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Sensitivity analysis is a powerful tool in determining parameters to which the system output is most
responsive, in assessing robustness of the system to extreme circumstances or unusual environmental
conditions, in identifying rate limiting pathways as a candidate for drug delivery, and in parameter
estimation for calculating the Hessian of the objective function. Anderson [SIAM J. Numer. Anal.
50, 2237 (2012)] shows the advantages of the newly developed coupled finite difference (CFD) es-
timator over the common reaction path (CRP) [M. Rathinam, P. W. Sheppard, and M. Khammash,
J. Chem. Phys. 132, 034103 (2010)] estimator. In this paper, we demonstrate the superiority of the
CFD estimator over the common random number (CRN) estimator in a number of scenarios not con-
sidered previously in the literature, including the sensitivity of a negative log likelihood function for
parameter estimation, the sensitivity of being in a rare state, and a sensitivity with fast fluctuating
species. In all examples considered, the superiority of CFD over CRN is demonstrated. We also pro-
vide an example in which the CRN method is superior to the CRP method, something not previously
observed in the literature. These examples, along with Anderson’s results, lead to the conclusion that
CFD is currently the best estimator in the class of finite difference estimators of stochastic chemical
kinetic models. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790650]

I. INTRODUCTION

Recent years have seen an increasing popularity of
stochastic chemical kinetic models due to their role in de-
scribing and explaining critical biological phenomena.3–9 One
useful tool for understanding these models is the chemical
master equation, which describes the evolution of the prob-
ability density of the system. The solution of the master
equation is computationally tractable only for simple sys-
tems. Rather, approximation techniques such as finite state
projection,10 that operates on a reduced state space, or the
stochastic simulation algorithm (SSA),11, 12 that generates ex-
act sample paths, are employed to reconstruct a system’s
probability distribution and statistics (usually the mean and
variance). Applying these techniques to solve models of bi-
ological processes leads to significant improvements in our
understanding of intrinsic noise and its effect on cellular
behavior.

These stochastic chemical kinetic models depend on pa-
rameters whose values are often unknown and can change due
to changes in the environment. Sensitivities quantify the de-
pendence of the system’s output to changes in the model pa-
rameters. Sensitivity analysis is useful in determining param-
eters to which the system output is most responsive, in as-
sessing robustness of the system to extreme circumstances or
unusual environmental conditions, and in identifying rate lim-
iting pathways as a candidate for drug delivery. However, one
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of the most important applications of sensitivities is in param-
eter estimation. Sensitivities provide a way to approximate the
Hessian of the objective function through the Gauss-Newton
approximation (Ref. 13, p. 535).

A popular unbiased method of sensitivity estimation is
the likelihood ratio gradient method.14–16 The unbiasedness
of the likelihood ratio gradient method comes at the cost of
a high variance of the estimator if there are several reaction
events in the estimation of the output of interest. The conver-
gence rate, which is a measure of the rate at which the mean
squared error of the estimator converges to zero, of this es-
timator is O(N−1/2), in which N is the number of estimator
simulations. Komorowski et al.17 use a linear noise approx-
imation of stochastic chemical kinetic models for sensitivity
analysis. However, use of linear noise approximation limits
their analysis to only stochastic differential equation models
that incorporate Brownian motions. Gunawan et al.18 com-
pare the sensitivity of the mean with the sensitivity of the en-
tire distribution. They explain why the sensitivity of the mean
can be inadequate in determining the sensitivity of stochastic
chemical kinetic models.

Despite being easier to implement and intuitive to un-
derstand, finite difference based methods produce biased sen-
sitivity estimates. However, implemented with consideration
of the trade-off between the statistical error of the estimator
and its bias, finite difference based methods can have a con-
vergence rate close to the best possible convergence rate of
O(N−1/2).19 McGill et al.20 compare the applicability of likeli-
hood ratio gradient and finite difference based methods. They
discuss situations where one method performs better than the
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other. Drew et al.21 demonstrate usefulness of sensitivity anal-
ysis on Monte Carlo simulations of copper electrodeposition.

