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Abstract

Reaction networks are commonly used within the mathematical biology and mathemat-
ical chemistry communities to model the dynamics of interacting species. These models
differ from the typical graphs found in random graph theory since their vertices are con-
structed from elementary building blocks, i.e. the species. We consider these networks
in an Erdös–Rényi framework and, under suitable assumptions, derive a threshold func-
tion for the network to have a deficiency of zero, which is a property of great interest
in the reaction network community. Specifically, if the number of species is denoted by
n and the edge probability by pn, then we prove that the probability of a random binary
network being deficiency zero converges to 1 if pn � r(n) as n → ∞, and converges to
0 if pn � r(n) as n → ∞, where r(n) = 1

n3 .
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1. Introduction

Reaction network models are often used to study the dynamics of the abundances of species
from various branches of chemistry and biology. Here, the word ‘species’ can refer to dif-
ferent (bio)chemical molecules or different animal species, depending on the context. These
networks take the form of directed graphs in which the vertices, often termed complexes in
the domains of interest, are linear combinations of the species over the non-negative integers
and the directed edges, which imply a state transition for the associated dynamical system, are
termed reactions. See Figure 1 for an example of a reaction network.

To each such graph a quantity termed the deficiency can be computed, and this quantity has
been central to many classical results pertaining to the associated dynamical systems [4, 5, 6,
9, 11, 13, 15]. To compute the deficiency, we first note that the vertices of a reaction network,
which will be denoted by y and/or y′ throughout this paper, can be viewed as vectors in Z

n
≥0.

For example, the vertices in Figure 1 can be associated with the vectors
[

0
0

]
,
[

1
1

]
,
[

0
1

]
,
[

2
0

]
,

and
[

0
2

]
. Moreover, a directed edge between two such vectors, y → y′, implies a state update
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2 D. F. ANDERSON AND T. D. NGUYEN

FIGURE 1. A reaction network with two species: S1 and S2. The vertices are linear combinations of the
species over the integers. The directed edges are termed reactions and determine the net change in the
counts of the species due to one instance of the reaction. For example, the reaction S1 + S2 → S2 reduces

the count of S1 by one, but does not affect the count of S2.

of the form y′ − y ∈Z
n. The set of state update vectors implied by the graph is called the set

of reaction vectors for the model. Viewing things in this manner, the deficiency for the graph
provides a relation between the number of vertices, the number of connected components, and
the dimension of the space spanned by the reaction vectors. The formal definition of deficiency
is given in Definition 2.6.

Given the importance of the deficiency-zero property, it is natural to ask how common
this property is. There are a number of ways one can tackle this question, including a simple
enumeration of all networks of a given size. In fact, the earliest attempt to answer this question
can be traced back to work by Horn in 1973 [14]. In that paper, Horn considered all reaction
networks with exactly three vertices, each of which satisfies

∑n
i=1 yi ≤ 2, where yi denotes the

ith component of the vector associated with a vertex y, but with no condition on the number
of species. Horn found 43 isomorphism classes of such networks, and among these, 41 have
deficiency zero.

We choose a different approach by considering networks with a fixed number of species, say
n, and then quantifying the prevalence of the deficiency-zero property via limit theorems (as
n → ∞) in an Erdös–Rényi random graph framework in which there is an equal probability, pn,
that there is an edge between any two vertices. However, we are immediately confronted with
a modeling problem: for any finite number of species there are an infinite number of possible
graphs that can be constructed from them. For example, with just the single species S1, possible
vertices include S1, 2S1, 3S1, . . . Hence, we must restrict ourselves in some manner so that for
a given number of species, only a finite number of vertices are possible.

In this paper we restrict ourselves to studying so-called ‘binary’ reaction networks, whose
vertices satisfy

∑n
i=1 yi ≤ 2. Such models are quite common in the literature. Our main finding

is that in such a scenario r(n) = 1
n3 is a threshold function in that if pn � r(n) as n → ∞, then

the probability of deficiency zero converges to 1, whereas if pn � r(n), then the probability
of deficiency zero converges to 0; see Theorems 4.1 and 4.2. Moreover, along the way we
prove that in the setting of pn � r(n), with high probability all the connected components of
deficiency-zero reaction networks will consist of pairs of vertices. Intriguingly, paired reaction
networks can be found in certain models of autocatalytic cycles related to the study of the
origin of life [16].

The remainder of this paper is organized as follows. In Section 2 we briefly review some
key terminology of reaction network theory, and provide some preliminary results related
to deficiency. In Section 3, we set up the Erdös–Rényi random graph framework for reac-
tion networks. In Section 4 we present our main results, which quantify the prevalence of
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Prevalence of deficiency-zero reaction networks 3

deficiency-zero reaction networks in our chosen framework. Finally, in Section 5 we end with
a brief discussion.

2. Chemical reaction networks

Here we formally introduce reaction networks and deficiency. Moreover, we collect some
preliminary results related to the deficiency of a reaction network.

