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Instructor: David F. Anderson



Recall Theorem

Theorem (3.6.1-page 147)
For each n, let Xp,m, with1 < m < n, be independent (Bernoulli) RVs with

P(Xn,m = 1) = Pn,m, P(Xn,m = 0) =1— pnm.
Suppose
(i) Zr,;:1 Pnm — A € (07 OO), and
(i) maXxg1<m<n} Pn,m — 0.

If we let
Sh= Xn,1 TP eee Xn,n,

then S, = Z where Z is Poisson()\).

i.e.
a8

PZ=k=e %5

and

0z /tZ Z eltk —A )\

=exp{—\+ 2"} = exp{/\(e" -1}



proof

en,m(t) = E(exp(itXn,m)) = (1 — pam) + pn,meit =1+ pn,m(eit —1).
Then, using that S, = Xp 1 + -+ + Xo,m,

Ps,(t) = H onm(t) = H(1 + Pom(e" — 1))

=1

What do we want? We want:

n n
TT(1+ pan(e’ — 1)~ exp(A(e — 1)] 156 3 g~
m=1 m=1

n

Q

(1+ pnm(e" —1)) —exp (Z Pnm(e — 1)) ‘

m=1 m—1

I
-

n
(1 + pam(e" — 1)) — H exp (pn,m(e” = 1))‘ use [ [Tz —[Jwl <> lzi—w

m=1 m=1
n ) .
< |1+ pnm(e" = 1)) — exp (pam(e" = 1))|  nowuse [ — (1 +b)| < |1
m=1
n n
< 21t _ 12 < 4 .
< L IPo.mf?le" — 12 < 4 | max pn.m ;pn,m—m



Slight variant

Theorem (3.6.6-page 154)
Let Xn,m, with1 < m < n, be independent, non-negative integer valued RVs
with
P(Xo,m=1) = pnm,  P(Xo,m > 2) = enm.
Suppose
@iy S0 _, pom — X € (0,00) (same), and
(i) max1<m<n} Pn,m — 0 (same), and

(iiy =" _, en,m — O (very unlikely to see 2 or more events - same as before
where it was zero).

If we let

Sn = Xn,1 qFeee gF Xn,n,
then S, = Z where Z is Poisson()).
i.e. same conclusion.

Think of e, m = o(1/n). Maybe e, m = ¢/n?.



proof

Let X almost be Xy, m. That is, we let

o [ i Xam=1
"m0 i Xom #£ 1.

Let Sp= Xp 1 + -+ Xpn

1. By previous theorem, S}, = Z (which is Poisson())).
2. By P(Xn,m > 2) = €n,m, and an:1 €n,m — 0

P(S, # S;) < P(Xpm > 2, for some m) < Zen,m — 0.

m=1
We have
(i) S, = Z,and
(i) Si—8, B0 = S,— S, =0,
and so by your HW exercise (3.2.13), S, = Z.



Poisson process-a first pass
We want to think of N(s, t) as the number of events (customers arriving, etc)
happening in (s, t). We make the following modeling choices.

(i) the # of arrivals in disjoint intervals are independent.

(i) the distribution of N(s, t) only depends upon t — s (weaken later)

(i) P(N(0,h) =1) = P(N(t,t+ h) =1) = Ah+ o(h), and
)

(iv) P(N(0,h) > 2) = P(N(t,t+ h) > 2) = o(h).
Theorem
If four conditions above hold, then N(0, t) has a Poisson distribution with
mean/parameter \t.
Proof.
Simply let

Xn,m:N(ﬂt—l,ﬂt>, for1 <m<n,

n n n

apply previous theorem: P(Xpm = 1) = pa,m = A(t/n) + o(1/n).
(i) Yoot Prm — At, and

(ii) maxg1<m<n} Pn,m — 0, and

(i) >y €nm — 0.



Poisson process-a first pass

Definition
A family of RVs N;, t > 0 satisfying

1. Independent increments: &) < t < --- < t, implies

{N(t) — N(t—1)}, 1<k<n,
are independent.

2. N(t) — N(s) is Poisson(\(t — s))
is called a Poisson process with rate .
Note that if N(t) is Poisson then it satisfies other conditions since:

P(N(h) — N(0) =0) = e =1—Xh+I(h)

P(N(h) — N(0) = 1) = e *"Ah =~ Ah + o(h)
P(N(h) — N(0) > 2) = o(h).

We now have two equivalent definitions of a Poisson process. We are now
going to build it in a different fashion.



