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Abstract

Models of reaction networks within interacting compartments (RNIC) are a generalization
of stochastic reaction networks. It is most natural to think of the interacting compartments as
“cells” that can appear, degrade, split, and even merge, with each cell containing an evolving
copy of the underlying stochastic reaction network. Such models have a number of param-
eters, including those associated with the internal chemical model and those associated with
the compartment interactions, and it is natural to want efficient computational methods for
the numerical estimation of sensitivities of model statistics with respect to these parameters.
Motivated by the extensive work on computational methods for parametric sensitivity anal-
ysis in the context of stochastic reaction networks over the past few decades, we provide a
number of methods in the RNIC setting. Provided methods include the (unbiased) Girsanov
transformation method (also called the Likelihood Ratio method) and a number of coupling
methods for the implementation of finite differences. We provide several numerical examples
and conclude that the method associated with the “Split Coupling” provides the most efficient
algorithm. This finding is in line with the conclusions from the work related to sensitivity
analysis of standard stochastic reaction networks. We have made all of the Matlab code used
to implement the various methods freely available for download.

Keywords: coupling methods, stochastic reaction networks, RNIC models.
AMS subject classifications: 60J27, 60J28, 60H35, 65C05

1 Introduction
The last few decades have seen a large amount of research focused on utilizing stochastic reaction
networks to understand myriad processes, including gene regulatory networks, viral and bacterial
infections, and more [11, 13, 16, 22, 26, 27, 29, 33, 34]. The standard mathematical model for a
stochastic reaction network treats the system as a continuous-time Markov chain on Zd≥0, where
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d is the number of species of the system, with reactions determining the state transitions of the
model. Such mathematical models are typically used under the assumption that the real-world
system being studied resides within a “well-stirred” environment. See [9,10] for a general (mathe-
matical) introduction to such models. These models are often termed “Gillespie” models in various
subfields of the biosciences due to the work by Dan Gillespie in the mid-1970s [19, 20].

The assumption that the system of interest resides within a well-stirred environment can be
generalized in numerous ways, depending on the problem being studied. For example, in some
situations it may be natural to track the position of individual molecules, either in a discretized
space or a continuous space setting [1, 14, 17, 23]. Another approach, and the one we take here, is
to assume the existence of multiple interacting “compartments” (or cells) each of which contains
an evolving copy of a given stochastic reaction network. This approach is useful in numerous
modeling scenarios including the dynamics of membrane-bound organelles [35], the study of clus-
tering proteins [32], and the dynamics of clonal cells during their development [31]. In [15], a
modeling framework was formalized for this type of system which can be briefly summarized in
the fallowing manner.

• There are a number of “compartments” (one can think of them as cells) that are interacting
dynamically. Following the language of [15], the four types of interactions for the com-
partments are: (i) inflows (compartments spontaneously appear at some rate), (ii) outflows
(compartments spontaneously disappear, or die), (iii) coagulation or the merger of two com-
partments, and (iv) fragmentation (a compartment divides into two compartments).

• Each compartment contains an evolving copy of a given stochastic reaction network. The
stochastic reaction networks evolve independently between compartment events/interactions.

• When a compartment appears, the initial state of its contents is chosen from a given distri-
bution on Zd≥0. We will later denote this distribution by µ.

• When a compartment disappears, its contents disappear as well.

• When compartments merge, their contents combine.

• When a compartment fragments, the contents are randomly split between the two compart-
ments.

A first comprehensive mathematical analysis of these models (with results related to such basic
questions as transience, recurrence, explosiveness, stationary behavior, etc.) can be found in [6].

Before continuing, we answer a potential question. Thinking of the compartments as cells, the
transitions for arrivals, departures/deaths, and fragmentation all make biological sense. However,
coagulation feels different. Therefore, it is reasonable to ask: in what circumstances is it reason-
able to include coagulation in the model? In [15], Duso and Zechner, who are much closer to
the biology than us, say the following: “Coagulation–fragmentation processes form an important
class of models to describe populations of interacting components (15), which have been used to
study biological phenomena at different scales, including protein clustering (29), vesicle traffick-
ing (30–32), or clone-size dynamics during development (33)” (Citations from [15]). For example,
in [31] (citation 33 in [15]), the authors state “Merger and fragmentation of labelled cell clusters
occur naturally because of large-scale tissue rearrangements during the growth and development
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of tissues.” Of course, if cell coagulation is not relevant to a particular model, then the rate of that
transition type should be set to zero.

These RNIC models have many parameters: those associated with the reaction network (evolv-
ing within each compartment), the parameters associated with the evolving compartment model,
the parameters of the initial distribution for when compartments appear, etc. When working with
any mathematical model a critical question is: how sensitive is the model to perturbations in its
parameters? As we are dealing with a stochastic process, the most natural way to pose this question
is as follows: what are the derivatives of the relevant expectations of the model? Here the “relevant
expectations” will depend upon the model being studied and the questions being posed, but could
include expected numbers of certain species (summed over all the compartments, perhaps) at a
given time, the probability of the model being in a certain region of state space at a given time, etc.
The study of such derivatives is typically called parametric sensitivity analysis and plays a critical
role in the computational study of stochastic models in all fields that utilize them [3, 12, 24, 28].

In this paper, we provide a number of computational methods that estimate derivatives of ex-
pectations of RNIC models. In particular, we provide a Girsanov transformation method (also
termed a likelihood transformation method), which is unbiased, and a number of finite difference
methods, which typically have very small biases. We do not provide any pathwise differentiation
methods (also termed Infinitesimal Perturbation Analysis) as stochastic reaction networks (and,
hence, RNIC models) nearly always have “interruptions,” ensuring these methods are not valid in
this context [21, 36]. The finite difference methods provided here are each based off a different
coupling strategy taken from the computational stochastic reaction network literature. These cou-
plings are: Common Random Variables (CRV) (i.e., using the same seeds for the random number
generator), the Common Reaction Path (CRP) method [30], and the Split Coupling method [3, 5].
We provide a number of numerical examples, with perturbations in both the chemical and compart-
ment parameters, and conclude that the Split Coupling should be the method of choice in nearly all
scenarios. We explicitly point out here that decades of thought and effort has gone into developing
these various methods for the “standard” stochastic reaction networks and a key contribution of the
current work is to determine how to modify these to the RNIC framework, and to do so in a single
work so that fair comparisons are possible.

The remainder of the paper is arranged as follows. In Section 2, we formally introduce the
relevant mathematical models, including both the standard model of stochastic reaction networks
and the RNIC model. In Section 3, we provide various computational methods for the estimation
of parametric sensitivities. In particular, we demonstrate how to implement the Girsanov transfor-
mation method and the Split Coupling in the RNIC context. This is a key contribution of this work.
In Section 4, we provide a number of computational examples. Finally, in Section 5, we discuss
our findings. In particular, we conclude that the method associated with the Split Coupling of [3,5]
is the most efficient in the RNIC setting and should be used in nearly all circumstances. In the
appendix Section A, and for the sake of completeness, we give a very brief introduction to Monte
Carlo methods in the context of estimating parametric sensitivities with finite difference methods.
In the appendix Section B, we provide a number of algorithms that are utilized for the standard
stochastic reaction network models (as introduced in Section 2).
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2 Mathematical models
We first introduce the standard model for stochastic reaction networks in Section 2.1. Next, in
Section 2.2, we introduce the RNIC model. We also provide in Algorithm 1 a pseudo-algorithm
for generating a single trajectory of an RNIC model.

