diagrammatic 
decomposition into elementary arithmetic gates along with each description.

6. Arithmetic operations on arbitrary real numbers

The previous section discussed arithmetic operations with non-negative inputs. In the final construction on subtraction, the output 
is any real number–positive, negative, or zero–even though the inputs are positive. We needed ‘dual rail’ to represent an arbitrary 
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𝑎

𝑏 −1

× 𝑎

𝑏

Fig. 2. A graphical representation of division.

|−| + + ×

𝑎

𝑏

1
2

max{𝑎, 𝑏}

Fig. 3. Maximum of two non-negative reals.

−̇

−̇

𝑎

𝑏

𝑎 −̇𝑏

𝑏 −̇𝑎

Fig. 4. Subtraction.

real number as a vector with two non-negative components. In this section, we continue to use the dual rail construction to represent 
an arbitrary real number which can be both an input and an output. 

Addition and normalization

We dfine addition in the usual way, for any 𝑎, 𝑏 ∈ℝ,

𝑎+ 𝑏 = (𝑎𝑝, 𝑎𝑛) + (𝑏𝑝, 𝑏𝑛) = (𝑎𝑝 + 𝑏𝑝, 𝑎𝑛 + 𝑏𝑛).

The operation can be performed with ODEs/reaction networks by using two successive regular additions. Since the output of addition 
is not necessarily canonical, we dfine a normalization operation which brings the output into this form.

(𝑎𝑝, 𝑎𝑛) =

{
(𝑎𝑝 − 𝑎𝑛,0) if 𝑎𝑝 > 𝑎𝑛

(0, 𝑎𝑛 − 𝑎𝑝) if 𝑎𝑝 ≤ 𝑎𝑛.

The operation is performed using one dual rail subtraction (see Fig. 5).

Additive inverse and subtraction

The negative of the real number 𝑎 is dfined via

𝑥 = −𝑎 = −(𝑎𝑝, 𝑎𝑛) = (𝑎𝑛, 𝑎𝑝) = (𝑥𝑝, 𝑥𝑛).

This can be performed using two assignments (see Fig. 6). The system of ODEs is the following:

𝑥̇𝑝 = 𝑎𝑛 − 𝑥𝑝,

𝑥̇𝑛 = 𝑎𝑝 − 𝑥𝑛.
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+
𝑎𝑝

𝑏𝑝

+
𝑎𝑛

𝑏𝑛

−̇

−̇

𝑎

𝑏

𝑎𝑝 + 𝑏𝑝 −̇(𝑎𝑛 + 𝑏𝑛)

𝑎𝑛 + 𝑏𝑛 −̇(𝑎𝑝 + 𝑏𝑝)

Fig. 5. Real addition.

id

id

𝑎

𝑎𝑝

𝑎𝑛

𝑎𝑛

𝑎𝑝

Fig. 6. Real additive inverse.

Subtraction is dfined as follows:

𝑎− 𝑏 = (𝑎𝑝, 𝑎𝑛) − (𝑏𝑝, 𝑏𝑛) = (𝑎𝑝, 𝑎𝑛) + (−(𝑏𝑝, 𝑏𝑛)) = (𝑎𝑝, 𝑎𝑛) + (𝑏𝑛, 𝑏𝑝) = (𝑎𝑝 + 𝑏𝑛, 𝑎𝑛 + 𝑏𝑝).

Thus subtraction can be performed using two regular additions followed by a normalization to bring the output into canonical 
form. 

Multiplication

Multiplication of arbitrary real numbers involves four multiplications and two additions of non-negative real numbers (see Fig. 
7) as shown by the following calculation:

𝑎 ⋅ 𝑏 = (𝑎𝑝, 𝑎𝑛) ⋅ (𝑏𝑝, 𝑏𝑛) = (𝑎𝑝 − 𝑎𝑛) ⋅ (𝑏𝑝 − 𝑏𝑛)

= 𝑎𝑝𝑏𝑝 + 𝑎𝑛𝑏𝑛 − 𝑎𝑝𝑏𝑛 − 𝑎𝑛𝑏𝑝 = (𝑎𝑝𝑏𝑝 + 𝑎𝑛𝑏𝑛, 𝑎𝑝𝑏𝑛 + 𝑎𝑛𝑏𝑝).

The normalization step is unnecessary since the output of multiplication is in canonical form whenever the inputs are in canonical 
form. Indeed, we have that

(𝑎𝑝𝑏𝑝 + 𝑎𝑛𝑏𝑛)(𝑎𝑝𝑏𝑛 + 𝑎𝑛𝑏𝑝) = (𝑎2
𝑝
+ 𝑎2

𝑛
)𝑏𝑝𝑏𝑛 + 𝑎𝑝𝑎𝑛(𝑏2𝑝 + 𝑏2

𝑛
) = 0,

where the last equality follows from 𝑎𝑝𝑎𝑛 = 0 and 𝑏𝑝𝑏𝑛 = 0. 

Inversion and division

Consider the nonzero input 0 ≠ 𝑎 = (𝑎𝑝, 𝑎𝑛) in canonical form, i.e. exactly one of 𝑎𝑝 or 𝑎𝑛 is positive, so that 𝑎𝑝 + 𝑎𝑛 > 0 and 
𝑎𝑝𝑎𝑛 = 0. The multiplicative inverse (see Fig. 8) in canonical form is

𝑎−1 =
⎧⎪⎨⎪⎩
(

1
𝑎𝑝
,0
)

if 𝑎𝑝 > 0,(
0, 1

𝑎𝑛

)
if 𝑎𝑛 > 0.