Constructing a Poisson process
Will can also view a Poisson process, N(t) = N([0, t]), through the lens of an
underlying point process. (More on that later)

(a) Let {ei} bei.i.d. exponential random variables with parameter X:
fo, (X) = Ne™ ™.

(b) Now, put points down on a line with spacing equal to the e;:

| x x X X X x| X X
— & —
‘61 (2] (%) ‘t

> Let N\ (t) denote the number of points hit by time t.
» In the figure above, N (t) = 6.
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Constructing a Poisson process

Formally, we let e; be independent exponential parameter A, and let
To=e+ - +en,

and
N(t) =sup{n: T, < t}.

Why is this a Poisson process? Essentially it's the loss of memory property of
exponential random variables. See page 155/156 for details.



Transformations of poisson processes
First question: can | get a Poisson process with rate A > 0 from one with a
rate of one?

Answer: Yes. Just move hand quicker in previous picture!
Let
Na(t) Z Ny(AL).

Check conditions:
1. Letty <t < --- < ty, then

{Na(t) = Na(te—1)} = {Ns (Atk) — Ny (Atk—1)},

are independent since My < Aty < -+ < Aty
2. Fork >0,

Ni(t) — NaA(S) = Ni(At) — Ny(As) ~ Poisson(1 - (At — As))
= Poisson(A(t — s)).

Also note:

P(Na(t + h) — Na(t) = 1) = P(Ny (At + Ah) — Ny(At) = 1) = Ah + o(h).



This is fun! Are there other Poisson processes we can define?

Sure! Move hand at varying (non-negative speeds)!

Let’s define a non-homogeneous Poisson process with intensity function A(f),
to be a process N(t) such that:

1. Independent increments: &) < & < --- < tp implies
{N(tk) = N(tk,1)}, 1 < k < n,

are independent.

N(t) — N(s) ~ Poisson (/Ot /\(s)ds) .

Note:

t+h
P(N(t + h) — N(t) = 1) = SWS/ A(s)ds ~ A(t)h + o(h).
t



Transformations of poisson processes
Can | construct a non-homogenous Poisson process with intensity A(¢) > 0
from a homogeneous, rate one Poisson process?

t
Na(t) & Ny (/ /\(s)ds).
0
Check conditions:

1. Letth <ty <--- < ty, then

{NA(t) = Na(teo)} = {M (/Otk A(s)ds) ~N (/Otm A(s)ds) }

are independent since

t b tn
/0 A(s)ds < / A(8)ds < - < A(8)ds.
0 0 0

Let

2. For k >0,

Na(t) — Na(s) = N (/Otx(s)ds> v </Os>\(s)ds)
= Poisson (/Ot)\(r)dr — /OS /\(r)dr)



The magic of unit rate Poisson processes

So, we learned that we can construct many Poisson processes with only a
unit-rate Poisson process as a building block. Idea was to transform time.

Question: Are there other ways to transform processes that we haven’t
considered yet?

Great question! The answer is yes, but we need a more inclusive definition of
a Poisson “process”. Will look more generally into Point processes.



Point processes
Idea: Want to be able to model a random distribution of points in a space,
usually a subset of Euclidean space
> R
> [0,00)
» R, d>1.

Example

Renewal processes distribute points on [0, co) so that gaps between points
are iid random variables.

Example

The Poisson process is a renewal process which distributes points so gaps
are iid exponential RVs.

Modeling examples:
1. The breakdown times of a machine.
2. Position of proteins on a cell membrane (Ankit's Ph.D. thesis).
3. the positions and times of earthquakes in the next 50 years.
4. Positions of lightning strikes.



Point processes basics: see Resnick, Adventures in Stochastic

Processes, 1992
We suppose that E is a subset of Euclidian space, R? (or [0, ), R?, etc). We

» Suppose that {X,, n > 0} are random elements of E, which represent
points in the state space E.

» Define the discrete (random) measure

(1, X €A,
€Xn(A) - { 0’ if X, ¢ A,

Note: ex,(-) takes A C E as an input and asks whether or not X, € A.

» By summing over n, we get the total number of random points X, which
fall in A.

» We then define the counting measure, N, by

NG =D exn(),

n

so that

N(A) = ex,(A),

is the random number of points that fall in the set A.



Example: Binomial Process

1. Place n = 100 points at random locations inside a bounded region
W c R2.

2. Let Xi, ..., Xio0 be i.i.d. points uniformly distributed in W.
3. That is, the density of each X; is

/(W) ifxew
fx) = { 0 else

where \o(W) is the area of W.
A realization could be:




Example: Binomial Process
For any bounded set B in R?, we have

P(x,eB):/E;f(x)dXZAmW1/A2(W)dS:%’

And

N(B) = zn](x,- € B).