Several different estimators using finite difference have
been proposed.1, 2, 19 Anderson1 proposed a new estimator,
coupled finite difference (CFD), using a single Markov chain
for the nominal and perturbed processes. The CFD estimator
incorporates a tight coupling between the nominal and per-
turbed processes, thereby producing a significant reduction in
estimator variance.1

In this paper, we show the superiority of CFD over CRN
in the estimation of sensitivities. We do not discuss the inde-
pendent random number2 estimator, also known as the Crude
Monte Carlo1 estimator, because either estimator, CRN or
CFD, usually has several orders of magnitude smaller vari-
ance than this estimator. We calculate sensitivity estimates of
five different quantities of interest. In example one, the quan-
tity of interest is the expected value of a species. Example two
looks at the likelihood of experimental data. Example three
looks at the probability of a rare state. Example four looks at
the expected value of a fast fluctuating species. Example five
looks at the expected value of a gene product in a model of
a genetic toggle switch. In this example, the CRN method is
shown to be superior to the CRP method, something not pre-
viously observed in the literature.

This paper is arranged as follows. Section II defines
the estimators that are used in the subsequent examples.
Section III shows the results we obtain from the five exam-
ples. Finally, Sec. IV discusses the conclusions of this paper
and summarizes the contributions.

II. THE ESTIMATORS

Common random number (CRN; Refs. 2 and 19): A
single simulation of the CRN estimator uses two coupled SSA
simulations: the first coupled SSA simulation uses the rate pa-
rameter k and randomness ω and the second one uses the per-
turbed rate parameter k + ε and the same randomness ω. By
the same randomness ω, we mean that both first and second
coupled simulations use the same seed of the pseudo-random
number generator in an implementation of Gillespie’s direct
method.11

Coupled Finite difference (CFD; Ref. 1): A single
simulation of the CFD estimator simulates a Markov chain
with an enlarged state space. The marginal processes of
this Markov chain yield the realizations of the coupled pro-
cesses with rate parameters k and k + ε. The new Markov
chain is constructed in such a way that there is a tight
coupling between the marginal processes, yielding a low
variance for the estimator. See Anderson1 for the complete
description.

Common Reaction Path (CRP; Ref. 2): A single simula-
tion of the CRP estimator uses two SSA simulations coupled
through random time change representation. Thus, it is CRN
for the next reaction method.

Finite difference approximations of the sensitivity can be
obtained from any of the above methods by sample averaging
appropriate differences of the realizations.
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FIG. 1. A typical simulation of the network involving reactions (R1) and
(R2).

III. EXAMPLES

A. Sensitivity of an expected value of a population
of a species

Consider the following simple reaction network consist-
ing of two reactions

A
k1−→ B, (R1)

B
k2−→ C. (R2)

Figure 1 shows a typical SSA simulation of the network in-
volving reactions (R1) and (R2).

We wish to estimate the sensitivity of the expected value
of B with respect to the rate constant k1,

s(t ; k1) = dEB(t ; k1)

dk1
, (1)

where B(t; k1) represents the number of B molecules at time t
with a choice of rate constant of k1. The forward finite differ-
ence approximation to Eq. (1) is

s(t ; k1) ≈ EB(t ; k1 + ε) − EB(t ; k1)

ε
, (2)

which has a bias of O(ε). That is,

s(t ; k1) = EB(t ; k1 + ε) − EB(t ; k1)

ε
+ O(ε).

Centered differences produce a bias of O(ε2). Throughout the
paper we use the forward finite difference to approximate the
sensitivity. We denote an estimator of the right hand side of (2)
using either CRN or CFD as ŝest in which est ∈ {CRN, CFD}.
Let Best

i (t ; k1) and Best
i (t ; k1 + ε) denote the population of B

obtained through the ith simulation of estimator est. Then the
estimator ŝest for s(t; k1) of (1) is defined as

ŝest = 1

N

N∑
i=1

Best
i (t ; k1 + ε) − Best

i (t ; k1)

ε
. (3)
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FIG. 2. Comparison of CRN and CFD estimators for the model (R1) and (R2): (a) Estimated and analytical sensitivities. (b) Sample standard deviation of the
two estimators.

The sample standard deviations (σ̂ [ŝest]) of the estimator of
Eq. (3) is given by

σ̂ [ŝest] =
(

1

N (N − 1)ε2

N∑
i=1

[{
Best

i (t ; k1 + ε) − Best
i (t ; k1)

}

− �B̂est
]2

)1/2

(4)

in which

�B̂est = 1

N

N∑
i=1

Best
i (t ; k1 + ε) − Best

i (t ; k1).