2.1 Reaction networks and key definitions

Let {S1, . . . , Sn} be a set of n species undergoing a finite number of reaction types. We
denote a particular reaction by y → y′, where y and y′ are linear combinations of the species
on {0, 1, 2, . . . } representing the number of molecules of each species consumed and cre-
ated in one instance of that reaction, respectively. The linear combinations y and y′ are often
called complexes of the system. For a given reaction, y → y′, y is called the source complex
and y′ is called the product complex. A complex can be both a source complex and a product
complex. However, a complex cannot be both the source and product for a single reaction,
nor do we include isolated complexes that are not involved in any reaction. We may asso-
ciate each complex with a vector in Z

n
≥0 whose coordinates give the number of molecules of

the corresponding species in the complex. As is common in the reaction network literature,
both ways of representing complexes will be used interchangeably throughout the paper. For
example, if the system has two species, {S1, S2}, the reaction S1 + S2 → 2S2 has y = S1 + S2,
which is associated with the vector

[
1
1

]
, and y′ = 2S2, which is associated with the vector[

0
2

]
. Viewing the complexes as vectors, the reaction vector associated to the reaction y → y′

is simply y′ − y ∈Z
n, which gives the state update of the system due to one occurrence of the

reaction.

Definition 2.1. For n ≥ 0, let S = {S1, . . . , Sn}, C = ∪y→y′ {y, y′}, and R= ∪y→y′ {y → y′} be
the sets of species, complexes, and reactions, respectively. The triple {S, C,R} is called a
reaction network. When n = 0, in which case S = C =R= ∅, the network is termed the empty
network.

For each reaction network {S, C,R} there is a unique directed graph constructed in the
obvious manner: the vertices of the graph are given by C and a directed edge is placed from y
to y′ if and only if y → y′ ∈R. Figure 1 is an example of such a graph. Note that by definition
the directed graph associated to a reaction network contains only vertices corresponding to
elements in C involved in some reaction, i.e. the degree of all vertices is at least 1 and so
isolated vertices are not present in the associated network. We denote by � the number of
connected components of the graph.

Remark 2.1. Note that since each connected component must consist of at least two vertices,
we have the bound � ≤ |C|

2 .

Definition 2.2. The linear subspace generated by all reaction vectors is called the stoichio-
metric subspace of the network. Denote by s = dim (span{y′ − y : y → y′ ∈R}) the dimension
of the stoichiometric subspace. Note that s ≤ n, where n is the number of species. This fact will
be used a number of times in this paper.

Definition 2.3. A vertex, y ∈Z
n
≥0, is called binary if

∑n
i=1 yi = 2. A vertex is called unary if∑n

i=1 yi = 1. The vertex 
0 ∈Z
n is said to be of zeroth order.
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4 D. F. ANDERSON AND T. D. NGUYEN

Definition 2.4. A reaction network {S, C,R} is called binary if each vertex is binary, unary,
or of zeroth order.

As discussed in the introduction, we will focus on binary reaction networks in this paper.
The following type of network will play a key role.

Definition 2.5. A reaction network is called paired if each of its connected components con-
tains precisely two vertices. A reaction network is called i-paired if it is paired and contains i
connected components.

2.2 Deficiency of a reaction network

Definition 2.6. The deficiency of a reaction network {S, C,R} is δ = |C| − � − s, where |C|
is the number of vertices, � is the number of connected components of the associated graph,
and s = dim (span{y′ − y : y → y′ ∈R}) is the dimension of the stoichiometric subspace of the
network.

For each j ≤ �, we let Cj denote the collection of vertices in the jth connected component,
sj be the corresponding dimension of the span of the reaction vectors of that component, and
we define δj = |Cj| − 1 − sj to be the deficiency of that component.

We collect a number of basic properties of deficiency in the following lemma.

Lemma 2.1. Let n ≥ 1 and let {S, C,R} be a reaction network with n species.

(a) δ does not depend upon the direction of the edges.

(b) sj ≤ |Cj| − 1, and so δj ≥ 0.

(c) s ≤ |C| − �, and so δ ≥ 0.

(d) δ = 0 if and only if both the following conditions hold:

i. sj = |Cj| − 1 for each j ≤ � (equivalently, δj = 0 for each j ≤ �).

ii.
∑�

j=1 sj = s.

(e) If δ = 0, then |C| ≤ 2n.

(f) Suppose the reaction network is paired, and that ζj is a reaction vector from the jth
connected component. Then δ = 0 if and only if ∪�

j=1{ζj} = {ζ1, . . . , ζ�} are linearly
independent.

(g) (Monotonicity of deficiency.) Let {Ŝ, Ĉ, R̂} and {S, C,R} be two reaction networks with
R̂ \R= {y → y′}, a single reaction. Let δ̂ and δ be the deficiencies of the two networks.
Then δ̂ ≥ δ.

Proof.

(a) This follows from the definition of deficiency.

(b) This follows from the observation that a cycle within a connected component implies a
dependency among the reaction vectors.

