Math 831 – Spring 2012

Homework 1

Due: Thursday, September 13th, 2012.

- 1. Suppose f is a measurable mapping from one measurable space S to another measurable space U. If A is a measurable subset of S, does it follow that the image f(A) is a measurable subset of U?
- 2. Exercise 1.1.1 from text.
 - (i) If \mathcal{F}_i , $i \in I$ are σ -fields, then $\cap_{i \in I} \mathcal{F}_i$ is also. (*I* is an arbitrary index set– possibly uncountable.)
 - (ii) Use (i) to show that if we are given a set Ω and a collection \mathcal{A} of subsets of Ω , then there is a smallest σ -field containing \mathcal{A} . This is called the σ -field generated by \mathcal{A} and we denote it by $\sigma(\mathcal{A})$.
- 3. Exercise 1.1.2 from text. Let $\Omega = \mathbb{R}$, and let \mathcal{F} be all subsets of \mathbb{R} such that either A or A^c is countable. Define $\mathbf{P}(A) = 0$ if A is countable and $\mathbf{P}(A) = 1$ if uncountable. Show that $(\Omega, \mathcal{F}, \mathbf{P})$ is a probability space.
- 4. Exercise 1.2.1 from text. Suppose X and Y are random variables on $(\Omega, \mathcal{F}, \mathbf{P})$ and let $A \in \mathcal{F}$. Show that if we let $Z(\omega) = X(\omega)$ for $\omega \in A$ and $Z(\omega) = Y(\omega)$ for $\omega \in A^c$, then Z is a random variable.
- 5. Exercise 1.2.5 from text. Suppose X has a continuous density f, $P(\alpha \le X \le \beta) = 1$ and g is a function that is strictly increasing and differentiable on (α, β) . Then g(X) has density

$$\frac{f(g^{-1}(y))}{g'(g^{-1}(y))}$$

for $y \in (g(\alpha), g(\beta))$ and 0 otherwise. When g(x) = ax + b with a > 0, $g^{-1}(y) = (y - b)/a$, so the answer is (1/a)f((y - b)/a).

6. Exercise 1.3.1. Show that if \mathcal{A} generates \mathcal{S} , then $X^{-1}(\mathcal{A}) \equiv \{\{X \in A\} : A \in \mathcal{A}\}$ generates $\sigma(X) = \{\{X \in B\} : B \in \mathcal{S}\}.$