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Recall Theorem

Theorem (3.6.1-page 147)
For each n, let Xn,m, with 1 ≤ m ≤ n, be independent (Bernoulli) RVs with

P(Xn,m = 1) = pn,m, P(Xn,m = 0) = 1− pn,m.

Suppose

(i)
∑n

m=1 pn,m → λ ∈ (0,∞), and

(ii) max{1≤m≤n} pn,m → 0.

If we let
Sn = Xn,1 + · · ·+ Xn,n,

then Sn ⇒ Z where Z is Poisson(λ).

i.e.

P(Z = k) = e−λ
λk

k !
and

ϕZ (t) = EeitZ =
∑

k

eitk e−λ
λk

k !

= exp{−λ+ λeit} = exp{λ(eit − 1)}.



proof

ϕn,m(t) = E(exp(itXn,m)) = (1− pn,m) + pn,meit = 1 + pn,m(eit − 1).

Then, using that Sn = Xn,1 + · · ·+ Xn,m,

ϕSn (t) =
n∏

m=1

ϕn,m(t) =
n∏

m=1

(1 + pn,m(eit − 1))

What do we want? We want:∣∣∣∣ n∏
m=1

(1 + pn,m(eit − 1))− exp(λ(eit − 1))
∣∣∣∣ use

n∑
m=1

pn,m ≈ λ

≈

∣∣∣∣∣
n∏

m=1

(1 + pn,m(eit − 1))− exp

( n∑
m=1

pn,m(eit − 1)

)∣∣∣∣∣
=

∣∣∣∣∣
n∏

m=1

(1 + pn,m(eit − 1))−
n∏

m=1

exp
(

pn,m(eit − 1)
)∣∣∣∣∣ use |

∏
i

zi −
∏

i

wi | ≤
∑

i

|zi − wi |

≤
n∑

m=1

∣∣∣(1 + pn,m(eit − 1))− exp
(

pn,m(eit − 1)
)∣∣∣ now use |eb − (1 + b)| ≤ |b2|

≤
n∑

m=1

|pn,m|2|eit − 1|2 ≤ 4
[

max
1≤m≤n

pn,m

] n∑
m=1

pn,m → 0.



Slight variant

Theorem (3.6.6-page 154)
Let Xn,m, with 1 ≤ m ≤ n, be independent, non-negative integer valued RVs
with

P(Xn,m = 1) = pn,m, P(Xn,m ≥ 2) = εn,m.

Suppose

(i)
∑n

m=1 pn,m → λ ∈ (0,∞) (same), and

(ii) max{1≤m≤n} pn,m → 0 (same), and

(iii)
∑n

m=1 εn,m → 0 (very unlikely to see 2 or more events - same as before
where it was zero).

If we let
Sn = Xn,1 + · · ·+ Xn,n,

then Sn ⇒ Z where Z is Poisson(λ).

i.e. same conclusion.

Think of εn,m = o(1/n). Maybe εn,m = c/n2.



proof

Let X ′n,m almost be Xn,m. That is, we let

X ′n,m =

{
1 if Xn,m = 1
0 if Xn,m 6= 1.

Let S′n = X ′n,1 + · · ·+ X ′n,n.

1. By previous theorem, S′n ⇒ Z (which is Poisson(λ)).

2. By P(Xn,m ≥ 2) = εn,m, and
∑n

m=1 εn,m → 0

P(Sn 6= S′n) ≤ P(Xn,m ≥ 2, for some m) ≤
n∑

m=1

εn,m → 0.

We have

(i) S′n ⇒ Z , and

(ii) Sn − S′n
p→ 0 =⇒ S′n − Sn ⇒ 0,

and so by your HW exercise (3.2.13), Sn ⇒ Z .



Poisson process-a first pass
We want to think of N(s, t) as the number of events (customers arriving, etc)
happening in (s, t). We make the following modeling choices.

(i) the # of arrivals in disjoint intervals are independent.

(ii) the distribution of N(s, t) only depends upon t − s (weaken later)

(iii) P(N(0, h) = 1) = P(N(t , t + h) = 1) = λh + o(h), and

(iv) P(N(0, h) ≥ 2) = P(N(t , t + h) ≥ 2) = o(h).

Theorem
If four conditions above hold, then N(0, t) has a Poisson distribution with
mean/parameter λt .

Proof.
Simply let

Xn,m = N
(

mt
n
− t

n
,

mt
n

)
, for 1 ≤ m ≤ n,

apply previous theorem: P(Xn,m = 1) = pn,m = λ(t/n) + o(1/n).