(c) This follows from (b) since C = ∪�
j=1Cj and s ≤ ∑�

j=1 sj.

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpr.2021.65
Downloaded from https://www.cambridge.org/core. UW-Madison Libraries Wisconsin Historical Society, on 28 Jan 2022 at 20:39:53, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jpr.2021.65
https://www.cambridge.org/core


Prevalence of deficiency-zero reaction networks 5

(d) This follows in a straightforward manner from (b) and (c).

(e) From the definition of deficiency δ = |C| − � − s, the fact that s ≤ n, and � ≤ |C|
2 (from

Remark 2.1), we have δ ≥ |C| − |C|
2 − n = |C|

2 − n. Since the reaction network has

deficiency zero, we therefore have 0 ≥ |C|
2 − n, which implies |C| ≤ 2n.

(f) Since the reaction network is paired, we have sj = 1 and |Cj| = 2 for each j ≤ �. Thus,
condition (i) in (d) is satisfied. Since sj = 1, condition (ii) in (d) holds if and only if all
ζj are linearly independent.

(g) Let �, s and �̂, ŝ be the number of connected components and dimension of the
stoichiometric subspace of {S, C,R} and {Ŝ, Ĉ, R̂}, respectively.

Case 1: y, y′ ∈ C, and y and y′ are from the same connected component. In this case, we
have |Ĉ| = |C| and �̂ = �. Since y and y′ are from the same connected component, the
reaction vector y′ − y can be written as the linear combination of the remaining reaction
vectors from its connected component. Therefore, adding y → y′ to {S, C,R} does not
increase the dimension of its stoichiometric subspace. Thus, ŝ = s and δ̂ = δ.

Case 2: y, y′ ∈ C, and y and y′ are from different connected components. In this case, we
have |Ĉ| = |C| and �̂ = � − 1. Since we are adding one reaction to {S, C,R} to obtain
{Ŝ, Ĉ, R̂}, we add at most one dimension to the stoichiometric subspace of {S, C,R}.
Thus, ŝ ≤ s + 1 and δ̂ = |Ĉ| − �̂ − ŝ ≥ |C| − (� − 1) − (s + 1) = δ.

Case 3: y ∈ C and y′ /∈ C, or vice versa. In this case, we have |Ĉ| = |C| + 1 and �̂ = �.
Similar to the previous case, we must have ŝ ≤ s + 1, and thus δ̂ = |Ĉ| − �̂ − ŝ ≥ |C| +
1 − � − (s + 1) = δ.

Case 4: y, y′ /∈ C. In this case we have |Ĉ| = |C| + 2 and �̂ = � + 1. Similar to the
previous cases, we still have ŝ ≤ s + 1 and thus δ̂ = |Ĉ| − �̂ − ŝ ≥ |C| + 2 − (� + 1) −
(s + 1) = δ. �

Remark 2.2. Lemma 2.1(g) implies that if we remove a reaction from a reaction network
with deficiency zero, then the resulting network also has deficiency zero. This means that
deficiency zero is a monotone decreasing property, which guarantees that a threshold function
for deficiency zero exists (see [8]).

We illustrate the concept of deficiency via two examples.

Example 2.1. (Enzyme kinetics [5]) Consider a reaction network with species {S, E, SE, P} and
associated graph S + E � SE � P + E, E � ∅� S. In this example, the reaction network has
|C| = 6 vertices, there are � = 2 connected components, and the dimension of the stochiometric
subspace is s = 4. Thus, the deficiency is δ = 6 − 2 − 4 = 0.

The following example demonstrates that it is sometimes most natural to use Lemma 2.1(f)
to verify that a network has a deficiency of zero.

Example 2.2. (Binary, 3-paired network) Consider a reaction network with species
{S1, S2, . . . , S9} and associated graph S1 + S2 � S3 + S4, S1 + S3 � S5 + S6, S6 + S7 � S8 +
S9. This network is paired in the sense of Definition 2.5. Moreover, there is linear independence
among the connected components, which can be seen easily since each connected component
has a species not found in any other connected component. Hence, Lemma 2.1(f) implies that
the deficiency of this network is zero.
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6 D. F. ANDERSON AND T. D. NGUYEN

FIGURE 2. A realization of a random graph when n = 1 and p ∈ (0, 1). The associated reaction network
is ∅� A � 2A.

3. Erdös–Rényi model for binary reaction networks

As alluded to in the introduction, the vast majority of reaction network models found in the
literature are binary. Hence, those are the focus of the current paper.

