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We suppose that Xt is a solution to the one dimensional SDE

dXt = a(t,Xt)dt+ b(t,Xt)dBt,

or

Xt = X0 +

∫ t

0

a(s,Xs)ds+

∫ t

0

b(s,Xs)dBs.

Following our existence and uniqueness results, we will assume that the coefficients satisfy
a Lipschitz condition

|a(t, x)− a(t, y)|2 + |b(t, x)− b(t, y)|2 ≤ K|x− y|2

and the growth condition (used for existence)

|a(t, x)|2 + |b(t, x)|2 ≤ K(1 + |x|2) ∀t.

Later we will discuss multi-dimensional SDEs, but this is a fine starting point to get the
basic ideas.

Why do we want numerical methods? There are two reasons that come to mind
instantly:

1. Perhaps we simply want to visualize a realization of the SDE to gain insight into the
process.

2. Perhaps we want to know the value of

Ef(Xt), or maybe E
[∫ t

0

f(Xs)ds

]
, (1)

where f is some function, but we have been unsuccessful in solving the SDE. Here
Monte Carlo will be useful.

Monte Carlo

Both problems in (1) can be stated in terms of solving for EZ where Z is some random
variable of interest. Suppose that we can generate independent realizations of Z using a
computer (for example, maybe Z = f(U), where U is a uniform[0, 1] random variable1.)
Then, we could define estimator of EZ to be

µ̂n =
1

n

n∑
i=1

Z[i],

1Later we will see that almost all interesting random variables can be viewed as a slight generalization of
this setup
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where Z[i] is the ith independent realization. We then have that

Eµ̂n = EZ,

and we also know from the law of large numbers (and a few minor conditions on the moments
of Z),

µn → EZ, as n→∞, a.s.

However, it is typically not enough to know that the estimator simply converges. Usually,
one would like to build confidence intervals, which can be done by using the central limit
theorem. Briefly, and denoting the unknown EZ = µ and V ar(Z) = σ2, we know that∑n

i=1 Z[i] − nµ
σ
√
n

⇒ N(0, 1),

where the convergence is in distribution. Also, for any a > 0, we have that

P

(
−a ≤

∑n
i=1 Z[i] − nµ
σ
√
n

≤ a

)
= P

(
−aσ
√
n ≤

n∑
i=1

Z[i] − nµ ≤ aσ
√
n

)

= P

(
−aσ
√
n− 1

n

n∑
i=1

Z[i] ≤ −nµ ≤ aσ
√
n− 1

n

n∑
i=1

Z[i]

)

= P

(
µ̂n −

aσ√
n
≤ µ ≤ µ̂n +

aσ√
n

)
.

Combining the above shows that if W is a standard normal and n is sufficient large2 we have
that

P

(
µ̂n −

aσ√
n
≤ µ ≤ µ̂n +

aσ√
n

)
≈ P (−a ≤ W ≤ a).

For example, if a = 1.96, then

P (−1.96 ≤ W ≤ 1.96) ≈ 0.95,

and so [
µ̂n −

1.96σ√
n
≤ µ ≤ µ̂n +

1.96σ√
n

]
is called the 95% confidence interval. Thus, we know that there is a 95% probability that
the actual value is within our bounds (generated by our numerical method). Other sized
confidence intervals can be constructed in the obvious manner.

Note that the confidence interval depends upon σ, the standard deviation of Z. Of course,
if we don’t know EZ, we most likely do not know σ. Thus, one uses the estimated standard
deviation

sn =

√√√√ 1

n− 1

n∑
i=1

(Z[i] − µn)2,

2We will not discuss how to know when “n is sufficiently large”
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and the confidence interval becomes[
µ̂n −

asn√
n
≤ µ ≤ µ̂n +

asn√
n

]
.

Note, therefore, that our error, ε, scales like 1/
√
n,

ε =
a

sn

√
n.

This error is often called the statistical error. In the next section we will be introduced
to a different form of error, the bias, which we will then study for the rest of these notes.
Improvements on the statistical error can sometimes be achieved through quasi-Monte Carlo
methods.

Biased estimators

The previous section assumed that Z[i] could be computed with the exact distribution. Of-
tentimes this is not possible and there is a bias. Letting Z[i] be the realizations, we define

bias = EZ − EZ[i].

Clearly, if the bias is non-zero then we no longer have

µ̂n → EZ, as n→∞.

However if the bias is small, this may not be too important. Now we must recognize that
there will be two sources of error to any numerical study: one coming from the bias of the
method, and the other coming from the statistical error. That is, we have

EZ − µ̂n = (EZ − EZ[i]) + (EZ[i] − µ̂n),

where we recognize the first error as the bias and the second as the statistical error. Now,
for a given desired accuracy of ε > 0, we would ideally like to ensure that both sources of
error are below ε/2.

