A short note on the Lyapunov function for complex-balanced chemical reaction networks

David F. Anderson[∗]

January 23, 2014

Abstract

A very short proof is presented that the usual Lyapunov function of chemical reaction network theory is, in fact, a strict Lyapunov function. The proof is essentially the same as that presented in a series of lectures by Marty Feinberg at the University of Wisconsin in 1979, though the reliance on "complex-space" has been removed, making this particular argument slightly more intuitive.

This note largely follows a small portion of Marty Feinberg's lectures [1]. The major difference between the argument presented here and those presented in [1] is that here we will not utilize "complex-space." How complex-balancing implies the usual Lyapunov function is, in fact, a strict Lyapunov function then becomes quite clear. We stress, however, that the main argument is essentially that of [1].

We follow the notation of [1]. Let $\{\mathcal{S}, \mathcal{C}, \mathcal{R}\}$ be a deterministically modeled chemical reaction system with mass-action kinetics. Suppose that there are precisely N species. We denote the kth reaction by $y_k \to y'_k$, and denote the span of the reaction vectors by $S = \text{span}\{y_k' - y_k\}.$ The ODE governing the dynamics of the system is

$$
\dot{x}(t) = \sum_{k} \kappa_k x(t)^{y_k} (y'_k - y_k). \tag{1}
$$

Assume that the system is complex-balanced with complex-balanced equilibrium $\bar{c} \in \mathbb{R}_{>0}^N$. This means that for each $\eta \in \mathcal{C}$,

$$
\sum_{k:\eta=y_k} \kappa_k(\overline{c})^{y_k} = \sum_{k:\eta=y'_k} \kappa_k(\overline{c})^{y_k},\tag{2}
$$

where the sum on the left is over all reactions for which η is the source complex, and the sum on the right is over all reactions for which η is the product complex.

Now define the function V by

$$
V(x) = \sum_{i=1}^{N} x_i (\ln(x_i) - \ln \overline{c}_i - 1) + \overline{c}_i.
$$

The fact that V is a Lyapunov function for the system is captured in the following result.

[∗]Department of Mathematics, University of Wisconsin at Madison, anderson@math.wisc.edu

Theorem 0.1. Suppose that $x \in \mathbb{R}_{>0}^N$ with $x - \overline{c} \in S$. Then

$$
\nabla V(x) \cdot \sum_{k} \kappa_k x^{y_k} (y'_k - y_k) = \sum_{k} \kappa_k x^{y_k} (y'_k - y_k) \cdot (\ln(x) - \ln(\overline{c})) \le 0,
$$

with equality if and only if $x = \overline{c}$.

Proof. Note that

$$
\sum_{k} \kappa_k x^{y_k} (y'_k - y_k) \cdot (\ln x - \ln \overline{c}) = \sum_{k} \kappa_k(\overline{c})^{y_k} \left(\frac{x}{\overline{c}} \right)^{y_k} \left(\ln \left\{ \left(\frac{x}{\overline{c}} \right)^{y'_k} \right\} - \ln \left\{ \left(\frac{x}{\overline{c}} \right)^{y_k} \right\} \right).
$$

Using that for any real numbers $a, b \in \mathbb{R}$ we have $e^a(b-a) \leq e^b - e^a$ with equality if and only if $a = b$ (consider secant lines of e^x), we have

$$
\sum_{k} \kappa_{k}(\overline{c})^{y_{k}} \left(\frac{x}{\overline{c}}\right)^{y_{k}} \left(\ln\left\{\left(\frac{x}{\overline{c}}\right)^{y_{k}'}\right\} - \ln\left\{\left(\frac{x}{\overline{c}}\right)^{y_{k}}\right\}\right) \leq \sum_{k} \kappa_{k}(\overline{c})^{y_{k}} \left(\left(\frac{x}{\overline{c}}\right)^{y_{k}'} - \left(\frac{x}{\overline{c}}\right)^{y_{k}}\right)
$$
\n
$$
= \sum_{\eta \in \mathcal{C}} \left[\sum_{k:\eta=y_{k}'} \kappa_{k}(\overline{c})^{y_{k}} \left(\frac{x}{\overline{c}}\right)^{y_{k}'} - \sum_{k:\eta=y_{k}} \kappa_{k}(\overline{c})^{y_{k}} \left(\frac{x}{\overline{c}}\right)^{y_{k}}\right]
$$
\n
$$
= \sum_{\eta \in \mathcal{C}} \left(\frac{x}{\overline{c}}\right)^{\eta} \left[\sum_{k:\eta=y_{k}'} \kappa_{k}(\overline{c})^{y_{k}} - \sum_{k:\eta=y_{k}} \kappa_{k}(\overline{c})^{y_{k}}\right]
$$
\n
$$
= 0,
$$

where the final equality holds by (2) , i.e. by complex-balancing at \bar{c} .

Thus, we have a strict inequality unless

$$
(y'_{k} - y_{k}) \cdot (\ln(x) - \ln(\overline{c})) = 0,
$$

for all k . That is, we have a strict inequality unless

$$
\ln(x) - \ln(\overline{c}) \in S^{\perp}.
$$
\n(3)

 \Box

Following precisely the argument on page 4 – 33 of [1], we now note that if both $x - \overline{c} \in S$ and (3) hold, then

$$
0 = (x - \overline{c}) \cdot (\ln(x) - \ln(\overline{c})) = \sum_{i=1}^{N} (x_i - \overline{c}_i)(\ln(x_i) - \ln(\overline{c}_i)),
$$

which, by the monotonicity of log function, can only happen if $x_i = \overline{c}_i$ for all i.

References

[1] M. Feinberg, Lectures on chemical reaction networks, Delivered at the Mathematics Research Center,Univ. Wisc.-Madison. Available for download at http://crnt.engineering.osu.edu/LecturesOnReactionNetworks, 1979.