Let the set of species be S = {S1, S2, . . . , Sn}. We consider binary reaction networks
with species in S . The set of all possible vertices is then C0

n = {∅, Si, Si + Sj for 1 ≤ i ≤ n
and 1 ≤ j ≤ n}. For a given n, we denote by Nn = |C0

n | the cardinality of C0
n . Thus, Nn is

the total number of possible zeroth-order, unary, and binary vertices that can be generated
from n distinct species. A straightforward calculation gives Nn = 1 + n + n + 1

2 n(n − 1) =
1
2 (n2 + 3n + 2), and so n ∼ √

2Nn. Here, we use the notation ∼ in the standard way: for any two
sequences of real numbers {an} and {bn}, we write an ∼ bn if limn→∞ an

bn
= c for some constant

c ∈R.
We consider an Erdös–Rényi random graph G(Nn, pn), which we will simply denote by

Gn throughout, where the set of vertices is the set C0
n , and the probability that there is an

edge between any two particular vertices is pn, independently of all other edges. To each such
random graph a reaction network graph can be associated in the following way:

• each vertex with positive degree in the random graph represents a vertex in the reaction
network, and

• each edge in the random graph represents a reaction in the reaction network (we can
assume all reactions are reversible, i.e. that y → y′ ∈R =⇒ y′ → y ∈R, since we do
not need to worry about direction—see Lemma 2.1(a)).

We will denote the reaction network associated with the graph G(Nn, pn) by Rn. We will
denote the deficiency of Rn by δRn .

In order to solidify the notation, we present below the cases n = 1 and n = 2.

Example 3.1. (The case with n = 1 species) Denote the only species by A. The set of vertices,
or equivalently the set of all possible complexes, is C0

1 = {∅, A, 2A}. Figure 2 shows one possi-
ble realization of the random graph G(N1, p) when p ∈ (0, 1). The associated reaction network
R1 for the particular graph shown in Figure 2 is ∅� A � 2A.

Example 3.2 (The case with n = 2 species) Denote the set of species by S = {A, B}. The set
of vertices is C0

2 = {∅, A, B, 2A, 2B, A + B}. Figure 3 illustrates a possible realization of the
random graph G(N2, p) when p ∈ (0, 1). The associated reaction network R2 for the particular
graph shown in Figure 2 is ∅� 2B, B � A + B.
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Prevalence of deficiency-zero reaction networks 7

FIGURE 3. A realization of a random graph when n = 2 and p ∈ (0, 1).

4. The threshold function for deficiency zero

The goal of this section is to prove that r(n) = 1
n3 is a threshold function in that

lim
n→∞ P(δRn = 0) =

⎧⎨⎩0 if pn � r(n),

1 if pn � r(n).

Throughout this section we will make use of the standard notation an � bn or bn � an to mean
limn→∞ an

bn
= 0 whenever {an} and {bn} are sequences of non-negative real numbers. We also

remind the reader that we write an ∼ bn to mean limn→∞ an
bn

= c for some constant c ∈R>0.

4.1. The case pn � r(n)

This case is relatively straightforward. We will show that if pn � r(n) = 1
n3 , then with high

probability we have |C| > 2n. In this case, Lemma 2.1(e) implies that the associated reaction
network does not have deficiency zero.

Since |C| is the number of non-isolated vertices in Gn, we start with a lemma regarding the
number of isolated vertices in Gn.

Lemma 4.1. Suppose pn = 2n+αn
Nn(Nn−1) , with αn � n1/2. Let I be the set of isolated vertices in Gn,

that is I = {
v ∈ C0

n : deg(v) = 0
}
. Then we have limn→∞ P(|I| ≥ Nn − 2n) = 0.

Proof. We require both E(|I|) and Var(|I|). First, a straightforward calculation yields

E(|I|) =E

⎡⎣∑
v∈C0

n

1{deg (v)=0}

⎤⎦ = NnP( deg (v) = 0) = Nn(1 − pn)Nn−1.

Turning to the variance, we have

|I|2 =
∑

v,w∈C0
n

1{deg (v)=deg (w)=0} =
∑
v∈C0

n

1{deg (v)=0} +
∑

v,w∈C0
n :v �=w

1{deg (v)=deg (w)=0}.

Therefore, we have

Var(|I|) =E(|I|2) −E(|I|)2

=E

[ ∑
v∈C0

n

1{deg (v)=0} +
∑

v,w∈C0
n :v �=w

1{deg (v)=deg (w)=0}

]
− N2

n (1 − pn)2Nn−2
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8 D. F. ANDERSON AND T. D. NGUYEN

= Nn(1 − pn)Nn−1 + Nn(Nn − 1)(1 − pn)2Nn−3 − N2
n (1 − pn)2Nn−2

= Nn(1 − pn)Nn−1(1 − (1 − pn)Nn−2) + N2
n (1 − pn)2Nn−3pn

≤ Nn(1 − pn)Nn−1(Nn − 2)pn + N2
n (1 − pn)2Nn−3pn

≤ Nn(Nn − 2)pn + N2
n pn ≤ 2N2

n pn,

where the first inequality follows from Bernoulli’s inequality.
We will utilize E(|I|) and Var(|I|) to show that limn→∞ P(|I| ≥ Nn − 2n) = 0. It suffices to

prove this in the three cases below.
When αn ∼ Nn we have pn ∼ 1

Nn
, and thus pn > c

Nn
for some constant c > 0 and

n large enough. Therefore, E(|I|) = Nn(1 − pn)Nn−1 ≤ Nn

(
1 − c

Nn

)Nn−1 ≤ Nne−c. Applying

Chebyshev’s inequality yields

P(|I| > Nn − 2n) ≤ Var(|I|)
(Nn − 2n − E[|I|])2

≤ 2N2
n pn

(Nn − 2n − Nne−c)2
= 2pn

(1 − 2n/Nn − e−c)2
.

