In these notes, we will prove the following

Theorem 1. Let f € C3(R) (the bounded continuous functions with three bounded continu-
ous derivatives. If By is a standard Brownian motion with respect to {F;}, then
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Proof. Let r < t. We consider an arbitrary (fine) discretization of [r,¢] and have by Taylor’s
theorem
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is a {F;}-martingale.

+ ZE // Bt z+1 - Bti)2|fr]

where &; € [By,, Since F, C JF;,, we have that
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Further,
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Hence, collecting we have
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The final term goes to zero almost surely as the mesh gets smaller since:
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as the mesh size goes to zero. Finally, by calculus we have that with a probability of one
(since By is continuous)
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Also,
1 1
1> §f”(Bti)(ti+1 —ti) < §||f"||oot-

So by the conditional version of the dominated convergence theorem (page 279),
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almost surely. Hence, we see that,
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which after rearranging terms gives the result.