2.1 Stochastic reaction networks
We begin with the definition of a reaction network.

Definition 2.1. A reaction network is a triple of non-empty, finite sets, usually denoted {S, C,R}.

1. Species, S: the components whose abundances we wish to model dynamically.

2. Complexes, C: non-negative integer linear combinations of the species.

3. Reactions,R: a binary relation on the complexes. The relation is often denoted “→”.

For y, y′ ∈ C with y → y′ ∈ R, we call y and y′ the source and product complexes of that reaction,
respectively. We write ∅ for the complex with all zero coefficients. 4

An example demonstrates the terminology.

Example 2.1. Consider a standard model of transcription and translation, with protein dimerization
(see Example 2.4 in [10]):

∅ →M (Transcription)
M →M + P (Translation)
M → ∅ (Degradation of mRNA)
P → ∅ (Degradation of protein)

2P → D (Dimerization)
D → ∅, (Degradation of dimer)

where M represents mRNA, P represents protein, and D represents dimer. We are assuming the
cell has one gene, and so we suppress that species.

For this model, the species are
S = {M,P,D},

the complexes are
C = {∅,M, P,M + P, 2P,D},

and the six reaction types are as above,R = {∅ →M, M →M + P, M → ∅, . . . }. �

From the reaction graph, a number of dynamical systems can be constructed. These include
discrete stochastic models, diffusion models, reaction-diffusion models (which also require a char-
acterization of the space within which the system resides), and ODE models. We introduce the
standard discrete-space, continuous-time stochastic model here, and point to [10] for a more thor-
ough introduction.
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To fix notation, we assume there are d species, which we label as {S1, . . . , Sd}. We will denote
the process by X , so that X(t) ∈ Zd≥0 gives the state at time t ≥ 0. Therefore, X(t) is a vector
giving the abundance of molecules of each species at the specified time. The state transitions for
the model are then determined by the different reactions. For the kth reaction, we let yk ∈ Zd≥0 and
y′k ∈ Zd≥0 be the vectors whose ith component gives the multiplicity of species i in the source and
product complexes, respectively, and let λk : Zd≥0 → R≥0 give the transition intensity, or rate, at
which the reaction occurs. (Note that in the biological and chemical literature transition intensities
are referred to as propensities [19, 20].) If the kth reaction occurs at time t, then the old state,
X(t−), is updated by addition of the reaction vector

ζk := y′k − yk (1)

and the new state is given as X(t) = X(t−) + ζk. Here, by X(t−) we mean the left-sided limit
lims→t− X(s). For example, if a model consists of the three species {S1, S2, S3} and if the reaction
type S1 + S2 → S3 takes place, then we would update with

yk =

1
1
0

 , y′k =

0
0
1

 , and ζk =

 −1
−1

1

 .
Denoting the number of times the kth reaction occurs by time t as Rk(t), simple bookkeeping

implies
X(t) = X(0) +

∑
k

Rk(t)ζk,

where the sum is over reactions. Note that each Rk is a counting process (starts at 0 and can only
change by increases of size +1) with intensity λk(X(t)). Letting {Yk} be independent unit-rate
Poisson processes, Kurtz’s representation (which is useful for both analysis and computation) has
Rk(t) = Yk(

∫ t
0
λk(X(s))ds) [10,25]. Hence, the model satisfies the the following equation, which

is often termed the random time change representation of Kurtz:

X(t) = X(0) +
∑
k

Yk

(∫ t

0

λk(X(s))ds

)
ζk, (2)

where the sum is over the reaction types. We will denote a family of such models, parameterized by
θ (which, in the case of stochastic mass-action kinetics—see below—is most likely a rate constant
of the system), as

Xθ(t) = Xθ(0) +
∑
k

Yk

(∫ t

0

λθk(X
θ(s))ds

)
ζk. (3)

The most common, though certainly not the only, choice of intensity function λk is that of
stochastic mass-action kinetics. The stochastic form of the law of mass-action says that for some
constant κk the rate of the kth reaction is

λk(x) = κk
∏
i

xi!

(xi − yk,i)!
(4)

where yk,i is the ith component of the source complex yk.1 The rate constants are typically placed
next to their reaction arrow in the reaction graph, as in (5) or (9), which are found later in the paper.

1We note that in [6], the intensity functions were defined slightly differently as λk(x) = κk
∏

i
xi

yk,i!(xi−yk,i)!
.
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2.2 Reaction Network within Interacting Compartments (RNIC)
We have already introduced the basic idea of the RNIC model in the introduction. Here we fill
in the necessary technical details. We point the interested reader to [6] for a full mathematical
introduction (including myriad theoretical results) for the model. Note that the detailed choices
we specify in this section, and especially in the pseudo-code provided at the end, are those that we
make in our Matlab code for the simulation of these processes (and which is freely available).

As mentioned in the introduction, the RNIC model consists of interacting compartments, each
of which contains an evolving copy of a given reaction network. Therefore, we begin by denoting
the reaction network by

I = {S, C,R}.
When assuming stochastic mass-action kinetics, we will denote the set of rate constants by K, and
denote

IK = {S, C,R,K}.
Turning to the compartment model, the number of compartments is modeled as a stochastic

reaction network as well. Specifically, by

∅
κI
�
κE

C
κF
�
κC

2C, (5)

with stochastic mass-action kinetics and where the rate constants have been placed next to the
respective reaction arrows with κI the rate constant for inflows, κE for exits, κF for fragmentations,
and κC for coagulations (following the terminology of [15] and [6]). We will denote by HK the
compartment reaction network (5) (where we have also expanded the set K to include the rate
constants for both the reaction network I and the compartment model).

Denote by MC(t) the number of compartments at time t ≥ 0. Then, following (2), the com-
partment model satisfies the stochastic equation

MC(t) = MC(0) + YI (κIt)− YE
(
κE

∫ t

0

MC(s)ds

)
+ YF

(
κF

∫ t

0

MC(s)ds

)
− YC

(
κC

∫ t

0

MC(s)(MC(s)− 1)ds

)
,

where YI , YE, YF , and YC are independent unit-rate Poisson processes.
Between the transition times of the Markov process MC each compartment contains an inde-

pendently evolving copy of the stochastic reaction network IK. We numerically order the compart-
ments and for i ∈ {1, . . . ,MC(t)} we denote the state of the stochastic reaction network evolving
in the ith compartment by Xi(t). We now simply need to specify what happens to the model at the
transition times of MC . We do that below. We point out that all choices of random variables below
are independent from each other and independent from the Poisson processes YI , YE, YF , and YC
mentioned above.

We will assume that a transition for MC takes place at time t. Hence, before the transition
there are exactly MC(t−) compartments (where, again, t− denotes a limit in t from the left). We
now consider each of the four possible transition types for MC . We note that the names of certain
indices below, including IndexDel, IndexFrag, ri1, and ri2, are the names of the indices utilized in
the Matlab code we are making available.
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1. Case 1: a new compartment arrives at time t. In short, in this case we append a new com-
partment at the end of our list and initialize the stochastic reaction network via a probability
distribution we denote by µ. Specifically, we do the following.

(a) Set MC(t) = MC(t−) + 1.

(b) Set Xi(t) = Xi(t−) for all i ∈ {1, . . . ,MC(t−)} (that is, the reaction networks within
each of the existing compartments remain the same).

(c) Initialize the stochastic reaction network of the new compartment. The state of the new
compartment will be drawn from a fixed probability measure µ on Zd≥0, where d is the
number of species in the reaction network model IK.