Since pn ∼ 1
Nn

and Nn ∼ n2, we have limn→∞ P(|I| > Nn − 2n) = 0.

The next case is when αn � Nn, or equivalently when pn � 1
Nn

. Using Taylor’s expan-

sion, we have E(|I|) = Nn(1 − pn)Nn−1 ≤ Nn
(
1 − pn(Nn − 1) + 1

2 p2
n(Nn − 1)(Nn − 2)

)
. Again,

we apply Chebyshev’s inequality:

P(|I| ≥ Nn − 2n) ≤ Var(|I|)
(Nn − 2n − E[|I|])2

≤ 2N2
n pn(

Nn − 2n − Nn + Nn(Nn − 1)pn − 1
2 Nn(Nn − 1)(Nn − 2)p2

n

)2

= 2N2
n pn(−2n + Nn(Nn − 1)pn − 1
2 Nn(Nn − 1)(Nn − 2)p2

n

)2
.

Now we plug in pn = 2n+αn
Nn(Nn−1) :

P(|I| ≥ Nn − 2n) ≤
2Nn

Nn−1 (2n + αn)(
− 2n + 2n + αn − Nn−2

2Nn(Nn−1) (2n + αn)2
)2

= 2Nn

Nn − 1

2n + αn(
αn − Nn−2

2Nn(Nn−1) (2n + αn)2
)2

.

If αn � n or αn ∼ n, we have

2n + αn(
αn − Nn−2

2Nn(Nn−1) (2n + αn)2
)2

∼ n

α2
n

→ 0

as n → ∞, since αn � n1/2. If αn � n, we have

2n + αn(
αn − Nn−2

2Nn(Nn−1) (2n + αn)2
)2

∼ αn

α2
n

= 1

αn
→ 0

as n → ∞, since αn � Nn. Thus, either way we must have limn→∞ P(|I| > Nn − 2n) = 0.
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Prevalence of deficiency-zero reaction networks 9

When αn � Nn, we can apply the same argument as in the second case, since

2n + αn(
αn − Nn−2

2Nn(Nn−1) (2n + αn)2
)2

� αn

α2
n

= 1

αn
→ 0.

In all three cases we have limn→∞ P(|I| ≥ Nn − 2n) = 0. �
We are now ready to provide the first main theorem.

Theorem 4.1. Let Gn denote the Erdös–Rényi random graph with Nn vertices and edge prob-
ability pn, and let Rn be the reaction network associated to Gn. When pn � r(n) = 1

n3 , we have
limn→∞ P(δRn = 0) = 0.

Proof. Note that the vertices of the reaction network Rn correspond to the vertices in Gn

with positive degree. Thus, letting I denote the set of isolated vertices of Gn, Lemma 2.1(e)
implies that if the network is deficiency zero, we must have |I| ≥ Nn − 2n. From this, we
have P(δRn = 0) ≤ P(|I| ≥ Nn − 2n). Since r(n) = 1

n3 ∼ n
N2

n
and pn � r(n), we have that pn sat-

isfies the condition in Lemma 4.1. Hence, using Lemma 4.1, we have limn→∞ P(δRn = 0) =
limn→∞ P(|I| ≥ Nn − 2n) = 0. �

4.2. The case pn � r(n)

We will show that in the case pn � r(n) it is enough to focus on paired reaction networks,
which are introduced in Section 2. We first state the main theorem.

Theorem 4.2. Let Gn denote the Erdös–Rényi random graph with Nn vertices and edge prob-
ability pn, and let Rn be the reaction network associated to Gn. When pn � r(n) = 1

n3 , we have
limn→∞ P(δRn = 0) = 1.

Proof. We have P(δRn = 0) = P(δRn = 0, Rn is paired) + P(δRn = 0, Rn is not paired) ≥
P(δRn = 0, Rn is paired). Therefore, it suffices to show that limn→∞ P(δRn = 0, Rn is
paired) = 1. Noting that, for deficiency-zero models, the number of reversible reaction vectors
is bounded above by n, we have

P(δRn = 0, Rn is paired)

=
n∑

i=1

P(δRn = 0, Rn is i-paired)

=
n∑

i=1

P(δRn = 0 | Rn is i-paired)P(Rn is i-paired)

=
n∑

i=1

P(δRn = 0 | Rn is i-paired)
Nn!