Note that N(B) has a binomial distribution with parameters n = 100 and

_ (BN W)
(W)

which is why process is called binomial process.

Also note that if By and B; are disjoint, then not in general independent. For
example if By U B, = W and disjoint, we know

N(B1) = 100 — N(By).



Point process basics

Definition
N is called a point process and {X,} are called the points.

Note: The counting measure N depends explicitly on the points. In this
sense, it is a random measure.

An important statistic for a point process is the mean measure, or intensity. It

1S
H(A) £ EN(A).

The expected number of points in the region A.
» If N is a poisson process with parameter A, then
u(la, b]) = E(N(b) — N(a)) = A(b — a).
» For binomial process

(AN W)

EN(A) = N (W)



Poisson random measure

Definition

Let E be a subset of RY, and let 1. be a measure on E which is finite on every
compact set. The Poisson process N on E with intensity measure  is a point
process on E such that

1. For compact A C E, the count N(A) has a Poisson distribution with
mean u(A).

2. If Ay, ..., A are disjoint compact subsets of E, then N(Aj), ..., N(Ax)
are independent.

N is also called a Poisson process with mean measure . or a Poisson
random measure, PRM(u), if

See example 3.6.8 page 158 for formal construction when p(E) < oo: Let X,
be i.i.d. with measure v(-) = u(-)/n(E), let Y be independent Poisson(u(E)).
Then let N(A) = |{j < N : X; € A}|. (thinning)

If u(E) = oo, build on disjoint pieces and tie together.



Poisson random measure

When the mean measure is a multiple of Lebesgue, i.e.
» length when E = R, area when E = R?, volume when E = R®,

we call the process homogeneous.

» In homogeneous case, there is an « > 0 such that for any A € £ we
have that N(A) is Poisson with mean

EN(A) = oA
(where |A| is Lebesgue measure of A).

» When E = R, the parameter « is called the rate or intensity of the
(homogeneous) Poisson process.



Non-homogenous Poisson process: part 2

Suppose that for open intervals (a, b) C R, the mean measure n for a
Poisson process is
n((a, b)) = G(b) — G(a),

for some non-decreasing, absolutely continuous function G.
For example: G(t) = 12
If G has density g, i.e. g(t) = 2t, then

u((a, b)) = G(b)— G(a) = /b g(s)ds, ormore generally u(A) = /g(s)ds.
a A

So long as G(t) # ct for some t, i.e. g(t) # c, then this is non-homogeneous.
We have that

b K
P(N(a, b) = k) = o (6)-a(a) (G(b) ;!G(a))k _ o2 ae (s gis!)ds) .



Example

Say restaurants are distributed relative to your restaurant as a spatial Poisson
process with rate a = 3 per square mile. What is expected distance to
nearest competitor?

Let R be the distance of the nearest competitor and let d(r) be a disc of
radius r centered at your rest. Then,
P(R > r) = P[N(d(r)) = 0] = e 90\,

Obviously we have that
|d(r)| = =r?.

Therefore,
2
PIR>r=e"".

The expected distance is then

E(R) = / P[R > r]dr = / e dr  (use the subs. u/v2 = v/3nr)
0 0

1 /°° 22 1 1 /°° P
= — e du = vVer—— e " au
V237 Jo V231 ver Jo
:1 L ~ .2887miles.

N

V3



Back to original good question: are other transformations possible?

We suppose that
1. N(-) =3, ex,(-) is a Poisson process with state space E.

2. The mean measure is u. So, P(N(A) = k) = e A u(A)K /k!.
3. T is some 1-1 transformation (function) with domain E and range E’

(both Euclidean spaces):
T-E—E.

» Note that the function 7~ defines a set mapping from subsets of E’ to
subsets of E:

for A cE' wehave T '(A)={ecE : T(e)eA}.

Thatis: T~'(A’) is the pre-image of A’ under T. Draw picture.



Transformation

Theorem

Suppose that T : E — E' is a one-to-one (bijective) mapping between
Euclidean spaces such that if B' C E' is bounded, then sois T~'B' C E. IfN
is PRM(u) on E with points {X,}, then N' := N o T~" is PRM(i) on E’ with
points {T(X»)} and where ji' = o T~'.

Thus: if you shift points of a Poisson process around you still have a Poisson
process!