2. Case 2: a compartment exits at time t. In short, in this case, we delete a compartment at ran-
dom and shift the indices of the remaining compartments down appropriately. Specifically,
we do the following.

(a) Choose from {1, . . . ,MC(t−)} uniformly; with the chosen index called IndexDel.

(b) For i ∈ {1, . . . , IndexDel− 1}, set Xi(t) = Xi(t−).

(c) For i ∈ {IndexDel, . . . ,MC(t−)− 1}, set Xi(t) = Xi+1(t−) (that is, we shift indices
by 1).

(d) Set MC(t) = MC(t)− 1.

3. Case 3: a compartment fragments into two at time t. In short, in this case, one compartment
is chosen to divide. Each molecule of each species is chosen to either remain in the old
compartment, or be placed into a new compartment numbered as MC(t−) + 1. Specifically,
we do the following.

(a) Set MC(t) = MC(t−) + 1.

(b) Choose from {1, . . . ,MC(t−)} uniformly, with the chosen index called IndexFrag.

(c) For each species Sj ∈ S , we generate a binomial random variable with parameters
n = XIndexFrag,j(t−) (abundance of species Sj in compartment IndexFrag) and p = 1/2.

(d) The values given by the binomial random variables determine the state of XIndexFrag(t)
(i.e., they are the molecules that remain).

(e) The state of XMC(t)(t) is XIndexFrag(t−)− the binomials (i.e., these are the molecules
that moved).

4. Case 4: a coagulation (merger). In short, in this case two compartments are chosen to
merge. The contents are combined into one of the compartments and the other is deleted.
Specifically, we do the following.

(a) Choose two indices, ri1, ri2 ∈ {1, . . . ,MC(t−)} uniformly, with ri1 6= ri2.

(b) Combine the contents into compartment ri1: Xri1(t) = Xri1(t−) +Xri2(t−).

(c) Delete the compartment ri2 as detailed in Case 2 above.

(d) Set MC(t) = MC(t−)− 1.
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In agreement with the article [6], we will denote the stochastic process associated to the full
RNIC model by F sim (where the label “sim” denotes that this representation of the model is nat-
ural for simulations). Hence, F sim(t) determines MC(t) and each of Xi(t), i ∈ {1, . . . ,MC(t)},
for each t ≥ 0. The process F sim is a continuous-time Markov chain with discrete state space⋃∞
m=0

(
Zd≥0

)m, the space of finite tuples of Zd≥0 [6, Lemma 2.5]. For example, if d = 2 and
MC(t) = 3 a possible realization of F sim(t) is

F sim(t) =

([
4
5

]
,

[
0
10

]
,

[
17
2

])

which would have X1(t) =

[
4
5

]
, X2(t) =

[
0
10

]
, and X3(t) =

[
17
2

]
. When we wish to

denote a parameterized family, we will once again append our processes with a θ: F sim,θ, M θ
C , and

Xθ
i .

Having specified the model, we can present a pseudo-code for how to simulate a given RNIC
process. In the pseudo-code below, we do not specify the algorithms being used to simulate MC or
the stochastic reaction networks within each compartment, as we leave that up to the implementer.
Natural choices are the Gillespie algorithm [19, 20] or the next reaction method [2, 18]. These
can both be found in Appendix B. We will denote the initial distribution of MC by ν, the initial
distribution for the initial compartments by µ0, and the initial distribution for compartments that
arrive as µ. Note that it is possible, though not necessary, that µ0 = µ.

Algorithm 1 (Pseudo-code for simulating an RNIC model, F sim). Given: a stochastic reaction
network IK, the compartment model (5), the parameters of the model K, which consist of the rate
constants {κk} for IK, the parameters of the compartment model {κI , κE, κF , κC}, and initial
distributions ν, µ0, and µ.

Repeat steps 4 – 8 until a stopping criteria is reached. All calls to random variables are
independent from all others.

1. Determine MC(0) via ν.

2. For each i ∈ {1, . . . ,MC(0)} determine Xi(0) via µ0.

3. Set t = 0.

4. Using an exact simulation method (e.g., Gillespie’s algorithm—Algorithm 4—or the next
reaction method—Algorithm 5), determine the time ∆ until the next transition of the com-
partment model, MC .

5. Using an exact simulation method (e.g., Gillespie’s algorithm—Algorithm 4—or the next
reaction method—Algorithm 5), for each i ∈ {1, . . . ,MC(t)} simulate Xi from time t to
time t+ ∆.

6. Determine which type of transition occurs for the compartment model at time t+ ∆.

7. Update the model as detailed in the four cases listed above depending upon which type of
transition takes place for the compartment model.

8. Set t← t+ ∆.
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3 Methods for parametric sensitivities
We provide a number of methods for the estimation of parametric sensitivities of RNIC models.
In Section 3.1, we provide the (unbiased) Girsanov or Likelihood Ratio method in this setting. In
Section 3.2 we provide a number of coupling methods for the implementation of finite differences.

3.1 Likelihood Ratio, or Girsanov, transformation method
We provide the Likelihood Ratio method [12], often called the Girsanov transformation method
in the biosciences [28], for the RNIC model when the perturbed parameters are rate constants for
either the compartment model,HK, or the chemical model IK. There are other possible parameters
to consider, such as any parameters associated with the distributions ν, µ0, or µ. However, those
cases can be handled in a similar, and straightforward, manner.

While we do not provide formal mathematical justification for this method here (see [12])
we do try to provide some intuition by explaining how the method works for the estimation
d
dθ
E[f(Xθ(t))], where Xθ is a standard stochastic reaction network and t is some terminal time.

Extension to the RNIC model is then relatively straightforward.
Consider a reaction network with intensity functions {λθk}, which are parameterized by θ, and

associated jump directions {ζk}. Denote λθtot(x) =
∑

k λ
θ
k(x). The key point for this method is that

it proceeds by finding an appropriate function W θ, often called the “weight function,” so that

d

dθ
E[f(Xθ(t))] = E[f(Xθ(t))W θ(t)].

One can then estimate the derivative via Monte Carlo with independent samples of f(Xθ(t))W θ(t).
The function W θ is found by taking the derivative, with respect to the parameter θ, of the

logarithm of the density of the process up to time t. For example, suppose that X : [0, t]→ Zd≥0 is
a particular path of the process (that one may have simulated, for example). Then, for this particular
path, let t0 = 0, N(t) be the number of reactions that have taken place up to time t, ti be the time
of the ith transition (for i ≥ 1), k∗i be the index of the reaction type that takes place at time ti, and
∆i := ti+1 − ti be the holding time in state Xti . Thinking in terms of the Gillespie algorithm, i.e.,
which reaction happens next and when that reaction takes place, which are a discrete event and an
exponential holding time, respectively, it is then relatively straightforward to see [12, 28] that the
density of the process at time t ≥ 0 is proportional to(

N(t)∏
i=1

λθk∗i (X(ti−1)

λθtot(X(ti−1))︸ ︷︷ ︸
Which reaction

λθtot(X(ti−1))e−λ
θ
tot(X(ti−1))·∆i−1︸ ︷︷ ︸

Exponential holding time

)
· e−λθtot(X(tN(t)))(t−tN(t))︸ ︷︷ ︸

No reaction from tN(t) to t

=

N(t)∏
i=1

λθk∗i (X(ti−1))

 e−
∫ t
0 λ

θ
tot(X(s))ds.