i!2i(Nn − 2i)!pi
n(1 − pn)Nn(Nn−1)/2−i

≥
n∑

i=1

P(δRn = 0 | Rn is i-paired)
(Nn − 2i)2i

i!2i
pi

n(1 − pn)Nn(Nn−1)/2−i; (4.1)

the third equality uses that the number of i-paired graphs is
( Nn

2

) (
Nn−2

2

) · · · ( Nn−2i+2
2

)
, with

the repetition of the graphs accounted for by division by i!.
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10 D. F. ANDERSON AND T. D. NGUYEN

Note that because pn � 1/n3 and Nn ∼ n2, we have N2
npn � n. Now let kn satisfy

limn→∞ kn = ∞ and N2
n pn � kn � n. Cutting off the last n − kn terms from (4.1) yields

P(δRn = 0, Rn is paired)

≥
kn∑

i=1

P(δRn = 0 | Rn is i-paired)
(Nn − 2i)2i

i!2i
pi

n(1 − pn)Nn(Nn−1)/2−i

≥
kn∑

i=1

(
1 − c

i4

n4

)(
1 − 21i

n

)
(Nn − 2i)2i

i!2i
pi

n(1 − pn)Nn(Nn−1)/2−i (4.2)

≥
(

1 − c
k4

n

n4

)(
1 − 21kn

n

)
(1 − pn)N2

n/2
kn∑

i=1

(Nn − 2i)2i

i!2i
pi

n

≥
(

1 − c
k4

n

n4

)(
1 − 21kn

n

)
(1 − pn)N2

n/2
kn∑

i=1

(Nn − 2kn)2i

i!2i
pi

n,

where the inequality in (4.2) will be proven using Lemma 4.2, Proposition 4.1, and Lemma 4.3
after the proof of the main theorem. The inequalities after (4.2) follow by noting that i ≤ kn.

Let λn = 1
2 (Nn − 2kn)2pn, and note that λn � kn since we chose N2

n pn � kn. Using Taylor’s
remainder theorem and Stirling’s approximation, we have

kn∑
i=1

λi
n

i! ≥ eλn − eλnλ
kn+1
n

(kn + 1)!

≥ eλn

(
1 − λ

kn+1
n√

2π (kn + 1)kn+1e−kn+1

)
= eλn

(
1 − 1√

2π

(
λne

kn + 1

)kn+1)
.

Thus, we have

P(δRn = 0, Rn is paired)

≥
(

1 − c
k4

n

n4

)(
1 − 21kn

n

)
(1 − pn)N2

n/2eλn

(
1 − 1√

2π

(
λne

kn + 1

)kn+1)
.

Since λn � kn � n, the first, second, and last terms converge to 1. Hence, it suf-
fices to show that limn→∞ (1 − pn)N2

n/2eλn = 1, or limn→∞ 1
2 N2

n ln (1 − pn) + λn = 0.
Since pn � 1, we have −pn − p2

n ≤ ln (1 − pn) ≤ −pn. Thus, 1
2 N2

n ln (1 − pn) + λn ≤
− 1

2 N2
n pn + λn = 1

2 pn((Nn − 2kn)2 − N2
n ) = 1

2 pn(− 4knNn + 4k2
n). On the other hand, and using

the equality above, 1
2 N2

n ln (1 − pn) + λn ≥ − 1
2 N2

n (pn + p2
n) + λn = 1

2 pn(− 4knNn + 4k2
n) −

1
2 N2

np2
n. Since kn � n, Nn ∼ n2 and pn � 1

n3 , we have limn→∞ 1
2 pn(− 4knNn + 4k2

n) = 0 and

limn→∞ 1
2 N2

n p2
n = 0. Thus, limn→∞ 1

2 N2
n ln (1 − pn) + λn = 0, which concludes the proof of

the theorem. �
We complete this section by providing the required technical lemmas and proposition lead-

ing to the inequality in (4.2). Recall that we only consider binary reaction networks, and thus
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Prevalence of deficiency-zero reaction networks 11

each reaction can contain at most four species (two in each vertex). The next lemma shows
that in our later analysis it suffices to only consider reaction networks for which each reaction
vector has exactly four non-zero components.

Note that in the construction we are using, random graphs with the same number of edges
have the same probability. We use this fact heavily in the proofs of the next two lemmas, where
we condition on Rn being kn-paired and can therefore generate Rn uniformly from the set of all
kn-paired graphs.

Lemma 4.2. Suppose that kn � n. Let An be the event that each reaction vector in Rn has
exactly four non-zero components. Then P(An | Rn is kn-paired) ≥ 1 − 21kn

n .

Proof. Let Rn be a kn-paired reaction network, where kn � n. Denote the kn reaction
vectors by {vi

n}kn
i=1 ∈Z

n. We denote by Ai
n the event that the vector vi

n has four non-zero

elements, thus An = ∩kn
i=1Ai

n. The proof will proceed by using the fact that P(An | Rn is

kn-paired) = ∏kn−1
j=0 P(Aj+1

n | ∩j
i=1Ai

n, Rn is kn-paired), and showing that the limit of the
right-hand side as n → ∞ is 1.