Finally, division 𝑏∕𝑎 is simply inversion of 𝑎 followed by multiplication of 𝑏 and 1∕𝑎.

7. Discussion

In this paper, we gave novel, explicit constructions for computing elementary operations at input-independent speed and showed 
how the elementary operations can be combined into composite computations also computed at input-independent speed. In particu

lar, in the novel constructions that we give, such as (15) used for computing the reciprocal, we achieved a decoupling of concentrations 
and the speed of computing. This is in contrast to the naive constructions, such as (11) for the reciprocal. There, even the number of 
steps of the overall computation can affect the speed at which the individual steps are computed and therefore affect the speed of the 
overall computation. This is because there could be complicated interactions between the number of steps in a given computation, 
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×

×

×

×

+

+

𝑎

𝑏

𝑎𝑝

𝑎𝑛

𝑏𝑝

𝑏𝑛

𝑎𝑝𝑏𝑝 + 𝑎𝑛𝑏𝑛

𝑎𝑝𝑏𝑛 + 𝑎𝑛𝑏𝑝

Fig. 7. Real multiplication.

+

−
-1

+

−
-1

𝑎

𝑎𝑝

𝑎𝑛

{ 1
𝑎𝑝
, if 𝑎𝑝 > 0, 𝑎𝑛 = 0,

0, if 𝑎𝑝 = 0, 𝑎𝑛 > 0.

{
0, if 𝑎𝑝 > 0, 𝑎𝑛 = 0,
1
𝑎𝑛
, if 𝑎𝑝 = 0, 𝑎𝑛 > 0.

Fig. 8. Real inversion.

the well-mixed property required for mass-action kinetics, the natural discreteness of the molecules, the volume of the vessel in which 
the reactions are taking place, and, therefore, the range of concentrations of the various species. Such issues that arise from thinking 
about the physical implementation of chemical computation will be studied carefully in future work.

We assumed that underlying our algorithmic considerations is an idealized analog computer that is built from a perfectly well

behaved mass action system. We anticipate introducing realistic constraints in future research that will strengthen and build on the 
idealized setup developed here. We now discuss some future research directions that are natural offshoots of the present paper.

Chemical reactions involving at most two molecules as reactants, sometimes referred to as bimolecular reactions, are considered 
the simplest to design and found most commonly in nature. The constructions given in this paper did not have this constraint and, in 
fact, did require multiple different reactant types with high molecularities. Is it possible to find constructions that compute arithmetic 
at input-independent speeds using only bimolecular reactants?

In some of our constructions, an intermediate variable was allowed to increase to indefinitely high values. For instance when 
computing rectfied subtraction (47), the concentration of the species 𝑌 goes to ifinity when 𝑎∗ = 𝑏∗. This possibility of a variable 
increasing in an unbounded manner may be deemed unrealistic to implement using synthetic biochemistry, or at the very least is 
an energy-hungry construction. Is it possible to give an alternative construction for subtraction/rectfied subtraction which works 
equally well algorithmically, has all the desired features, particularly including input-independent speed of computation, but also 
does not require any variable to increase in an unbounded manner?

We assumed throughout that all reactions have the same rate constant. This poses significant, perhaps unrealistic, design chal

lenges. In the next improved iteration of construction, we may want to assume that the reactions occur at known, but not necessarily 
equal or controllable, rates. Given this significant constraint, how should the reaction networks for elementary operations and com

posite computations be modfied to give an accurate output at input-independent speed?

A bottleneck in the speed of computation for our constructions is a root of zero. Can this bottleneck be removed? Are there 
constructions for which the speed of computation is not lowered even when an elementary step requires computing a root of zero. 
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Or is the jump in speed when computing a root of zero as opposed to a root of a positive number, not merely a bug but a positive 
feature? Perhaps we may be able to put to good use the discrete jump in speed when the input to an 𝑚-th root is either a zero or a 
positive number. To be concrete, consider the elementary operation of computing a square root. When the input is 𝜀 > 0, the speed 
of computation is at least 1 while when the input is 0, the speed is halved. Can this phenomenon be a basis for designing a ``zero 
detector'' or an ``equality detector''?

Arithmetic only requires composing finitely many elementary operations. Computation of general functions may need the use 
of power series and other techniques that involve limits and convergence. Approximating the value of a general function, using a 
power series for example, may require computing an arbitrarily large, even if finite, number of elementary operations. To compute 
a power series, we need to consider the initial rate of convergence of each elementary operation, not merely its asymptotic rate. The 
‘overhead’ time required in each elementary operation may add up to a significant amount when considering a large, possibly ifinite 
number of operations. Can our analysis be extended and what additional features or constraints are required when computing general 
functions?

An alternative approach, that does not require using power series, may be to develop specific algorithms for computing com

monly used functions such as exponentials and logarithms, based on mass-action kinetics and whose speeds are input-independent. 
A fruitful research direction may be to explore the computational reach of reaction network-based hardware by developing versatile 
algorithms that broaden the suite of possible computations at input-independent speeds. Conversely, hardware may impose additional 
constraints on the software thereby limiting computational accuracy or speed. Are there specific design aspects from the vantage of 
synthetic biochemistry or other practical engineering constraints that speed up or slow down computation? Multidisciplinary teams of 
researchers, representing synthetic biology, computer science as well as mathematics may be most poised to answer related questions 
and make rapid progress.

A research program could be founded on a broader territory of inquiry. As an instance, consider Boolean algebra, which is 
foundational to logical computations used in modern digital computers. One might ask: do there exist good, i.e. accurate and efficient, 
algorithms for performing Boolean algebra using reaction networks?
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