(i)
∑n

m=1 pn,m → λt , and

(ii) max{1≤m≤n} pn,m → 0, and

(iii)
∑n

m=1 εn,m → 0.



Poisson process-a first pass

Definition
A family of RVs Nt , t ≥ 0 satisfying

1. Independent increments: t0 < t1 < · · · < tn implies

{N(tk )− N(tk−1)}, 1 ≤ k ≤ n,

are independent.

2. N(t)− N(s) is Poisson(λ(t − s))

is called a Poisson process with rate λ.

Note that if N(t) is Poisson then it satisfies other conditions since:

P(N(h)− N(0) = 0) = e−λh = 1− λh + l(h)

P(N(h)− N(0) = 1) = e−λhλh ≈ λh + o(h)

P(N(h)− N(0) ≥ 2) = o(h).

We now have two equivalent definitions of a Poisson process. We are now
going to build it in a different fashion.



Constructing a Poisson process
Will can also view a Poisson process, N(t) = N([0, t ]), through the lens of an
underlying point process. (More on that later)

(a) Let {ei} be i.i.d. exponential random variables with parameter λ:
fe1(x) = λe−λx .

(b) Now, put points down on a line with spacing equal to the ei :

x x x x x x x x
↔
e1
↔
e2

←→
e3 · · · t

I Let Nλ(t) denote the number of points hit by time t .

I In the figure above, N1(t) = 6.
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Constructing a Poisson process

Formally, we let ei be independent exponential parameter λ, and let

Tn = e1 + · · ·+ en,

and
N(t) = sup{n : Tn ≤ t}.

Why is this a Poisson process? Essentially it’s the loss of memory property of
exponential random variables. See page 155/156 for details.



Transformations of poisson processes
First question: can I get a Poisson process with rate λ > 0 from one with a
rate of one?

Answer: Yes. Just move hand quicker in previous picture!
Let

Nλ(t)
def
= N1(λt).

Check conditions:

1. Let t0 < t1 < · · · < tn, then

{Nλ(tk )− Nλ(tk−1)} = {N1(λtk )− N1(λtk−1)},

are independent since λt0 < λt1 < · · · < λtn.

2. For k ≥ 0,

Nλ(t)− Nλ(s) = N1(λt)− N1(λs) ∼ Poisson(1 · (λt − λs))

= Poisson(λ(t − s)).

Also note:

P(Nλ(t + h)− Nλ(t) = 1) = P(N1(λt + λh)− N1(λt) = 1) = λh + o(h).



This is fun! Are there other Poisson processes we can define?

Sure! Move hand at varying (non-negative speeds)!

Let’s define a non-homogeneous Poisson process with intensity function λ(t),
to be a process N(t) such that:

1. Independent increments: t0 < t1 < · · · < tn implies

{N(tk )− N(tk−1)}, 1 ≤ k ≤ n,

are independent.

2.

N(t)− N(s) ∼ Poisson
(∫ t

0
λ(s)ds

)
.

Note:

P(N(t + h)− N(t) = 1) = e
∫ t+h

t λ(s)ds
∫ t+h

t
λ(s)ds ≈ λ(t)h + o(h).



Transformations of poisson processes
Can I construct a non-homogenous Poisson process with intensity λ(t) ≥ 0
from a homogeneous, rate one Poisson process?

Let

Nλ(t)
def
= N1

(∫ t

0
λ(s)ds

)
.

Check conditions:
1. Let t0 < t1 < · · · < tn, then

{Nλ(tk )− Nλ(tk−1)} =
{

N1

(∫ tk

0
λ(s)ds

)
− N1

(∫ tk−1

0
λ(s)ds

)}
,

are independent since∫ t0

0
λ(s)ds ≤

∫ t1

0
λ(s)ds ≤ · · · ≤

∫ tn

0
λ(s)ds.

2. For k ≥ 0,

Nλ(t)− Nλ(s) = N1

(∫ t

0
λ(s)ds

)
− N1

(∫ s

0
λ(s)ds

)
= Poisson

(∫ t

0
λ(r)dr −

∫ s

0
λ(r)dr

)



The magic of unit rate Poisson processes

So, we learned that we can construct many Poisson processes with only a
unit-rate Poisson process as a building block. Idea was to transform time.

Question: Are there other ways to transform processes that we haven’t
considered yet?

Great question! The answer is yes, but we need a more inclusive definition of
a Poisson “process”. Will look more generally into Point processes.