Taking logarithms and derivatives is now straightforward, and we have

W θ(t) =

N(t)∑
i=1

d
dθ
λθk∗i (X(ti−1))

λθk∗i
(X(ti−1))

−
∫ t

0

d

dθ
λθtot(X(s))ds.
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Note that in the case of stochastic mass-action kinetics with θ = κj , we have the simple expressions

d
dθ
λθk∗i (x)

λθk∗i
(x)

=

{
1
κj

if k∗i = κj

0 else
, and

d

dθ
λθtot(x) =

1

κj
λθj(x).

An implementation of this method is given in Algorithm 6 in Appendix B.
We now turn back to the RNIC model. We will denote our statistic of interest as E[f(F sim,θ(t))],

where F sim,θ(t) is the state of the RNIC model at time t and f :
⋃∞
m=0

(
Zd≥0

)m → R is a
function of interest. We will denote by W θ the generated weight function. Hence, we utilize
the algorithms below to estimate ∂

∂θ
E[f(F sim,θ(tend))] by averaging the independent realizations

f(F sim,θ
[`] (tend))W

θ
[`](tend), with [`] enumerating the independent calls to the algorithm.

In fact, the details above pertaining to the Girsanov method for standard stochastic reaction
networks allow us to immediately provide the Girsanov transformation method when the perturbed
parameter is one of the rate constants associated with the compartment model,HK. This is because
the compartment model can be simulated with no knowledge of the internal reaction networks.
Specifically, the following pseudo-algorithm works:

1. Utilize Algorithm 6, the standard Girsanov method, to simulate the compartment model.

2. In between compartment events, simulate the independently evolving reaction networks as
in Step 5 of Algorithm 1.

We turn to the case when the parameter of interest is in the reaction network {IK}. Because the
reaction networks within each compartment evolve independently, we may sum the representative
weight functions from the calls to IK between compartment events. Hence, simulation in this case
is also straightforward. However, since this situation is different from what is standard, we provide
a pseudo-algorithm.

Algorithm 2 (Girsanov transformation method if the perturbed parameter is from the reaction
network model, IK). Given: a stochastic reaction network IK, the compartment model (5), the
parameters of the model K, which consist of the rate constants {κk} for IK and the parameters of
the compartment model {κI , κE, κF , κC}, initial distributions ν, µ0, and µ.

All calls to random variables are independent from all others.

1. Determine MC(0) via ν.

2. For each i ∈ {1, . . . ,MC(0)} determine Xi(0) via µ0.

3. Set W θ = 0 and set t = 0.

4. Using Gillespie’s Algorithm 4, determine the time ∆ until the next transition of the compart-
ment model, MC .

5. If t+ ∆ ≥ tend, set ∆ = tend − t and break after step 6.

6. Using the reaction network Girsanov transformation Algorithm 6, for all i ∈ {1, . . . ,MC(t)}
simulate Xi from time t to time t+ ∆ and let Wi denote the output weight function.

Set W θ ← W θ +
∑MC(t)

i=1 W θ
i .

7. Determine which type of transition occurs for the compartment model at time t+ ∆.
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8. Update the RNIC model as detailed in the four cases listed in Section 2.2 depending upon
which type of transition takes place for the compartment model.

9. Set t← t+ ∆.

Output F sim,θ(t) and W θ.

3.2 Finite difference methods
As detailed in Appendix A, the basic idea of finite difference methods is to use the following
straightforward approximation,

d

dθ
E[f(F sim,θ(t))] ≈ E[f(F sim,θ+h(t))− f(F sim,θ(t))]

h

≈ 1

n

n∑
`=1

1

h

(
f(F sim,θ+h

[`] (t))− f(F sim,θ
[`] (t))

)
,

(6)

where the key fact is that F sim,θ+h
[`] and F sim,θ

[`] are generated on the same probability space. That is,

F sim,θ+h
[`] and F sim,θ

[`] are coupled so that Var
(
f(F sim,θ+h

[`] (t))− f(F sim,θ
[`] (t))

)
is reduced.2

We will use four basic coupling methods, each with different “flavors” depending on what type
of parameter is being perturbed. We begin with a simple introduction to each.

Method 1: Independent Samples. This is straightforward. You simply generate the processes
independently. This should be viewed as the base case.

Method 2: Common Random Variables (CRV). This is nearly as simply as generating the pro-
cesses independently and consists of simply reusing the seed of your random number generator for
the calls to the different processes. Alternatively, and equivalently, you can pre-generate vectors of
uniform[0,1]—or other—random variables that can be used to simulate the process.

Method 3: Common Reaction Path method (CRP). This method was developed for standard
stochastic reaction networks, so we first explain it in that language. Hence, consider a stochastic
reaction network with jump directions {ζk} and intensity functions {λθk}, which are parameterized
by θ. The Common Reaction Path method for such a process couples Xθ and Xθ+h by reusing the
unit-rate Poisson processes in (3) [30]. That is, Xθ and Xθ+h are coupled in the following manner,

Xθ+h(t) = Xθ+h(0) +
∑
k

Yk

(∫ t

0

λθ+hk (Xθ+h(s))ds

)
ζk

Xθ(t) = Xθ(0) +
∑
k

Yk

(∫ t

0

λθk(X
θ(s))ds

)
ζk,

where the key point is that the same unit-rate Poisson processes, {Yk}, are utilized for both Xθ and
Xθ+h.

2In the appendix we introduced the centered finite difference, whereas here we are using the forward difference.
The variance is not affected by this choice and so we utilize the less notationally cumbersome choice here.
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Method 4: Split Coupling (SC). As with the method above, this method was developed for stan-
dard stochastic reaction networks, so we first explain it in that context. Thus, consider a stochastic
reaction network with jump directions {ζk} and intensity functions {λθk}, which are parameterized
by θ. The Split Coupling method for such a process couples Xθ and Xθ+h by constructing them in
the following manner [3, 5],

Xθ+h(t) = Xθ+h(0) +
∑
k

Yk,1

(∫ t

0

min{λθ+hk (Xθ+h(s)), λθk(X
θ(s))}ds

)
ζk

+
∑
k

Yk,2

(∫ t

0

λθ+hk (Xθ+h(s))−min{λθ+hk (Xθ+h(s)), λθk(X
θ(s))}ds

)
ζk

Xθ(t) = Xθ(0) +
∑
k

Yk,1

(∫ t

0

min{λθ+hk (Xθ+h(s)), λθk(X
θ(s))}ds

)
ζk

+
∑
k

Yk,3

(∫ t

0

λθk(X
θ(s))−min{λθ+hk (Xθ+h(s)), λθk(X

θ(s))}ds
)
ζk,

(7)

where {Yk,1, Yk,2, Yk,3} are all independent unit-rate Poisson processes. Note that both processes
reuse the jump processes associated with the Poisson processes {Yk,1}. For the purposes of this
paper, we will simply note that the Split Coupling works (in that Xθ and Xθ+h have the correct
distributions) because of the fact that Poisson processes are additive in that if Y1, Y2, and Y3 are unit-
rate Poisson processes, and if λ1, λ2 are integrable functions, then Y1(

∫ t
0
λ1(s)ds) + Y2(

∫ t
0
λ2(s))

is equal in distribution to Y3(
∫ t

0
λ1(s) + λ2(s)ds).

The question now is how we implement these basic methods in the RNIC setting. There are
two distinct cases to consider: whether the parameter being perturbed is a compartment parameter
(κI , κE, κF , or κC) or is a parameter from the reaction network (e.g., a rate constant for stochastic
mass-action kinetics). One case is demonstrably more straightforward, and so we start with that.