Estimating solutions to SDEs

While it is sometimes possible to solve an SDE exactly, and hence be able to utilize an
unbiased estimator, this is an exceedingly rare occurrence. However, we know it is possible
by the following example.

Example 1 (Geometric Brownian Motion). If Xt satisfies

dXt = µXtdt+ σXtdBt,

then we have already seen that

Xt = X0 exp

{(
µ− σ2

2

)
t+ σBt

}
.
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Hence, to approximate Ef(X(t), for known function f and a fixed t, we could use

µ̂n =
1

n

n∑
i=1

X0 exp

{(
µ− σ2

2

)
t+ σ

√
tW[i]

}
,

where W[i] are independent standard normal random variables (why?).
Note that we still can not produce an unbiased estimator to random variables of the form∫ t

0

f(Xs)ds,

since we can not observe Xs for all s. This will add a third type of error: discretization
error. �

Of course, most SDEs will not have a nice solution.

Example 2. We already saw that an important SDE from finance is one of the form

dXt = κ(θ −Xt)dt+ σ
√
XtdBt.

This SDE arose as a model for volatility in the Heston model and does not satisfy our
Lipschitz conditions. However, it can be shown that there is a unique solution. �

Our First Method: Euler-Maruyama

We recall our one dimensional SDE

dXt = a(t,Xt)dt+ b(t,Xt)dBt,

or

Xt = X0 +

∫ t

0

a(s,Xs)ds+

∫ t

0

b(s,Xs)dBs.

By far the simplest numerical scheme (and also by far the most widely used) to generate an
approximate path of the above equation is Euler-Maruyama. First, we discretize [0, T ] into
N equally sized sub-intervals

0 = t0 < t1 < t2 < · · · < tN−1 < tN = T,

where

ti = i
T

N
.

Let h = T/N = tn − tn−1. Then, we define Z0 = x0 and for n ≤ N set

Zn = Zn−1 + a(tn−1, Zn−1)h+ b(tn−1, Zn−1)
(√

h · η[i]
)
,

where the η[i] are independent standard normal random variables. Note that we have used
the relation

Bti −Bti−1
∼ N(0, h) ∼

√
hN(0, 1),
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and we are using the independence of the increments of a Brownian motion. Thus, we
note that while Zn is an approximation to Xtn , we are simulating Bt, the driving Brownian
motion, exactly at the time points tn. Therefore, another way to write Euler-Maruyama is

Zn = Zn−1 + a(tn−1, Zn−1)∆t+ b(tn−1, Zn−1)∆nBt.

It is worth explicitly noting where this scheme comes from. Essentially, it comes from a
first order Taylor expansion, at each time point, of the coefficients. That is, we have that

X(tn) = X(tn−1) +

∫ h

0

a(s,X(s))ds+

∫ h

0

b(s,X(s))dBs

≈ X(tn−1) +

∫ h

0

a(tn−1, X(tn−1))ds+

∫ h

0

b(tn−1, X(tn−1))dBs

= X(tn−1) + a(tn−1, X(tn−1))h+ b(tn−1, X(tn−1))∆nBt.

Convergence

There are multiple types of convergence. Let Zh denote the approximate process with a step
size of h = T/n > 0. We say that the method converges strongly if

lim
h→0

E|X(T )− Zh(T )| = 0

We say it converges weakly if

lim
h→0
|Ef(X(T )− Ef(Zh(T ))| = 0,

for a large class of functions f (say, all differentiable functions with compact support).
Note that so far Z is only defined at the time discretization points. However, it is often

useful to enlarge Z to a process defined on all of [0, T ] defined in the following manner. For
s ∈ [ti, ti+1),

Z(s) = Z(ti) +

∫ s

ti

a(ti, Z(ti))ds+

∫ s

ti

b(ti, Z(ti))dBs

= Z(ti) + a(ti, Z(ti))(s− ti) + b(ti, Z(ti)) · (B(s)−B(ti)).

A stronger form of strong convergence would then be to have

lim
h→0

E sup
s≤T
|X(s)− Zh(T )| = 0.

Of course, once we have a notion of convergence, the next natural question is: how fast
does the method converge to the exact solution. We say that the method converges in the
strong sense with an order of p > 0 if

lim sup
h→0

E|X(T )− Zh(T )|h−p ≤ C,
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for some C > 0. This is equivalent to the existence of some C > 0 for which

E|X(t)− Zh(t)| ≤ Chp,

for all t ≤ T . Further, we need not consider only the L1 norm. Thus, we say the method is
strongly convergent in Lq with an order of p > 0 if there is a C > 0 for which(

E|X(t)− Zh(t)|
)1/q ≤ Chp,

for all t ≤ T , or if (
E sup

s≤T
|X(s)− Zh(T )|q

)1/q

≤ Chp.