Point processes
Idea: Want to be able to model a random distribution of points in a space,
usually a subset of Euclidean space

I R
I [0,∞)

I Rd , d ≥ 1.

Example
Renewal processes distribute points on [0,∞) so that gaps between points
are iid random variables.

Example
The Poisson process is a renewal process which distributes points so gaps
are iid exponential RVs.

Modeling examples:
1. The breakdown times of a machine.

2. Position of proteins on a cell membrane (Ankit’s Ph.D. thesis).

3. the positions and times of earthquakes in the next 50 years.

4. Positions of lightning strikes.



Point processes basics: see Resnick, Adventures in Stochastic
Processes, 1992

We suppose that E is a subset of Euclidian space, Rd (or [0,∞),R2, etc). We
I Suppose that {Xn, n ≥ 0} are random elements of E , which represent

points in the state space E .

I Define the discrete (random) measure

εXn (A) =
{

1, if Xn ∈ A,
0, if Xn /∈ A,

Note: εXn (·) takes A ⊂ E as an input and asks whether or not Xn ∈ A.

I By summing over n, we get the total number of random points Xn which
fall in A.

I We then define the counting measure, N, by

N(·) =
∑

n

εXn (·),

so that
N(A) =

∑
n

εXn (A),

is the random number of points that fall in the set A.



Example: Binomial Process
1. Place n = 100 points at random locations inside a bounded region

W ⊂ R2.
2. Let X1, . . . ,X100 be i.i.d. points uniformly distributed in W .
3. That is, the density of each Xi is

f (x) =
{

1/λ2(W ) if x ∈ W
0 else

where λ2(W ) is the area of W .
A realization could be:

6 Adrian Baddeley

1.3 Example: Binomial Process

To take a very simple example, let us place a fixed number n of points at
random locations inside a bounded region W ⊂ R2. Let X1, . . . , Xn be i.i.d.
(independent and identically distributed) random points which are uniformly
distributed in W . Hence the probability density of each Xi is

f(x) =

{
1/λ2(W ) if x ∈ W
0 otherwise

where λ2(W ) denotes the area of W . A realisation of this process is shown in
Figure 9.

Fig. 9. Realisation of a binomial point process with n = 100 in the unit square.

Since each random point Xi is uniformly distributed in W , we have for any
bounded set B in R2

P(Xi ∈ B) =

∫

B

f(x) dx

=
λ2(B ∩ W )

λ2(W )
.

The variables N(B) and V (B) may be represented explicitly as

N(B) =
n∑

i=1

1{Xi ∈ B}

V (B) =
n

min
i=1

1{Xi $∈ B}



Example: Binomial Process
For any bounded set B in R2, we have

P(Xi ∈ B) =

∫
B

f (x)dx =

∫
B∩W

1/λ2(W )ds =
λ2(B ∩W )

λ2(W )
,

And

N(B) =
n∑

i=1

1(Xi ∈ B).

Note that N(B) has a binomial distribution with parameters n = 100 and

p =
λ2(B ∩W )

λ2(W )
,

which is why process is called binomial process.

Also note that if B1 and B2 are disjoint, then not in general independent. For
example if B1 ∪ B2 = W and disjoint, we know

N(B1) = 100− N(B2).



Point process basics

Definition
N is called a point process and {Xn} are called the points.

Note: The counting measure N depends explicitly on the points. In this
sense, it is a random measure.

An important statistic for a point process is the mean measure, or intensity. It
is

µ(A) def
= EN(A).

The expected number of points in the region A.

I If N is a poisson process with parameter λ, then
µ([a, b]) = E(N(b)− N(a)) = λ(b − a).

I For binomial process

EN(A) = n · λ2(A ∩W )

λ2(W )
.



Poisson random measure

Definition
Let E be a subset of Rd , and let µ be a measure on E which is finite on every
compact set. The Poisson process N on E with intensity measure µ is a point
process on E such that

1. For compact A ⊂ E , the count N(A) has a Poisson distribution with
mean µ(A).

2. If A1, . . . ,Ak are disjoint compact subsets of E , then N(A1), . . . ,N(Ak )
are independent.

N is also called a Poisson process with mean measure µ or a Poisson
random measure, PRM(µ), if

See example 3.6.8 page 158 for formal construction when µ(E) <∞: Let Xn

be i.i.d. with measure ν(·) = µ(·)/µ(E), let Y be independent Poisson(µ(E)).
Then let N(A) = |{j ≤ N : Xj ∈ A}|. (thinning)

If µ(E) =∞, build on disjoint pieces and tie together.