Because the model is linear, the exact expected value of B
and the exact sensitivity of the expected value of B can be
calculated and are given by

EB(t ; k1) = nB0e
−k2t + nA0

k1

k2 − k1
(e−k1t − e−k2t ), (5)

sex(t ; k1) = dEB

dk1
= nA0

(k1 − k2)2

[
k2e

−k1t + k1(k1 − k2)te−k1t

−k2e
−k2t

]
, (6)

in which nA0 , nB0 are the initial values of A and B,
respectively.

Figure 2 compares the performance of the CRN and CFD
estimators, and Table I lists the parameters used to generate
Figure 2. Figure 2(a) shows a comparison of the sensitivity
estimates obtained from the CRN and CFD estimators. We
define root mean squared error of the estimator as

eest =
[

1

nd

nd∑
i=1

(ŝest(ti , k1) − sex(ti , k1))2

]1/2

(7)

TABLE I. Parameter values for Sec. III A.

Parameter nA0 nB0 nC0 k1 k2 ε N
Value 100 0 0 2. 1. 0.1 100

in which nd = 41 is the total number of time points at which
we calculate the sensitivity ŝest, 0 ≤ ti ≤ 2.0, and ti+1 − ti
= 0.05. Root mean squared errors calculated from the data
of Figure 2(a) give ecrn

ecfd
= 4. A value greater than one for this

ratio demonstrates that on average across all the time points
considered the CFD estimator tracks the exact sensitivity bet-
ter than the CRN estimator. Figure 2(b) quantifies the effi-
ciency of the two estimators, by comparing their standard
deviations. We can see that starting from t = 0.3, the CFD
estimator has half the standard deviation of the CRN estima-
tor. Lower standard deviation of the CFD estimator compared
to the CRN estimator points to its higher efficiency.

B. Sensitivity of negative log likelihood function

Consider reactions (R1) and (R2) again. Experimental
data y = (Bt1 , Bt2 , . . . , Btn )T from a single experiment, shown
in Figure 3, are given as a time series of B.

We assume that the rate constant k2 is known. It can be
shown22 that an estimate of the likelihood of the experimental
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FIG. 3. Experimental data for Sec. III B generated from the model with pa-
rameter choices given in Table II.
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FIG. 4. Convergence of sensitivity estimate for Sec. III B from the CRN estimator: (a) Plot of the quadratic form as a function of simulation number for the
unperturbed process. (b) Plot of exponential of quadratic form as a function of simulation number for the unperturbed process. (c) Likelihood as a function of
total number of simulations for the unperturbed process. (d) Negative log likelihood as a function of total number of simulations. (e) Estimated sensitivity from
the CRN estimator as a function of total number of simulations.

data y under certain reasonable assumptions is given by

L(k1, N ) = 1

N (2π )nd/2|R|1/2

N∑
i=1

e−(1/2)(y−xi (k1))′R−1(y−xi (k1))

(8)

in which R is a known positive definite matrix, nd is the
number of elements in the experimental data vector y, and
xi(k1) = (Bt1 , Bt2 , . . . , Btn )Ti is the time series of the popula-
tion of B, obtained by the ith SSA simulation using rate con-
stant value k1 for reaction (R1). Note that as the number of
samples N goes to infinity, the likelihood estimate L(k1, N)
from (8) approaches the true likelihood of the experimental

data. The estimate of the negative log likelihood is defined as

φ(k1, N ) = − log L(k1, N ) = − log

[
1

N (2π )nd/2|R|1/2

×
N∑

i=1

e−(1/2)(y−xi (k1))′R−1(y−xi (k1))

]
. (9)

To find the parameters that describe the experimental data,
we need to minimize the estimate of the negative log likeli-
hood function given in Eq. (9). Sensitivities can be used to
obtain gradients required in any gradient based optimization
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FIG. 5. Convergence of sensitivity estimate for Sec. III B from the CFD estimator: (a) Plot of quadratic form as a function of simulation number for the
unperturbed process. (b) Plot of exponential of quadratic form as a function of simulation number for the unperturbed process. (c) Likelihood as a function of
total number of simulations for the unperturbed process. (d) Negative log likelihood as a function of total number of simulations. (e) Estimated sensitivity from
the CFD estimator as a function of total number of simulations.

algorithm. Here, we are interested in the sensitivity

s(k1, N) = dφ(k1, N )

dk1
(10)

of the estimated negative log likelihood function and the con-
vergence of this sensitivity with the number of samples, N.
The forward finite difference approximation of (10) is given
by

s(k1, N) ≈ φ(k1 + ε,N ) − φ(k1, N )

ε
. (11)

We write estimator est ∈ {CRN, CFD} of the sensitivity s(k1,
N) of Eq. (10) as

ŝest(k1, N ) = φest(k1 + ε,N ) − φest(k1, N )

ε
(12)

in which φest(k1, N) is the estimate of the negative log
likelihood obtained from Eq. (9) using the estimator est ∈
{CRN, CFD}.