Of course, we say it converges weakly with an order of p > 0 if

|Ef(X(T ))− Ef(Zh(T ))| ≤ Chp.

Convergence order for Euler’s method

We start by defining the step function η via

η(s) = ti, if s ∈ [ti, ti+1).

We then have

X(t)− Z(t) =

∫ t

0

a(s,X(s))− a(η(s), Z(η(s)))ds+

∫ t

0

b(s,X(s))− b(s, Z(η(s)))dB(s).

Hence, using our Lipschitz assumption,

E|X(t)− Z(t)|2 ≤ 2C

∫ t

0

E|X(s)− Z(η(s))|2ds+ 2C

∫ t

0

E|X(s)− Z(η(s))|2ds,

where we used Itô’s lemma. Hence, adding and subtracting Z(s) from each term yields,

E|X(t)− Z(t)|2 ≤ C1

∫ t

0

E|X(s)− Z(s)|2ds+ C2

∫ t

0

E|Z(s)− Z(η(s))|2ds.

It is relatively straightforward to estimate E|Z(s)− Z(η(s))|2. Assuming s ∈ [ti, ti+1),

E|Z(s)− Z(η(s))|2 = E (a(ti, Z(ti))(s− ti) + b(ti, Z(ti)) · (B(s)−B(ti)))
2 = O(h),

where the leading order term came from the Brownian motion (note that if the process were
deterministic, this value would have been h2). Thus, collecting the above shows that for
some K1, K2 > 0,

E|X(t)− Z(t)|2 ≤ K1h+K2

∫ t

0

E|X(s)− Z(s)|2ds.

Gronwall’s inequality now shows that

E|X(t)− Z(t)|2 ≤ K1he
K2t =⇒

(
E|X(t)− Z(t)|2

)1/2 ≤ K
1/2
1 h1/2eK2t/2

and the method converges at a rate of O(h1/2).
It can also be shown that Euler’s method converges in a weak sense at a rate of O(h).

This is a substantial improvement over the strong convergence rate.
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Milstein Scheme

A large drawback of Euler’s method is the low strong convergence rate. This can be alleviated
by use of the Milstein scheme, which we present here in a simplified setting. We now limit
ourselves to the following type of SDE

dXt = a(Xt)dt+ b(Xt)dB(t),

or

Xt = X0 +

∫ t

0

a(Xs)ds+

∫ t

0

b(Xs)dB(s).

We now search for a higher order scheme by applying Itô to the coefficients and keeping only
the higher order terms. Thus, for any discretization we have

Xti+1
= Xti +

∫ ti+1

ti

[
a(Xti) +

∫ s

ti

a′(Xr)dXr +
1

2

∫ s

ti

a′′(Xr)(dXr)
2

]
ds

+

∫ ti+1

ti

[
b(Xti) +

∫ s

ti

b′(Xr)dXr +
1

2

∫ s

ti

b′′(Xr)(dXr)
2

]
dBs

= Xti +

∫ ti+1

ti

[
a(Xti) +

∫ s

ti

a′(Xr)a(Xr)dr +

∫ s

ti

a′(Xr)b(Xr)dBr

]
ds

+
1

2

∫ ti+1

ti

∫ s

ti

a′′(Xr)b(Xr)
2drds

+

∫ ti+1

ti

[
b(Xti) +

∫ s

ti

b′(Xr)a(Xr)dr +

∫ s

ti

b′(Xr)b(Xr)dB(r)

]
dB(s)

+
1

2

∫ ti+1

ti

∫ s

ti

b′′(Xr)b(Xr)drdBs.

Keeping only terms of the form ds and dBsdBr (which should be O(h)), we have

Xti+1
= Xti +

∫ ti+1

ti

a(Xti)ds+

∫ ti+1

ti

b(Xti)dB(s) +

∫ ti+1

ti

∫ s

ti

b′(Xr)b(Xr)dB(r)dBs

= Xti + a(Xti)h+ b(Xti)∆iB +

∫ ti+1

ti

∫ s

ti

b′(Xr)b(Xr)dB(r)dBs.