Poisson random measure

When the mean measure is a multiple of Lebesgue, i.e.
I length when E = R, area when E = R2, volume when E = R3,

we call the process homogeneous.

I In homogeneous case, there is an α > 0 such that for any A ∈ E we
have that N(A) is Poisson with mean

EN(A) = α|A|

(where |A| is Lebesgue measure of A).

I When E = R, the parameter α is called the rate or intensity of the
(homogeneous) Poisson process.



Non-homogenous Poisson process: part 2

Suppose that for open intervals (a, b) ⊂ R, the mean measure µ for a
Poisson process is

µ((a, b)) = G(b)−G(a),

for some non-decreasing, absolutely continuous function G.

For example: G(t) = t2

If G has density g, i.e. g(t) = 2t , then

µ((a, b)) = G(b)−G(a) =
∫ b

a
g(s)ds, or more generally µ(A) =

∫
A

g(s)ds.

So long as G(t) 6= ct for some t , i.e. g(t) 6= c, then this is non-homogeneous.
We have that

P(N(a, b) = k) = e−(G(b)−G(a)) (G(b)−G(a))k

k !
= e−(

∫ b
a g(s)ds) (

∫ b
a g(s)ds)k

k !
.



Example
Say restaurants are distributed relative to your restaurant as a spatial Poisson
process with rate α = 3 per square mile. What is expected distance to
nearest competitor?

Let R be the distance of the nearest competitor and let d(r) be a disc of
radius r centered at your rest. Then,

P(R > r) = P[N(d(r)) = 0] = e−3|d(r)|.

Obviously we have that
|d(r)| = πr 2.

Therefore,
P[R > r ] = e−3πr2

.

The expected distance is then

E(R) =

∫ ∞
0

P[R > r ]dr =

∫ ∞
0

e−3πr2
dr (use the subs. u/

√
2 =
√

3πr)

=
1√

2
√

3π

∫ ∞
0

e−u2/2du =
1√

2
√

3π

√
2π

1√
2π

∫ ∞
0

e−u2
du

=
1
2

1√
3
≈ .2887miles.



Back to original good question: are other transformations possible?

We suppose that

1. N(·) =
∑

n εXn (·) is a Poisson process with state space E .

2. The mean measure is µ. So, P(N(A) = k) = e−µ(A)µ(A)k/k !.

3. T is some 1-1 transformation (function) with domain E and range E ′

(both Euclidean spaces):
T : E → E ′.

I Note that the function T−1 defines a set mapping from subsets of E ′ to
subsets of E :

for A′ ⊂ E ′ we have T−1(A′) = {e ∈ E : T (e) ∈ A′}.

That is: T−1(A′) is the pre-image of A′ under T . Draw picture.



Transformation
Theorem
Suppose that T : E → E ′ is a one-to-one (bijective) mapping between
Euclidean spaces such that if B′ ⊂ E ′ is bounded, then so is T−1B′ ⊂ E. If N
is PRM(µ) on E with points {Xn}, then N ′ := N ◦ T−1 is PRM(µ′) on E ′ with
points {T (Xn)} and where µ′ = µ ◦ T−1.

Thus: if you shift points of a Poisson process around you still have a Poisson
process!

Proof.
We need to show Poisson distribution and independence property.
First, if B′ bounded, then T−1(B′) has finite number of points and

P(N ′(B′) = k) = P(N(T−1(B′)) = k) = e−µ(T
−1(B′)) µ(T−1(B′))k

k !
.

Thus, N ′(·) is Poisson distributed with mean measure µ′ = µ ◦ T−1.

Next, if B′1, . . . ,B
′
m are disjoint, then so are T−1B′1, . . . ,T

−1B′m. Therefore,(
N ′(B′1), · · · ,N ′(B′m)

)
=
(

N(T−1(B′1)), · · · ,N(T−1(B′m))
)
.

are independent.



Examples

Let

N =
∞∑

n=1

εXn

be a homoegeneous Poisson process with rate α = 1 on E = [0,∞). The
mean measure is

µ(A) = |A|,

and µ([0, t ]) = t .

Now we suppose that Tx = x2. Then,∑
n

εX2
n

is PRM and the mean measure µ′is given by

µ′([0, t ]) = µ(T−1[0, t ]) = µ{x : Tx ≤ t} = µ{x : x2 ≤ t} = µ([0,
√

t ]) =
√

t .

Note, that this is a PRM with local intensity, or density, satisfying∫ t

0
λ(s)ds =

√
t =⇒ λ(t) =

d
dt

√
t =

1
2

t−1/2.