First, note that the total number of vertices of the form Sk + Sm where k �= m is
( n

2
)
. Suppose

we have already picked j pairs of reversible reactions where each pair has four species. Then
the number of unpicked vertices of the form Sk + Sm where k �= m is

( n
2
) − 2j. After picking

one such Sk + Sm for the (j + 1)st pair, we need to pick another vertex. The number of available
vertices of the form Sp + Sq where p, q, m, and k are all different is at least

(
n−2

2

) − 2j, where
the −2 comes from the fact that we remove the species Sk and Sm from the possibilities, and
the 2j is the number of vertices we have already chosen. Thus, for n large enough, we have

P
(
Aj+1

n | ∩j
i=1Ai

n, Rn is kn-paired
)

≥
1
2

( ( n
2
) − 2j

)( (
n−2

2

) − 2j
)

(
Nn−2j

2

) (by considering our choices as detailed above)

≥
1
2

( ( n
2
) − 2n

)( (
n−2

2

) − 2n
)

( Nn
�

) (since j ≤ n)

= (n2 − 5n)(n2 − 9n + 6)

(n2 + 3n + 2)(n2 + 3n)
≥ (n2 − 5n)(n2 − 9n)

(n2 + 4n)(n2 + 3n)

= n2 − 14n + 45

n2 + 7n + 12
= 1 − 21n − 33

n2 + 7n + 12
≥ 1 − 21

n
,

where the 1
2 in the first term accounts for the symmetry between the selected vertices.

Therefore, for n large enough, we have

P(An | Rn is kn-paired) =
kn−1∏
j=0

P
(
Aj+1

n | ∩j
i=1Ai

n, Rn is kn-paired
)

≥
(

1 − 21

n

)kn

≥ 1 − 21kn

n
,

where the last inequality is due to Bernoulli’s inequality. �
Lemma 4.2 shows that if kn � n and Rn is kn-paired, then with high probability each reac-

tion vector will have precisely four non-zero components. The following proposition, stated in
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12 D. F. ANDERSON AND T. D. NGUYEN

terms of discrete random matrices, proves that with probability approaching 1, as n → ∞ this
set of reaction vectors will be linearly independent.

For each n ≥ 4, let Dn ⊂R
n be a set of vectors for which (i) each vector in Dn has precisely

four non-zero elements, and (ii) for each choice of four distinct indices from {1, . . . , n} there
is precisely one vector in Dn with those as its non-zero components (so the size of Dn is(n

4

)
). While the specific values of the non-zero elements do not play a role in the subsequent

proposition, we note that these values are +1 and −1 in the current paper.

Proposition 4.1. Let kn � n, and let �n ∈R
n×kn be a matrix whose columns are distinct vec-

tors chosen uniformly from Dn. Let In be the event that all column vectors of �n are linearly

independent. Then there is a constant c > 0 for which P(In) ≥ 1 − c k4
n

n4 .

Proof. We denote the kn column vectors of �n by {vi
n}kn

i=1 ∈R
n. We say a set of vectors is

minimally dependent if any of its proper subsets are linearly independent. For any set of indices
of vectors T ⊆ {1, 2, . . . , kn} we denote VT

n = {vi
n : i ∈ T}. By noting that Ic

n = ⋃kn
�=2{there

exists a minimally dependent set of size �}, we have

P(Ic
n) ≤

kn∑
�=2

∑
|T|=�

P(VT
n is minimally dependent) =

kn∑
�=2

(
kn
1

)
P(B�), (4.3)

where B� is the event that VT
n is minimally dependent for a particular set T satisfying |T| = �.

Now fix a set T with |T| = �. Without loss of generality, let T = {1, 2, . . . , �}. Consider
a matrix M� whose columns are the vectors in VT

n . Note that the set VT
n being minimally

dependent implies that M� has no row with only one non-zero entry (otherwise, the set of
vectors without the column associated with that element would be linearly dependent). This
further implies that each non-zero row of M� has at least two entries. Since each column of M�

has exactly four non-zero entries, M� has exactly 4� non-zero entries. Therefore, the number
of non-zero rows in M� must be at most 2�, and the number of zero rows in M� must be at
least n − 2�. Combining all of the arguments above, we must have

P(B�) ≤ P(M� has at least n − 2� zero rows). (4.4)

We denote the row vectors of M� by {wi
n}n

i=1. For a subset of indices of species R ⊆
{1, 2, . . . , n} we denote WR

n = {wi
n : i ∈ R}. We say that WR

n = 0 if all the vectors in the set
are the zero vector. We have

P(M� has at least n − 2� zero rows) ≤
∑

|R|=n−2�

P
(
WR

n = 0
) = ( n

n−2�

)
P(C�), (4.5)

where C� is the event that WR
n = 0 for a particular R satisfying |R| = n − 2�.