Figure 4 shows the steps in obtaining the sensitivity
of the negative log likelihood function using the CRN esti-
mator. Table II contains the parameters used in this exam-
ple. Figure 4(a) shows the variation of the quadratic form
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TABLE II. Parameter value for Sec. III B.

Parameter nA0 nB0 nC0 k1 k2 ε N nd R
Value 100 0 0 1. 1. 0.1 4000 21 Ind×nd

(y − xi(k1))′R−1(y − xi(k1)) as a function of individual SSA
simulation number i. Figure 4(a) reveals the wide variation in
the value of the quadratic form for different individual SSA
simulations. Figure 4(b) is a plot of e−(1/2)(y−xi (k1))′R−1(y−xi (k1))

as a function of the individual SSA simulation number i. The
wide variation in (y − xi(k1))′R−1(y − xi(k1)) of Figure 4(a)
leads to even wider variation in the exponential, as depicted
in Figure 4(b). Figure 4(c) depicts convergence of L(k1, N)
with N. L(k1, N) in Figure 4(c) is given by Eq. (8). Large vari-
ation in e−(1/2)(y−xi (k1))′R−1(y−xi (k1)) as depicted in Figure 4(b)
explains the sharp jumps in L(k1, N) which occur whenever
the last SSA simulation i = n dominates all the previous 1 ≤ i
≤ n − 1 simulations. Figure 4(d) shows the convergence of the
nominal and perturbed negative log likelihoods: φcrn(k1, N)
and φcrn(k1 + ε,N ). The sharp jumps in φcrn(k1, N) occur at
the same n values as the jumps in L(k1, N) in Figure 4(c).
Finally, Figure 4(e) shows the convergence of the sensitiv-
ity of the negative log likelihood using the CRN estimator,
ŝcrn(k1, N), as a function of N.

Next, we change focus from the CRN estimator to the
CFD estimator. In Figures 5(a)–5(e), we plot the analogous
results to Figures 4(a)–4(e). Finally, Figure 6 compares con-
vergence of CRN estimator, ŝcrn(k1, N), and CFD estimator,
ŝcfd(k1, N). We see that the convergence of the CFD estima-
tor to the estimated true value is faster than the CRN estima-
tor. An estimated true value is obtained by performing 50 000
simulations of the CFD estimator. The quicker convergence
property makes the CFD estimator a natural choice for the es-
timator of sensitivity of negative log likelihood. One point to
note is that, as N → ∞, the final converged value for both
CFD and CRN estimators is going to be the same, because
both the estimators have the same bias; the CRN estimator
shown in Figure 6 simply has not converged by N = 4000.
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FIG. 6. Convergence of the estimated sensitivities of (11) from CRN and
CFD estimators. Compared to the CRN estimator the CFD estimator shows
quicker convergence to the estimated true value.
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FIG. 7. Schematic diagram of the pap regulatory network. There are four
possible states of the pap operon depending on the LRP-DNA binding.

C. Sensitivity of a rare state probability

Consider the pap operon regulation10, 23 which has a bi-
ologically important rare state. In Srivastava et al.,23 we ob-
tained a significantly better estimate of the rare state probabil-
ity using stochastic quasi-steady-steady perturbation analysis
(sQSPA), compared to both the full model and importance
sampling based methods.24, 25 Figure 7 shows the schematic
of the pap operon regulation.

