In these notes, we will prove the following

Theorem 1. Let $f \in C_b^3(\mathbb{R})$ (the bounded continuous functions with three bounded continuous derivatives. If B_t is a standard Brownian motion with respect to $\{F_t\}$, then

$$f(B_t) - f(0) - \int_0^t \frac{1}{2} f''(B_s) ds$$

is a $\{\mathcal{F}_t\}$ -martingale.

Proof. Let r < t. We consider an arbitrary (fine) discretization of [r, t] and have by Taylor's theorem

$$\mathbb{E}[f(B_t) - f(B_r)|\mathcal{F}_r] = \sum_{i} \mathbb{E}[f(B_{t_{i+1}}) - f(B_{t_i})|\mathcal{F}_r]$$

$$= \sum_{i} \mathbb{E}[f'(B_{t_i})(B_{t_{i+1}} - B_{t_i})|\mathcal{F}_r] + \sum_{i} \mathbb{E}[\frac{1}{2}f''(B_{t_i})(B_{t_{i+1}} - B_{t_i})^2|\mathcal{F}_r]$$

$$+ \sum_{i} \mathbb{E}\frac{1}{6}[f'''(\xi_i)(B_{t_{i+1}} - B_{t_i})^3|\mathcal{F}_r],$$

where $\xi_i \in [B_{t_i}, B_{t_{i+1}}]$. Since $\mathcal{F}_r \subset \mathcal{F}_{t_i}$, we have that

$$\mathbb{E}[f'(B_{t_i})(B_{t_{i+1}} - B_{t_i})|\mathcal{F}_r] = \mathbb{E}[\mathbb{E}[f'(B_{t_i})(B_{t_{i+1}} - B_{t_i})|\mathcal{F}_{t_i}]|\mathcal{F}_r]$$

$$= \mathbb{E}[f'(B_{t_i})\mathbb{E}[(B_{t_{i+1}} - B_{t_i})|\mathcal{F}_{t_i}]|\mathcal{F}_r]$$

$$= 0.$$

Further,

$$\mathbb{E}\left[\frac{1}{2}f''(B_{t_{i}})(B_{t_{i+1}} - B_{t_{i}})^{2} \middle| \mathcal{F}_{r}\right] = \mathbb{E}\left[\mathbb{E}\left[\frac{1}{2}f''(B_{t_{i}})(B_{t_{i+1}} - B_{t_{i}})^{2} \middle| \mathcal{F}_{t_{i}}\right] \middle| \mathcal{F}_{r}\right]$$

$$= \mathbb{E}\left[\frac{1}{2}f''(B_{t_{i}})\mathbb{E}\left[(B_{t_{i+1}} - B_{t_{i}})^{2} \middle| \mathcal{F}_{t_{i}}\right] \middle| \mathcal{F}_{r}\right]$$

$$= \mathbb{E}\left[\frac{1}{2}f''(B_{t_{i}})(t_{i+1} - t_{i}) \middle| \mathcal{F}_{r}\right].$$

Hence, collecting we have

$$\mathbb{E}[f(B_t) - f(B_r)|\mathcal{F}_r] = \mathbb{E}\sum_{i} \frac{1}{2}f''(B_{t_i})(t_{i+1} - t_i)|\mathcal{F}_r] + \mathbb{E}\frac{1}{6}[\sum_{i} f'''(\xi_i)(B_{t_{i+1}} - B_{t_i})^3|\mathcal{F}_r].$$

The final term goes to zero almost surely as the mesh gets smaller since:

$$|\mathbb{E}\left[\sum_{i} f'''(\xi_{i})(B_{t_{i+1}} - B_{t_{i}})^{3} | \mathcal{F}_{r}\right]| \leq \mathbb{E}\left[\sum_{i} |f'''(\xi_{i})| \cdot |(B_{t_{i+1}} - B_{t_{i}})|^{3}\right]$$

$$\leq ||f'''||_{\infty} C' \sum_{i} (t_{i+1} - t_{i})^{3/2} \to 0,$$

as the mesh size goes to zero. Finally, by calculus we have that with a probability of one (since B_t is continuous)

$$\sum_{i} \frac{1}{2} f''(B_{t_i})(t_{i+1} - t_i) \to \int_{r}^{t} f''(B_s) ds.$$

Also,

$$|\sum_{i} \frac{1}{2} f''(B_{t_i})(t_{i+1} - t_i) \le \frac{1}{2} ||f''||_{\infty} t.$$

So by the conditional version of the dominated convergence theorem (page 279),

$$\mathbb{E}\left[\sum_{i} \frac{1}{2} f''(B_{t_i})(t_{i+1} - t_i)|\mathcal{F}_r\right] \to \mathbb{E}\left[\int_r^t \frac{1}{2} f''(B_s)ds|\mathcal{F}_r\right]$$

almost surely. Hence, we see that,

$$\mathbb{E}[f(B_t) - f(B_r) - \int_r^t \frac{1}{2} f''(B_s) ds | \mathcal{F}_r] = 0,$$

which after rearranging terms gives the result.