The first terms are simply Euler’s method. The next term can be approximate further (think
about taking another Itô expansion) by∫ ti+1

ti

∫ s

ti

b′(Xr)b(Xr)dB(r)dB(s) ≈ b′(X(ti))b(X(ti))

∫ ti+1

ti

∫ s

ti

dB(r)dB(s)

= b′(X(ti))b(X(ti))

∫ ti+1

ti

∫ s

ti

(B(s)−B(ti))dB(s)

= b′(X(ti))b(X(ti))

(
1

2
(B(ti+1)−B(ti))

2 − 1

2
h

)
=

1

2
b′(X(ti))b(X(ti))

(
(∆iB)2 − h

)
.
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Hence, the Milstein scheme is

Zn = Zn−1 + a(Zn−1)h+ b(Zn−1)(∆n−1B) +
1

2
b′(Z(tn))b(Z(tn))((∆n−1B)2 − h).

The Milstein scheme has a strong convergence rate of O(h) and a weak rate of O(h).

Computational complexity

We are now ready to consider the total amount of work, or CPU time required to solve a
given problem. We will only consider the problem in terms of “order of magnitude” and not
worry about constants. That is, if we say that the total work is of order ε−2 for some small
ε > 0, then we mean there is a constant for which the total work is below Cε−2.

Let’s again consider the problem of approximating

Ef(X(T )),

and we want to be accurate, in the sense of confidence intervals, to an order of ε > 0. Let Zh

denote a path generated by an approximate algorithm with a time discretization parameter
of h > 0. Let

µ̂n =
1

n

n∑
i=1

f(Z[i](T )).

As before, we have

Ef(X(T ))− µ̂n = (Ef(X(T ))− Ef(Z(T ))) + (Ef(Z(T ))− µ̂n) ,

with the first term called the bias of the method, and the second is the statistical error.
Let’s suppose that the scheme being used is accurate, in a weak sense, of O(h). That is,

|Ef(X(T ))− Ef(Z(T ))| ≤ Ch.

Then, to get the bias to be O(ε), we need to choose h = O(ε). How many paths do we
need to generate? We need the standard deviation of the estimator, which gives the width of
the confidence interval, to be O(ε). Hence, we need the variance to be O(ε2). The variance
is

V ar(µ̂n) =
1

n
V ar(f(Zi(T ))).

Thus, we require
1

n
= O(ε2) =⇒ n = ε−2.

Thus, we need O(ε−2) paths, each with a step size of O(ε). The work for each path will be
some constant time 1/h (number of steps), thus the total amount of work, or computational
complexitiy (and hence CPU time) is

O(ε−3).

What if we had had a higher order method (and they do exist). What if the weak error
of the method were O(h2)? Then,
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1. We still need O(ε−2) paths, to control the statistical error.

2. For the bias, we need h2 = ε =⇒ h = O(
√
ε). Hence, the work per path is now only

ε−1/2..

Thus, the total computational complexity is now

ε−2ε−1/2 = ε−2.5.

On the other hand, consider the situation in which the numerical accuracy where only
h1/2. For example, you may be solving a problem like

E
∫ t

0

f(X(s))ds,

which requires information of the whole path. Then Euler is only O(h1/2) accurate. In this
case we need to require that h1/2 = ε =⇒ h = ε2. Now the computational complexity
would be

O(#paths)×O(cost per path) = O(ε−2ε−2) = O(ε−4),

which is terrible for small ε. Here, Milstein would be beneficial.

Multilevel Monte Carlo

The following is a novel method for the computation of expectations. In its simplest version,
we suppose we want to solve

Ef(X(T )),

to an accuracy of ε > 0. We suppose that Zh is an Euler approximation, and thus has a bias
of O(h).

The idea is exceedingly simple, and is essentially a control variate approach. For some
L > 0 we let

hL =
1

2L
.

We choose L so that hL = ε. Note, therefore, that L ≈ 1
ln(2)
| ln(ε)|. Thus, we have already

controlled the bias. However, the statistical error is still a problem.

Next, we let

h` =
1

2`
.

Then, we just make the very simple observation that

Ef(ZL) = [Ef(ZL(T ))− f(ZL−1(T ))] + Ef(ZL−1(T ))

= [Ef(ZL(T ))− f(ZL−1(T ))] + [Ef(ZL−1(T ))− Ef(ZL−2(T ))] + Ef(ZL−2(T ))

...

= Ef(Z0(T )) +
L∑

`=1

[Ef(Z`(T ))− f(Z`−1(T ))] .
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Now, you construct Z` and Z`−1 simultaneously (using same Brownian increments), to couple
them. The variances will be small. (We won’t prove this here.) In fact, the computational
complexity is reduced to

O(ε−2 log(|ε|)2),

which is nearly as low as O(ε−2), which is computational complexity if we could simply
sample directly from X(T ).
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