State g1 is the rare state. The master equation for the sys-
tem is

dP1

dt
= −(r1 + r3)P1 + r2P2 + r4P3, (13)

dP2

dt
= −(r2 + r5)P2 + r1P1 + r6P4, (14)

dP3

dt
= −(r4 + r7)P3 + r3P1 + r8P4, (15)

dP4

dt
= −(r6 + r8)P4 + r5P2 + r7P3, (16)

in which Pi(t; r2): i = 1, 2, 3, 4 is the probability of state gi

and rj: j = 1, 2, . . . , 8 are the rates of transition defined in
Table III. Define

Si(t ; r2) = ∂Pi

∂r2
i = 1, 2, 3, 4. (17)

The governing equations for the sensitivities Si: i=1,2,3,4 are
obtained by differentiating (13)–(16) with respect to r2,

dS1

dt
= −(r1 + r3)S1 + P2 + r2S2 + r4S3, (18)

dS2

dt
= −P2 − (r2 + r5)S2 + r1S1 + r6S4, (19)

dS3

dt
= −(r4 + r7)S3 + r3S1 + r8S4, (20)

dS4

dt
= −(r6 + r8)S4 + r5S2 + r7S3. (21)
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TABLE III. Reaction stoichiometry and reaction rates for Sec. III C.

Number Reaction stoichiometry Reaction rate (ri)

1 g1 → g2 100.0
2 g2 → g1 0.625
3 g1 → g3 100.0
4 g3 → g1 1.033
5 g2 → g4 0.99
6 g4 → g2 1.033
7 g3 → g4 0.99
8 g4 → g3 0.625

In Srivastava et al.,23 we showed that the sQSPA model
reduction leads to the reaction network shown in Figure 8.

In the sQSPA model reduction, we write probabilities Pi:
i = 1, 2, 3, 4 in a power series expression given by

Pi = Wi0 + εsqWi1 + ε2
sqWi2 + O

(
ε3

sq

)
,

in which εsq = 1
r1+r3

. By comparing O(ε0
sq) terms, the sQSPA

model reduction finds the expression for Wi0, i = 1, 2, 3, 4.
The master equation for the sQSPA reduced model is

W10 = 0, (22)

dW20

dt
= −[r̃1 + r5]W20 + r̃2W30 + r6W40, (23)

dW30

dt
= −[r̃2 + r7]W30 + r̃1W20 + r8W40, (24)

dW40

dt
= −[r6 + r8]W40 + r5W20 + r7W30, (25)

in which Wij are the jth-order probabilities of state gi: i = 1,
2, 3, 4, r̃1 = r2r3/(r1 + r3), and r̃2 = r1r4/(r1 + r3). By com-
paring O(ε1

sq) terms, one crucial equation23 that comes out is
the approximation of the probability (Psq1

) of the rare state in
terms of the probabilities of the other states satisfies

Psq1
= εsq(r2W20 + r4W30) (26)

in which εsq = 1/(r1 + r3).

r̃1

r̃2

r6

r5 r8
r7

g4

g3g2

FIG. 8. Reduced system of the pap regulatory network of Sec. III C in the
slow time scale regime.

We are interested in the sensitivity of probability of the
rare state g1, with respect to r2,

s(t ; r2) = S1 = ∂P1(t ; r2)

∂r2
. (27)

To estimate s(t; r2) of Eq. (27), we use three different estima-
tors: CRN, CFD, and sQSPA with common random numbers
(SRN). The CRN estimator is given as

ŝcrn(t ; r2) = 1

Nε

N∑
i=1

[
1
(
pacrn

i (t, r2 + ε) = g1
)

− 1
(
pacrn

i (t, r2) = g1
)]

(28)

in which pacrn
i (t ; r2) is the state of the pap operon at time t

with rate parameter r2 obtained through the ith CRN simula-
tion, and N is the number of CRN simulations. A point to note
is that the ith CRN simulation uses one SSA simulation with
rate parameter r2, i.e., pacrn

i (t ; r2), and one SSA simulation
with rate parameter r2 + ε, i.e., pacrn

i (t ; r2 + ε). The indica-
tor random variable 1(A) evaluates to 1 whenever the event
A happens and 0 otherwise. In an analogous fashion, we have
the CFD estimator for Eq. (27) as

ŝcfd(t ; r2) = 1

Nε

N∑
i=1

[
1
(
pacfd

i (t, r2 + ε) = g1
)

− 1
(
pacfd

i (t, r2) = g1
)]

. (29)

The SRN estimator estimates the sensitivity of Psq1
of Eq. (26)

with respect to r2. The SRN estimator is given by

ŝsrn = εsq

ε

[
(r2 + ε)Ŵ20(t ; r2 + ε) + r4Ŵ30(t ; r2 + ε)