Case 1: θ is a parameter of the reaction network, I.

This case is particularly nice because the compartment model (5), whose transitions and rates
do not depend upon the states of the chemical systems, can be shared between F sim,θ and F sim,θ+h.
Hence, only a slight modification to Algorithm 1 is needed. We provide that modification here
assuming a Gillespie implementation for the simulation of the compartments.

Algorithm 3 (Generic coupling for an RNIC model when perturbed parameter is from the reaction
network, I). Given: a reaction network I with jump directions {ζk} and intensity functions λθk,
the compartment model (5) with parameters {κI , κE, κF , κC}, initial distributions ν, µ0, and µ.

All calls to random variables are independent from all others.

1. Determine MC(0) via ν.

2. For each i ∈ {1, . . . ,MC(0)} determine Xθ
i (0) via µ0 and set Xθ+h

i (0) = Xθ
i (0).

3. Set t = 0.

4. Using Gillespie’s Algorithm 4, determine the time ∆ until the next transition of the compart-
ment model, MC .

5. If t+ ∆ ≥ tend, set ∆ = tend − t and break after step 6.
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6. Using your desired coupling method (of the four above), for each i ∈ {1, . . . ,MC(t)} simu-
late Xθ

i and Xθ+h
i from time t to time t+ ∆. Note the following.

• For independent realizations, this step amounts to making two independent calls to an
exact simulation method, as can be found in Appendix B.

• For the CRV method, this step consists of generating a new seed for each compartment
and using that seed for both calls to the exact simulation method. Equivalently, one
can simply pass a given vector of random variables to each of the two calls of an exact
simulation method, and use those random variables to construct the processes. We
chose the latter option of passing a vector of random variables.

• For the CRP method, this step consists of generating new unit-rate Poisson processes
for each reaction type in each compartment (via a sequence of independent unit-rate
exponentials) and utilizing those Poisson processes to separately construct both Xθ

i

and Xθ+h
i on [t, t+ ∆].

• For the Split Coupling, this step simply consists of simulating (7) within each compart-
ment. This can be done in a straightforward manner via Gillespie’s algorithm (since
(7) is also a Markov process) or the next reaction method [3, 5].

7. Determine which type of transition occurs for the compartment model at time t+ ∆.

8. Update the RNIC model as detailed in the four cases listed in Section 2.2 depending upon
which type of transition takes place for the compartment model. (See below for more details.)

9. Set t← t+ ∆, and return to step 4.

Output F sim,θ(tend) and F sim,θ+h(tend).

Remark 1. It is worth delving a bit into step 8 above in order to ensure that the coupling is as tight
as possible, with special focus on when a fragmentation event takes place. We do the following for
all of our simulations. There are, of course, four cases: one for each of the possible compartment
events.

1. If the transition of the compartment model is an arrival, then the new compartment is initial-
ized via µ once and that value is assigned to both the θ process and the θ + h process.

2. If the transition of the compartment model is departure/exit, then the compartment deleted
is the same for both processes.

3. If the transition of the compartment model is a coagulation (merger), then the two compart-
ments that merge are the same for both the θ and θ + h process. Moreover, the choice of
which of the two is deleted (and which collects the material) is also the same.

4. If the transition of the compartment model is a fragmentation, then the compartment cho-
sen for splitting is the same for both processes. However, how the contents of the chosen
compartment are divided should be considered carefully. For example, in our single-path
simulations our splitting rule is the following: each molecule of each species will choose its
compartment via a fair coin flip. Therefore, when generating a single path (i.e., no coupling)
we may simply do the following: for each species, generate a binomial random variable with
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parameters m = # of that species present in the chosen compartment and p = 1/2. How-
ever, for our coupled processes it is possible (and even likely) that the compartment chosen
will have different numbers of each species for the θ and θ + h processes. Because of this,
we suggest (and carry out) the following.

Suppose it is the ith compartment chosen for fragmentation and the jth species has abun-
dances Xθ

i,j and Xθ+h
i,j , respectively. Suppose further that Xθ

i,j ≤ Xθ+h
i,j (with a symmetric

construction in the other case). Then, for the θ process, we choose a binomial random vari-
able with parameters m = Xθ

i,j and p = 1/2. Call that value M1. For the θ + h process,
we choose a binomial random variable with parameters M2 = Xθ+h

i,j − Xθ
i,j and p = 1/2,

and then add that value to M1. We carry out that basic idea for each j ∈ {1, . . . , d}. In this
manner, we have coupled the splitting (and therefore hopefully the processes) as tightly as
possible. �

We make one further comment regarding the Common Reaction Path method. We noted ex-
plicitly above that when the CRP method is being used, new unit-rate Poisson processes are to
be utilized for each reaction network between each transition of the compartment model. This is
done for practical purposes: since the compartments are constantly merging, fragmenting, etc., it
would be unclear which Poisson processes go with which compartment. However, because of that
choice, this method is actually closer to the “local-CRP” method introduced in [8]. In that paper,
it was proven that as the number of replacements of the Poisson processes increases, the coupled
processes converge in distribution to the coupled processes generated via the Split Coupling. We
will see this play out in our examples of Section 4 and it explains why the variance of the CRP
method, as we have implemented it, closely matches that of the Split Coupling in the RNIC setting.

Since we expect the CRP and Split Coupling methods to have similar variances when the
perturbed parameter is from the chemical model, it is reasonable to speculate that the methods are
equally viable. This is false, as the CRP method takes longer than the Split Coupling to generate
a given number of coupled paths. This happens for two reasons. First, there is slightly more
computational overhead associated with the CRP method as it must generate the Poisson processes
to be shared before the simulation. This causes us to generate the Poisson processes for longer
times than we will eventually need (since we do not know, a priori, how deep into its own time-
frame the Poisson processes will be explored). Second, and more importantly, the Split Coupling
makes only a single call to a path simulator, which simultaneously generates the coupled pair.
Moreover, the processes generated via the Split Coupling share many transitions, reducing the
computational overhead substantially (by up to a factor of 2). These observations play out in our
examples later in the paper. Hence, we will conclude that the CRP method should never be used
over the Split Coupling in the RNIC setting.

Case 2: θ is a parameter of the compartment modelH.

Now the compartment processesM θ
C andM θ+h

C eventually diverge and the two processes F sim,θ

and F sim,θ+h can no longer share the compartment model. We cover our four methods in this case.

Independent samples. We generate the process F sim,θ via Algorithm 1, change the parameter, and
generate the process F sim,θ+h via Algorithm 1. The processes are constructed independently.

Common Random Variables. We fix a seed of the random number generator we have not used
as of yet. We generate the process F sim,θ via Algorithm 1, change the parameter, and generate the
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process F sim,θ+h via Algorithm 1 using the same seed.

Common Reaction Path. We only couple the processes F sim,θ and F sim,θ+h via the compartments
(utilizing the CRP method) and the compartment events. We do not couple the stochastic reac-
tion networks taking place within the compartments between the events. Note that to couple the
processes as tightly as possible, we need to send multiple vectors of random variables for the gen-
eration of our two processes: one or more vectors for each possible compartment event that can
take place, as well as the needed Poisson processes for the compartment model. Specifically, we
generate the following random variables and processes and use them to generate both F sim,θ and
F sim,θ+h:

• The Poisson processes YI , YE, YC , YF (generated as a vector of unit-exponentials);

• A vector of uniform[0,1] random variables to determine the initial values of the compart-
ments (both at time 0 and those that arrive);

• A vector of uniform[0,1] random variables to determine which compartment is chosen for
deletions;

• A vector of uniform[0,1] random variables to determine which compartments coagulate;

• A vector of uniform[0,1] random variables to determine which compartment fragments;

• A vector of uniform[0,1] random variables to determine the needed binomial random vari-
ables for a fragmentation event.