Proof.
We need to show Poisson distribution and independence property.
First, if B’ bounded, then T~'(B') has finite number of points and

P(N'(B') = k) = P(N(T~'(B')) = k) = ew(r—qs’))w’

Thus, N'(-) is Poisson distributed with mean measure p/ = o T,
Next, if B}, ..., B}, are disjoint, then so are T~'Bj,..., T~ 'B.,. Therefore,

(N'(BD),-+ ,N'(B) = (N(T~(BN), -+ . N(T~(BR))) -

are independent.



Examples
Let

oo
N = g €X,
n=1

be a homoegeneous Poisson process with rate « = 1 on E = [0, o). The
mean measure is
n(A) = |A],

and u([0,f]) =t.

Now we suppose that Tx = x2. Then,
> ex
n
is PRM and the mean measure p'is given by

£ ([0, 8) = (TT[0,8]) = uix : Tx <t} = pix : X* <t} = ([0, V]) = V.

Note, that this is a PRM with local intensity, or density, satisfying

/A s)ds =Vt = A(t) = \f 71‘1/2



Examples

If Tx = (x, x?), then

: :ETX” = ZE(X,,,X,%)
n n

is Poisson on R x R? with a mean measure that is zero off the graph (x, x?).



Marking and thinning

We are going to “mark” each point of the Poisson process with a random
variable {J,}, which are independent RVs that are also independent from the
Poisson process. Then, (Xa, J,) will also be a Poisson process on an
enlarged state space.

Idea: Think of J, as marking toys coming off assembly line. Marks could be 1
for functional and 0 for dysfunctional. (we will see that this is thinning).



Marking and thinning

Theorem
Suppose that { X} are random elements of state space E; such that

> ex ()

is PRM(p). Suppose that J, are iid RVs of state space E, (usually subset of
R) with common distribution function F. We also suppose sequence {J,} and
process are independent. Then, the point process,

qumJn)(V )
n

on Ey x E; is PRM with mean measure 1 x F, meaning that if Ay C Ei and
A C E, then

X F(A1 X A2) = N(A1)F(A2) = /.L(A1)P[J1 € Ag]



Marking and thinning

We won't prove, (see Resnick 1992), but note that mean measure is correct
in sense

EZG(XH7JH)(A1 X Ag) = Z P[()(n7 Jn) S A1 X Ag]
n n

= P[Xy € A]P[Jn € As] (by independence)
n

=" PlXs € AilP[Js € A2]  (by iid of Jn)

= <EZEXH(A1)> P[Js € Aj]

— (APl € Aol



Special case: thinning

Suppose
1. that N =} ¢x, is a Poisson process on the state space E with mean
measure f.

2. we keep each point with a probability of p € (0, 1). We delete with
probability g =1 — p.

3. Let N, be the point process of retained points and Ny the point process
of deleted points.

Will show: N,(-) and Ny(-) are independent Poisson processes with mean
measures pu(-) and qu(-), respectively.



Thinning
Let {B;} be iid Bernoulli RVs independent of the points of the process { X}
so that

P(Bi=1)=p, P(Bi=-1)

We know that

Z €(Xn,Bn)
n

is a Poisson process on E x {—1,1} with mean measure p x P(B; = ).
» Think of {X, : B, = 1} as the retained points;
» Think of {X, : B, = —1} as the deleted points.

Then,
= Xm0 < (1D = T ()
Z€xn8n ) x{=1}) = Z ex()

are independent processes. Also, for A C E we have

Ny (A) = Z €(Xp,Bn) ((A) x {1}) ~ Poisson(P{Bn =1} M(A)) = Poisson(p - 1(A))

n

Ny(A) = ZE(XN’BN)((A) x {—1}) = Poisson (P{B,, =-1}. ,u(A)) = Poisson(q - n(A)).

n



Thinning

Proof for thinning. We need:
1. N, and Ny are *each* Poisson.
2. Independent from each other.

First note: if A1, ..., A, are disjoint, then N;(A;) depends only upon N(A;) and
independent Bernoulli’s. Hence N; (A1), ..., N:(An) are independent. Same
for Ny.

Also get N;(A;) and Ny(A;) for j # i are independent.

Still need:

(i) Nr, Ny have Poisson distributions and

(i) independent from each other on a given set A.
Handle together.



Proof continued

Let Z, = number of By, . .., B, that gave one ~ binomial(n, p).

P(N/(A) = k,Na(A) =) = P(N(A) = j+ K, Ziok = )

e (WA (4 K)!
o LA (2R

o PHA) (Pu(A))* oA (qu(A)Y
kI

j!
So we have Poisson and independent.

Thinning into M strips is no harder.



Thinning

This is amazing

Example

People arrive according to rate A = 5. 50% are women. Knowing there have
been 100 women, does not tell you how many men there have been!