− r2Ŵ20(t ; r2) − r4Ŵ30(t ; r2)
]

(30)

in which Ŵ20(t ; r2) and Ŵ20(t ; r2 + ε) are obtained by simu-
lating the reduced system shown in Figure 8 and governed by
the master equation (22)–(25) using common random num-
bers and SSA simulations. Figure 9 shows a comparison of
the CRN, CFD, and SRN estimators. The ratio of root mean
squared errors of CRN and CFD estimators is ecrn

ecfd
= 4.75. As

the number of reaction events is small in the pap operon, we
also apply the likelihood gradient method.15 We performed
500 simulations for each of the four estimators. The likeli-
hood method performs better than both CRN and CFD for
this example, but it performs worse than SRN. The SRN es-
timator tracks the true sensitivity closely except for a small
initial time. This example reveals the distinct advantage of
analytical insight and model reduction, e.g., the sQSPA anal-
ysis, over the several proposed estimators that do not use the
reduced model.

In this example, the number of reactions fired within the
time interval of consideration was small, which is precisely
when the likelihood method can produce a low variance es-
timator. In fact, in this particular application the likelihood
method even outperformed the CFD method. For models with
even a moderate number of reaction events, the likelihood
method will not outperform CFD. We also note that in this ex-
ample, the SRN method outperforms all other methods. How-
ever, SRN requires the ability to perform an analytic model
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FIG. 9. Estimated sensitivity from the CRN, CFD, and SRN estimators for Sec. III C. The SRN estimator tracks the true sensitivity closely except for a small
initial time. The CFD estimator performs better than the CRN estimator. On the right, we see that the likelihood method performs better than both the CRN and
CFD methods but it performs worse than SRN.

reduction using sQSPA, which was possible in this example,
thought not in general.

D. Sensitivity of a fast fluctuating species

In a stochastic simulation of the infection cycle of vesic-
ular stomatitis virus (VSV), there is a fast fluctuation in a pro-
tein at low copy number along with a rapid increase in the
population of the viral genome. Such a system is expensive
to simulate because the frequency of the fluctuation increases
as the simulation progresses leading to small time steps in the
SSA simulation.26 To illustrate the phenomenon, consider the
following simple 3-species, 3-reaction system

A + G
k1−→ C + G, (R3)

C + G
k2−→ 2G + A, (R4)

2G
k3−→ G (R5)

with k2 ∼ k1 	 k3. This reaction system describes the interac-
tion of three species in a simplified VSV replication process
– two forms of viral polymerase, A and C, and viral genome
G. The two forms of the polymerase arise because VSV has
two different complexes that serve as viral transcriptase and

replicase.27 The viral transcriptase form A is a complex of
constituent VSV proteins L and P. The replicase form C is a
complex of L, N, and P proteins. The species A is involved in
the transcription reaction (R3) to produce messenger RNA.
The transcription reaction leads to the conversion of tran-
scriptase A into replicase C. We further assume that produced
mRNA from reaction (R3) is short lived and hence we do not
include it in the model. Species C and G are involved in repli-
cation reaction (R4) to produce an additional viral genome G.
The replication reaction (R4) leads to the conversion of repli-
case C into transcriptase A. Finally, there is a second-order
degradation reaction (R5) of the viral genome. The model
(R3)–(R5) is insufficient to predict the full viral infection cy-
cle, but it is instructive in understanding the simulation chal-
lenges of the full infection cycle model used by Hensel et al.26

The reaction rate constants k1, k2, k3 denote macroscopic reac-
tion rate constants with units μm3/(mol s). We express micro-
scopic reaction rates in terms of macroscopic rate constants
(k1, k2, k3) and the system size 	,

r1 = 1

	
k1ag, r2 = 1

	
k2cg, r3 = 1

	
k3g(g − 1)

in which a, c, g represent the number of molecules of A,
C, and G, respectively, and the system size appears be-
cause the reactions are second order. For the purposes of this

0

1

2

3

0 1 2 3 4 5 6 7

c(t)

t (sec)

(a)(a)

100

101

102

103

104

105

106

0 1 2 3 4 5 6 7

g(t)

t (sec)

(b)

FIG. 10. A typical SSA simulation of the network of (R3)–(R5). (a) Counts of species C vs. time. (b) Counts of species G vs. time.
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FIG. 11. Comparison of standard deviations of CFD and CRN estimators for Sec. III D: (a) Species G and (b) Species C.

example, we take 	 = 105μm3. A stochastic simulation
with the parameter values given in Table IV is shown in
Figure 10. Species G increases continuously and this increase
forces species C to fluctuate with increasing frequency as
shown in Figure 10.