These vectors of random variables are utilized in the obvious way, but we point to the freely
available Matlab code for precise details. We note that the use of the uniform random variables to
generate the binomial random variables for fragmentation events is one of the slowest steps of our
implementation.

Split Coupling. We couple the compartment models M θ
C and M θ+h

C using the split coupling.
Events that take place using the split coupling can be “shared” (which occur when one of the
counting processes associated to Yk,1 in (7) take place–these have intensity functions that are the
minimum of the two individual intensity functions) or not. If the event is not shared, then one
simply updates the relevant compartment model (either M θ

C or M θ+h
C ) as usual. If the event is

shared, then the following procedures are followed:

1. If the event is an arrival, both new compartments are initialized from µ with the same value.

2. If the event is a deletion, the same uniform[0,1] random variable is used to determine which
compartment is deleted. Note that this does not necessarily mean the processes will delete
the same numbered compartment.

3. If the event is a coagulation, the same uniform[0,1] random variables are used to determine
which compartments merge for the two processes.

4. If the event is a fragmentation, the same uniform[0,1] random variable is used to determine
which compartment fragments. Moreover, we utilize the same procedure for fragmentation
that was detailed in point 4 of Remark 1.
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As always, we point the reader to the freely available Matlab code for the specific implementation.
When using the split coupling for the compartment model, compartment events take place

simultaneously for the two processes F sim,θ and F sim,θ+h. Hence, we are also able to use the
split coupling for the chemical processes, {Xθ

i } and {Xθ+h
i } between such events (as in the case

when a chemical parameter is being perturbed). Specifically, we couple the chemical processes
sequentially as much as possible. That is, we generate

(Xθ
1 , X

θ+h
1 ), . . . (Xθ

m, X
θ+h
m ), where m = min{M θ

C ,M
θ+h
C },

using the split coupling. Then, for any other compartments (for example, if M θ
C > M θ+h

C ) we
simply generate those paths independently.

We will also later provide results for when we use the Split Coupling on the compartment
model (as detailed above) but not for the chemical models. In that case, we generate the processes
{Xθ

i } and {Xθ+h
i } independently. We do this solely to compare with the CRP method (in which

coupling of the chemical models is also not done).

4 Examples
We provide two RNIC models as test examples for the various methods outlined above. For each
model, we will perturb both a chemical parameter and a compartment parameter. Overall, the
examples demonstrate clearly that the split coupling should be chosen as the default method no
matter the parameter being simulated or the time-frame of the simulation.

Example 4.1. Birth and death. Our first example is perhaps one of the simplest RNIC models,
though it presents a nice test case. The model consists of a chemical system that is a birth and
death process (termed an M/M/∞ queue in the queueing literature) and a compartment model
that is also a birth and death process. Specifically, we have the following:

(Chemistry) ∅
κb


κd
S, (Compartment) ∅

κI


κE
C, (Initial distribution) Poisson(λ).

Hence, both the fragmentation (κF ) and coagulation (κC) parameters for the compartment model
are set to zero, and so the compartments themselves do not interact. This model was considered
as an example RNIC model in [15] and the chemical portion was utilized as an example in [3],
where the split coupling was introduced in the context of parametric sensitivity analysis. Following
[15], we will take the rate constants for the chemical model to be κb = 1 and κd = 0.1 and for
the compartment model to be κI = 1 and κE = 0.01. Also following [15], we set λ = 10,
so that compartments arrive in equilibrium [4]. We initialize the RNIC model itself with zero
compartments. Finally, we will estimate

d

dκb
E[Total S] and

d

dκE
E[Total S],

where “Total S” is the sum of the number of S molecules across all compartments.
We begin by considering d

dκb
E[Total S]. Since κb is a parameter of the chemical model, we

utilize Algorithm 2 for the Girsanov method and Algorithm 3 for the finite difference methods.
For each method, we utilized n = 1,000 paths to estimate the derivative. For the finite difference
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Method Time to generate 1,000 paths
Girsanov 75 seconds
Independent samples, not sharing compartment model 149 seconds
Common Random Variables, not sharing compartment model 151 seconds
Independent samples, shared compartment model 139 seconds
Common Random Variables, shared compartment model 201 seconds
Common Reaction Path, shared compartment model 426 seconds
Split Coupling, shared compartment model 175 seconds

Table 1: Simulation times for n = 1,000 paths to be generated for each method for the estimation
of d

dκb
E[Total S]. For the finite difference methods, a “path” consists of a realization of the cou-

pled processes (F sim,θ+h, F sim,θ), whereas a “path” for the Girsanov method consists of generating
F sim,θ and the weight function W θ.

methods, each “path” consists of a realization of the coupled processes (F sim,θ+h, F sim,θ) (there-
fore, we end with 1,000 copies of each of F sim,θ and F sim,θ+h). Moreover, we used a perturbation
of h = 1/10.

In Figure 1 we report the estimator variances

Var
(
f(F sim,θ(t)) ·W (t)

)
n

and
Var
(
f(F sim,θ+h(t))− f(F sim,θ(t))

)
hn

, (8)

for the Girsanov and finite difference methods, respectively, where f is the function that returns
“Total S”, and W is the weight function for the Girsanov method. We explicitly point out that the
Split Coupling and the Common Reaction Path method have nearly identical estimator variances
(as expected from [8]), and both are substantially lower than the other methods. We also note that,
for the sake of comparison, we have provided two methods not detailed in the previous section: the
use of independent samples and Common Random Variables that do not share the compartment
model (making these the most naive methods possible). We do so to be able to visualize the benefit
of coupling through the compartments, which is substantial.

While the Split Coupling and the Common Reaction Path method provide the lowest, and
nearly identical, estimator variances, that does not mean they are equal in quality. As described in
the previous section, this is because our implementation of the Common Reaction Path method is
more like the “local” Common Reaction Path method of [8], in which the shared unit-rate Poisson
processes are replaced between every compartment event. We provide in Table 1 the time required
to generate these 1,000 paths (using the same computer under similar circumstances).

A few notes are in order.

• Because there is no coupling, the Girsanov method is expected to require at most one-half
the simulation time of any other method. Note, however, that the faster simulation time is
far outweighed by the high variance of the method.

• The Common Reaction Path method takes significantly longer than any other method. This
is due to the fact that we needed to pre-allocate the random vectors for the shared unit-
rate Poisson processes for each reaction network, within each compartment, between each
compartment event. Of course, part of the dramatic increase in simulation time could be due

17



Method Time to generate 1,000 paths
Girsanov 77 seconds
Independent samples, no compartment coupling 148 seconds
Common Random Variables, no compartment coupling 150 seconds
Common Reaction path, compartment coupling only 176 seconds
Split Coupling, compartment and chemistry both coupled 171 seconds
Split Coupling, compartment coupling only 137 seconds

Table 2: Simulation times for 1,000 paths to be generated for each method for the estimation of
d

dκE
E[Total S]. We note that for the finite difference methods, a “path” consists of a realization

of the coupled processes (F sim,θ+h, F sim,θ), whereas a “path” for the Girsanov method consists of
generating F sim,θ and the weight function W θ.

to either our implementation or the use of Matlab (as opposed to Python or C++). However,
as there is always extra overhead with the method, it will always be slower than the Split
Coupling method. Also, because of the results of [8], it will always have a similar variance
to the split coupling method. Hence, we suggest it never be used.