Now fix a set R with |R| = n − 2�. Without loss of generality, let R = {2� + 1, . . . , n}. Then,
the event C� involves picking � column vectors VT

n = {v1
n, . . . , v�

n} where the last n − 2� ele-
ments of each column vector are zero. Recall that each column vector has exactly four non-zero
elements. Suppose we have already picked j such column vectors. The number of ways we
can pick the (j + 1)st vector is at least

( ( n
2
) − 2j

)( (
n−2

2

) − 2j
)

(this follows from the same
argument as in the proof of Lemma 4.2). Among these, the number of ways we can pick the
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Prevalence of deficiency-zero reaction networks 13

(j + 1)st vector whose last n − 2� elements are zero is less than
(

2�
2

) (
2�−2

2

)
. Thus, we have

P(C�) ≤
�−1∏
j=0

(
2�
2

) (
2�−2

2

)( ( n
2
) − 2j

)( (
n−2

2

) − 2j
) ≤

�−1∏
j=0

(
2�
2

) (
2�−2

2

)
1
4

( n
2
) (

n−2
2

) ≤ 4

(
2�

n

)4

,

where the second inequality is due to the fact that j � n. Plugging the above into (4.5), we see
that

P(M� has at least n − 2� zero rows) ≤ ( n
n−2�

)
4

(
2�

n

)4�

≤ n2�

(2�)!4

(
2�

n

)4�

≤ 4n2�

√
2π (2�/e)2�

(
2�

n

)4�

= 4√
2π

(
2�e

n

)2�

. (4.6)

Now, combining (4.3), (4.4), and (4.6), we have

P(Ic
n) ≤

kn∑
�=2

(
kn

�

) 4√
2π

(
2�e

n

)2�

≤
kn∑

�=2

k�
n

�!
4√
2π

(
2�e

n

)2�

≤
kn∑

�=2

k�
n√

2π (�/e)�
4√
2π

(
2�e

n

)2�

=
kn∑

�=2

2

π

(
4�e3kn

n2

)�

≤
∞∑

�=2

2

π

(
4e3k2

n

n2

)�

≤ c
k4

n

n4

for some constant c > 0, since kn � n. Thus, we have P(In) ≥ 1 − c k4
n

n4 . �
We return to the setting of reaction networks with our final key lemma.

Lemma 4.3. Suppose that kn � n. Then,

P(δRn = 0 | Rn is kn-paired) ≥
(

1 − c
k4

n

n4

)(
1 − 21kn

n

)
.

Proof. Let Rn be a kn-paired reaction network, where kn � n. From Lemma 2.1, Rn has
deficiency zero if and only if all kn reaction vectors are linearly independent. Let In be the
event that all kn reaction vectors are linearly independent.

Similar to Lemma 4.2, denote by An the event that all reactions have exactly four species.
We have

P(δRn = 0 | Rn is kn-paired) = P(In | Rn is kn-paired)

≥ P(In | An, Rn is kn-paired)P(An | Rn is kn-paired).

Utilizing Lemma 4.2 and Proposition 4.1, we complete the proof of Lemma 4.3. �

5. Discussion

This work stemmed from a natural question pertaining to reaction networks: given the
importance of deficiency zero in the reaction network literature, can we quantify how preva-
lent the condition is? In the Erdös–Rényi framework we have chosen here, we have provided a
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14 D. F. ANDERSON AND T. D. NGUYEN

threshold function, r(n) = 1
n3 , for the property, in that if pn � r(n) then the probability of defi-

ciency zero converges to 1, and if pn � r(n) then the probability of deficiency zero converges
to 0.

We do not make the claim that the framework selected here is the only, or even the most,
biologically relevant. Instead, having equal probabilities for each edge puts as few assumptions
on our model as possible, thereby making it a reasonable starting point for analysis. In fact,
there are multiple avenues for future research, and we list just a few here.

• We may want to study models in which some added structure is known. For example,
our assumption of equal probabilities would need to be relaxed in those contexts where
different reaction types are more likely to appear in the network than others (such as
when inflows and outflows of species are common). This would necessitate the use of a
stochastic block model framework. We have carried out such an analysis in [7].

• In the setting of molecular biology, some proteins may be more active and interact with
many other proteins, while some proteins may be relatively inactive and have fewer
interactions. In such cases, we can study random reaction networks under a more general
random graph framework such as the Chung–Lu model, where vertices can be assigned
different weights [10].

• Situations can arise in which some species are chemostated, which keeps their concen-
trations constant. In such a case we may want to focus on the asymptotic behavior of
‘subnetworks’, which consist of the species not being chemostated, instead of the whole
network. The study of subnetworks may also be useful in multi-scale settings, where we
want to focus on a subset of ‘discrete’ species which have low abundances and behave
differently than those in high abundance [3].

• There are other meaningful topological features beside deficiency zero that we could
study with our approach. Some features of interest are deficiency one (together with
additional graphical features) as in [17], endotactic, strongly endotactic, and asyphonic
as in [1, 2, 12].

The analysis and methods developed here will, to varying degrees, be applicable to each of
the situations listed above.
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