We want to investigate the sensitivity

s(t ; k3) = dEX(t, k3)

dk3
. (31)

In which X ∈ {C, G}. An estimator of the sensitivities of in-
terest (31) is

ŝest = 1

N

N∑
i=1

Xest
i (t ; k3 + ε) − Xest

i (t ; k3)

ε
(32)

in which est ∈ {CRN, CFD}. Figure 11 shows a comparison
of the standard deviations of the two estimators, CRN and
CFD, obtained using Eq. (4). The parameters used to generate
Figure 11 are shown in Table IV. Figure 11(a) shows that for
the abundant species G, CFD, and CRN estimators have sim-
ilar standard deviations, which demonstrates that both CRN
and CFD are capable of obtaining good sensitivity estimates
for the abundant species G. Figure 11(b) shows that for fast
fluctuating species C, the CFD estimator has less than one
third the standard deviation of the CRN estimator, which
demonstrates that the CFD estimator captures the sensitivity
of the fast fluctuating species C better than the CRN estimator.
This example again demonstrates the superiority of the CFD
estimator over the CRN estimator.

E. Sensitivity of genetic toggle switch

We conclude with a model of a genetic toggle switch1, 2, 28

∅
λ1

�
1

A, ∅
λ2

�
1

B, (33)

TABLE IV. Parameter values for Sec. III D.

Parameter nA0 nC0 nG0 k1 k2 k3 ε N
Value 3 0 1 2 × 105 3 × 105 1 0.1 100

where the respective propensities are

λ1(t) = b

1 + XB(t)β
and λ2(t) = a

1 + XA(t)α
,

and where XA(t) and XB(t) will denote the number of gene
products from the two interacting genes. As in Refs. 1, 2,
and 28, we take parameter values of b = 50, β = 2.5,
a = 16, and α = 1. We consider the derivative of the expec-
tation of XA with respect to α at the value one, with [XA(0),
XB(0)] = [0, 0] as our choice of initial condition. We will
consider the behavior of three finite difference methods on
this example: CFD, CRN, and CRP.2 For each of the three fi-
nite difference methods employed, we use a perturbation of
ε = 1/50.

Figure 12 shows a comparison of the standard devia-
tions of the three estimators. We again see the superiority of
the CFD estimator over both the CRN and CRP estimators.

FIG. 12. Comparison of standard deviations of CFD, CRN, and CRP esti-
mators on the model (33).
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Further, starting at time t = 5s, the standard deviation of the
CRN estimator is less than that of the CRP estimator. This
result demonstrates that it is not always the case that CRP is
superior to CRN, something not previously observed in the
literature.

IV. CONCLUSIONS

In this paper, we compared the performance of several fi-
nite difference sensitivity estimators on a number of examples
not previously considered in the literature. In all the exam-
ples and sensitivities of interest, we found that the newly de-
veloped CFD estimator performs significantly better than the
CRN estimator, which is currently the most commonly used
method. Further, in Sec. III E we provided a case in which the
CRN estimator is superior to the CRP estimator.

In previous work, it had been shown that the CFD es-
timator performs better than the CRP estimator.1 The com-
parisons made in this paper, along with Anderson’s previous
results, lead to the conclusion that CFD is currently the best
available estimator in the class of finite difference estimators
of stochastic chemical kinetic models.

Estimating sensitivities of stochastic chemical kinetic
models accurately and efficiently remains an important prob-
lem. With variance reduction ideas incorporated in the CFD
estimator through a tight coupling of the nominal and per-
turbed systems, we believe this estimator has significant ad-
vantages over previous estimators without such a coupling.
The CFD estimator has significant potential for application in
parameter estimation where it can provide accurate estimates
of the Hessian of the objective function. Recently, Wolf and
Anderson28 have also proposed a CFD2 estimator to directly
estimate the Hessian of the objective function. Evaluating the
effectiveness of CFD and CFD2 estimators in parameter es-
timation of stochastic chemical kinetic models is a topic of
ongoing research.
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