Now we turn to estimating d
dκE

E[Total S]. As κE is a parameter of the compartment model,
there is no longer the possibility of sharing the compartment model. We once again simulated n =
1,000 paths of the processes, to time 500, while now using h = 1/1000 (which is, once again, one-
tenth the value of the parameter). See Figure 2 for the estimator variances of the various methods.
See Table 2 for the times required to generate the 1,000 paths for each method. We note that, once
again, the Split Coupling method is the most efficient. �

Example 4.2 (Genetic model with coagulation). Our second example has a chemistry that consists
of transcription, translation, and dimerization of the resulting protein. This particular model is
Example 2.4 in [10], and consists of the following set of reactions

∅ κ1→M

M
κ2→M + P

M
dM→ ∅

P
dP→ ∅

2P
κ3→ D

D
dD→ ∅,

(9)

with κ1 = 200, κ2 = 20, dM = 25, dP = 1, κ3 = 0.01, and dD = 1. We will assume that each
cell/compartment has one gene, and so we suppress that species. Hence, this is a three species
model with S = {M,P,D}. For the compartment model, we have

∅
κI
�
κE

C
κF
�
κC

2C,

κI = 10, κE = 3.5, κF = 3, and κC = 0.1. We will initialize the RNIC model with a single
compartment with zero copies of each species. Moreover, we will initialize each compartment that
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(a) Girsanov transformation method
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(b) Compartment model not shared
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Figure 1: Estimator variances (8) for d
dκb

E[Total S] using various methods. Variances for the dif-
ferent estimators generated via n = 1, 000 paths (for each method) and a value of h = 1/10 for
each of the finite difference methods. Note the vastly different scales on the y-axis.
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(a) Girsanov transformation method
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only compartments coupled
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(b) Other methods

Figure 2: Estimator variances (8) for d
dκE

E[Total S] using various methods. Variances for the
different estimators generated via n = 1, 000 paths (for each method) and a value of h = 1/1000
for each of the finite difference methods. Note that the Split Coupling, with both the compartment
model and chemistry model being coupled, as detailed at the end of Section 3.2, has by far the
lowest variance.

appears with a reaction network with zero copies of each species. Finally, we will use our methods
to estimate

d

dκ2

E[Total dimers] and
d

dκF
E[Total dimers],

where “Total dimers” is the sum of the number of dimers across all compartments.
See Figure 3 for the variances of the different methods when estimating d

dκ2
E[Total dimers].

We note that, as expected, the simple act of sharing the compartment model provides the lion
share of the variance reduction. We also note that the Split Coupling provides an estimator with
such a low variance that it is difficult to differentiate from the x-axis. We therefore zoom in
and provide in Figure 4 a plot of the three methods with the lowest estimator variance. In each,
the compartment model is shared between the coupled processes (as detailed in Algorithm 3). The
chemical models are coupled in the following ways: Common Random Variables (CRV), Common
Reaction Path (CRP), and the Split Coupling. As predicted by the work in [8], and as seen in
the previous example, the CRP method and the Split Coupling method provide nearly identical
variances. Finally, in Table 3, we provide the simulation time required required for the various
methods. As in the previous example, the Split Coupling, with shared compartments, is clearly the
most efficient.

We turn to estimating d
dκF

E[Total dimers]. We once again simulatd n = 10,000 paths of the
process, to time 10, while using h = 1/10. Figure 5 provides plots of the estimator variance for
each method. We note that up through time 4, the Girsanov method has a lower variance than
the split coupling method. However, as expected, the variance of the Girsanov method increases
monotonically as time increases and quickly becomes significantly higher than the Split Coupling.
We do not provide a table of simulation times, as they are similar to the case when κ2 was perturbed.
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Figure 3: Estimator variance for d
dκ2

E[Total dimers] using various methods. Variances for the
different estimators generated via n = 10,000 paths (for each method) and a value of h = 1/10 for
each of the finite difference methods. We leave out the Common Reaction Path method since it is
indistinguishable from the Split Coupling and the x-axis.

Method Time to generate 10,000 paths
Girsanov 344 seconds

Independent samples, not sharing compartment model 720 seconds
Common Random Variables, not sharing compartment model 747 seconds

Independent samples, shared compartment model 662 seconds
Common Random Variables, shared compartment model 1002 seconds

Common Reaction path, shared compartment model 1080 seconds
Split Coupling, shared compartment model 517 seconds

Table 3: Simulation times for 10,000 paths to be generated for each method for the estimation of
d
dκ2

E[Total dimers]. We note that for the finite difference methods, a “path” consists of a realization
of the coupled processes (F sim,θ+h, F sim,θ), whereas a “path” for the Girsanov method consists of
generating F sim,θ and the weight function W θ.
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Figure 4: Estimator variance for d
dκ2

E[Total dimers] using various methods. Each method shares
the compartment model. However, the chemical models are coupled in various ways including:
Common Random Variables, Common Reaction Path, and the Split Coupling. Variances for the
different estimators generated via n = 10,000 paths and a value of h = 1/10.
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Figure 5: Estimator variance for d
dκF

E[Total dimers] using various methods. Variances for the
different estimators generated via n = 10,000 paths (for each method) and a value of h = 1/10 for
each of the finite difference methods.

As with the previous examples, we conclude that the Split Coupling is the most efficient estimator
of the desired derivative.

We note that the CRP method provides a variance that appears to be growing. This behavior is
in line with the observations made in [3], where it was observed that the processes generated via
the CRP method decouple as time increases, in which case the variance of the CRP method should
approach that of independent samples. To confirm this behavior, we simulated the CRP method to
time 40 and provide the relevant plot in Figure 6.

5 Discussion
In this paper, we have provided a comprehensive look at Monte Carlo methods for RNIC models,
as introduced in [6, 15]. In particular, we have synthesized decades of work related to parameteric
sensitivity analysis for stochastic reaction networks and succinctly developed each of the relevant
methods for this new, and more complex, modeling choice.

In terms of guidance, it is clear that the Split Coupling method introduced here for RNIC
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Figure 6: Estimator variance for d
dκF

E[Total dimers] using the CRP method. Of note is that the
variance grows monotonically in time and seems to converge to the limiting variance achieved via
the use of independent paths.
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models is the most efficient method and we recommend its use over the others. Of course, if an
unbiased method is desired for any reason, or if the simulation time required is particularly short,
then the Girsanov transformation method can be used.

The RNIC model introduced here is the most “basic” version of the model, however it can
be generalized in number of ways. For example, it is possible to allow the transition rates of the
compartment model (e.g., the fragmentation rate) to depend upon the contents of the compartments
[7, 15]. More thought will need to be given as to how to implement the various methods in this
case.

A Monte Carlo and finite difference methods for parametric
sensitivities

The basic theory of Monte Carlo and finite difference methods for parametric sensitivities can be
found in a multitude of papers and textbooks. The material presented here is added solely for
completeness and is similar to that found in [3, Section 2.1].