Examples

If Tx = (x , x2), then ∑
n

εTXn =
∑

n

ε(Xn,X2
n )

is Poisson on R× R2 with a mean measure that is zero off the graph (x , x2).



Marking and thinning

We are going to “mark” each point of the Poisson process with a random
variable {Jn}, which are independent RVs that are also independent from the
Poisson process. Then, (Xn, Jn) will also be a Poisson process on an
enlarged state space.

Idea: Think of Jn as marking toys coming off assembly line. Marks could be 1
for functional and 0 for dysfunctional. (we will see that this is thinning).



Marking and thinning

Theorem
Suppose that {Xn} are random elements of state space E1 such that∑

n

εXn (·)

is PRM(µ). Suppose that Jn are iid RVs of state space E2 (usually subset of
R) with common distribution function F . We also suppose sequence {Jn} and
process are independent. Then, the point process,∑

n

ε(Xn,Jn)(·, ·)

on E1 × E2 is PRM with mean measure µ× F, meaning that if A1 ⊂ E1 and
A2 ⊂ E2, then

µ× F (A1 × A2) = µ(A1)F (A2) = µ(A1)P[J1 ∈ A2].



Marking and thinning

We won’t prove, (see Resnick 1992), but note that mean measure is correct
in sense

E
∑

n

ε(Xn,Jn)(A1 × A2) =
∑

n

P[(Xn, Jn) ∈ A1 × A2]

=
∑

n

P[Xn ∈ A1]P[Jn ∈ A2] (by independence)

=
∑

n

P[Xn ∈ A1]P[J1 ∈ A2] (by iid of Jn)

=

(
E
∑

n

εXn (A1)

)
P[J1 ∈ A2]

= µ(A1)P[J1 ∈ A2].



Special case: thinning

Suppose

1. that N =
∑

n εXn is a Poisson process on the state space E with mean
measure µ.

2. we keep each point with a probability of p ∈ (0, 1). We delete with
probability q = 1− p.

3. Let Nr be the point process of retained points and Nd the point process
of deleted points.

Will show: Nr (·) and Nd(·) are independent Poisson processes with mean
measures pµ(·) and qµ(·), respectively.



Thinning
Let {Bi} be iid Bernoulli RVs independent of the points of the process {Xn}
so that

P(B1 = 1) = p, P(B1 = −1) = 1− p.

We know that ∑
n

ε(Xn,Bn)

is a Poisson process on E × {−1, 1} with mean measure µ× P(B1 = ·).
I Think of {Xn : Bn = 1} as the retained points;
I Think of {Xn : Bn = −1} as the deleted points.

Then,

Nr (·) =
∑

n

ε(Xn,Bn)((·)× {1}) =
∑

n:Bn=1

εXn (·)

Nd(·) =
∑

n

ε(Xn,Bn)((·)× {−1}) =
∑

n:Bn=−1

εXn (·)

are independent processes. Also, for A ⊂ E we have

Nr (A) =
∑

n
ε(Xn,Bn)((A)× {1}) ∼ Poisson

(
P{Bn = 1} · µ(A)

)
= Poisson(p · µ(A))

Nd (A) =
∑

n
ε(Xn,Bn)((A)× {−1}) = Poisson

(
P{Bn = −1} · µ(A)

)
= Poisson(q · µ(A)).



Thinning

Proof for thinning. We need:

1. Nr and Nd are *each* Poisson.

2. Independent from each other.

First note: if A1, . . . ,An are disjoint, then Nr (Ai) depends only upon N(Ai) and
independent Bernoulli’s. Hence Nr (A1), . . . ,Nr (An) are independent. Same
for Nd .

Also get Nr (Ai) and Nd(Aj) for j 6= i are independent.

Still need:

(i) Nr , Nd have Poisson distributions and

(ii) independent from each other on a given set A.

Handle together.



Proof continued

Let Zn = number of B1, . . . ,Bn that gave one ∼ binomial(n, p).

P(Nr (A) = k ,Nd(A) = j) = P(N(A) = j + k ,Zj+k = k)

= e−µ(A)
(µ(A))k+j

(k + j)!
· (j + k)!

k !j!
pk (1− p)k

= e−pµ(A) (pµ(A))k

k !
e−qµ(A) (qµ(A))j

j!

So we have Poisson and independent.

Thinning into M strips is no harder.



Thinning

This is amazing

Example
People arrive according to rate λ = 5. 50% are women. Knowing there have
been 100 women, does not tell you how many men there have been!