Let Xθ : R≥0 → X be a family, parameterized by θ ∈ R, of continuous-time stochastic
processes with state space X. In the setting of the current paper, Xθ is a continuous-time Markov
chain with a discrete state space. We are assuming θ is one-dimensional here, but everything
extends in the obvious manner if θ ∈ RK for some finite, positive integer K.

Let f : X→ R be a function of the state of the system that gives a measurement of interest and
define

J(θ) := E
[
f(Xθ(t))

]
.

The problem of interest is to efficiently estimate d
dθ
J(θ) = J ′(θ), and to do so using finite differ-

ence methods with Monte Carlo. (The other method utilized in this paper, a Girsanov or Likelihood
Transformation method, is discussed in Section 3.1.)

In order to estimate J ′(θ), it is natural to utilize a centered finite difference:

J ′(θ) ≈
E
[
f(Xθ+h/2(t))

]
− E

[
f(Xθ−h/2(t))

]
h

, (10)

as its bias is O(h2), as h → 0 [12]. This should be compared with the forward difference, which
has a bias of O(h)

J ′(θ) =
E
[
f(Xθ+h(t)

]
)− E

[
f(Xθ(t))

]
h

+O(h).

The estimator for (10) using centered finite differences is

Dn(h) =
1

n

n∑
`=1

d[`](h), (11)

with

d[`](h) =
f(X

θ+h/2
[`] (t))− f(X

θ−h/2
[`] (t))

h
, (12)
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where Xθ
[`] represents the `th path generated with parameter choice θ, n is the number of paths

generated, and the d[`](h) are generated independently.
Many computations are performed with a target variance (which yields a target size of the

confidence interval). Denoting the target variance by V ∗, we see that the number of paths required
is approximated by the solution to

Var

(
1

n

n∑
`=1

d[`](h)

)
=

1

n
Var(d(h)) = V ∗ =⇒ n =

1

V ∗
Var(d(h)).

Thus, decreasing the variance of d(h) lowers the computational complexity (total number of com-
putations) required to solve the problem.

The basic idea of coupling is to lower the variance of d(h) by simulating Xθ+h/2 and Xθ−h/2

simultaneously, i.e., generating them on the same probability space, so that the two processes
are highly correlated or “coupled.” That is, instead of generating paths independently, we want
to generate a pair of paths (Xθ+h/2, Xθ−h/2) so that the variance of f(Xθ+h/2) − f(Xθ−h/2) is
reduced. The basic idea of any such coupling is to reuse, or share, some portion of randomness in
the generation of each process. The couplings utilized in this paper, found in Section 3, include
using Common Random Variables (i.e., simply reusing the seed of the random number generator
before generating each path), a version of the Common Reaction Path method [30], and a version
of the Split Coupling [3].

B Standard algorithms for stochastic reaction networks
We provide the Gillespie algorithm [19,20] and the next reaction method [2,18], which are the two
exact simulation methods that are most widely used. We also provide a Gillespie version of the
Girsanov transformation method.

We remind that throughout this work, we assume a reaction network with reaction vectors
denoted by ζk ∈ Zd, as in (1), and intensity functions (or rate functions) denoted by λk, where we
have indexed the reactions by k. For the sake of clarity, we will denote (in this section only) the
number of reaction types by R.

We first provide Gillespie’s algorithm [19, 20].

Algorithm 4 (Gillespie’s algorithm). Given: a reaction network with reaction vectors {ζk}Rk=1 and
intensity functions {λk}Rk=1, an initial distribution, µ, on Zd≥0.

Repeat steps 3 – 8 until a stopping criteria is reached. All calls to random variables are
independent from all others.

1. Determine X(0) via µ.

2. Set t = 0.

3. For each k ∈ {1, . . . , R}, determine λk(X(t)) and set λtot =
∑R

k=1 λk(X(t)).

4. Let u1, u2 be independent random variables that are uniformly distributed on [0, 1].

5. Set ∆ = − ln(u1)/λtot.
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6. Find ` ∈ {1, . . . , R} so that

1

λtot

`−1∑
k=1

λk(X(t)) ≤ u2 <
1

λtot

∑̀
k=1

λk(X(t)).

7. Set X(t+ ∆) = X(t) + ζ`.

8. Set t← t+ ∆.

We now provide the next reaction method, as it appeared in [2]. Note that this algorithm is
simply a method for simulating Kurtz’s representation (2). Essentially the same algorithm (though
with the addition of the usage of index priority queues) appeared in [18].

Algorithm 5 (Next Reaction method [2]). Given: a reaction network with reaction vectors {ζk}Rk=1

and intensity functions {λk}Rk=1, an initial distribution, µ, on Zd≥0.
Repeat steps 5 – 10 until a stopping criteria is reached. All calls to random variables are

independent from all others.

1. Determine X(0) via µ.

2. Set t = 0.

3. For each k ∈ {1, . . . , R}, set Tk = 0.

4. Let {ek}Rk=1 be a collection of independent unit-exponential random variables and for each
k ∈ {1, . . . , R}, set Pk = ek.

5. For each k ∈ {1, . . . , R}, determine λk(X(t)).

6. Find the minimum of the values
{

Pk−Tk
λk(X(t))

}R
k=1

. Denote the minimum by ∆ and denote the
index of the minimum value by `.

7. Set X(t+ ∆) = X(t) + ζ`.

8. For each k ∈ {1, . . . , R}, set Tk = λk(X(t)) ·∆.

9. Set P` ← P` + e0, where e0 is a unit-exponential random variable (independent from previ-
ous).

10. Set t← t+ ∆.

We turn to the Girsanov transformation method, often called the Likelihood Transformation
method outside of the biosciences. See either [28] or [12] for relevant references. For con-
creteness, we will assume stochastic mass-action kinetics and we suppose that we are comput-
ing the derivative of E[f(X(tend))] with respect to the rate parameter κj , where tend is some
fixed time. We will denote the required weight function by W (t). Therefore, the output of
the algorithm consists of both X(tend) and W (tend), which can be used as an unbiased estima-
tor ∂

∂κj
E[f(X(tend))] ≈ 1

n

∑n
`=1 f(X[`](tend)) · W[`](tend), where the subscript [`] enumerates the

independent realizations.

Algorithm 6 (Girsanov transformation method). Given: a reaction network with reaction vectors
{ζk}Rk=1 and intensity functions {λk}Rk=1, an initial distribution, µ, on Zd≥0.

All calls to random variables are independent from all others.
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1. Determine X(0) via µ.

2. Set t = 0 and W (0) = 0.

3. For each k ∈ {1, . . . , R}, determine λk(X(t)) and set λtot =
∑R

k=1 λk(X(t)).

4. Let u1, u2 be independent random variables that are uniformly distributed on [0, 1].

5. Set ∆ = − ln(u1)/λtot.

6. If t+ ∆ > tend, do the following (otherwise, proceed to step 7):

(a) set W (tend) = W (t)− (tend − t) · λj(X(t))

κj
,

(b) set X(tend) = X(t),

(c) break from the algorithm and report X(tend) and W (tend).

7. Find ` ∈ {1, . . . , R} so that

1

λtot

`−1∑
k=1

λk(X(t)) ≤ u2 <
1

λtot

∑̀
k=1

λk(X(t)).

8. If ` = j, set

W (t+ ∆) = W (t) +
1

κj
− λj(X(t))

κj
·∆

otherwise, if ` 6= j, set

W (t+ ∆) = W (t)− λj(X(t))

κj
·∆.

9. Set X(t+ ∆) = X(t) + ζ`.

10. Set t← t+ ∆, and return to step 3.
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