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Section 6.1: The Itô Integral: first steps
Aim: to define the Itô integral

I(f )(ω) =

∫ T

0
f (ω, t)dBt .

Can we construct just using ideas of Riemann-Stieltjes integration:∫ T

0
f (s)dg(s)?

Recall that a function g has bounded variation on [0,T ] if

sup
P∈ partitions

∑
i

|g(xi+1)− g(xi )| <∞.

Can define ∫ T

0
f (s)dg(s) = lim

‖∆‖→0

∑
i

f (xi )(g(xi+1)− g(xi )),

if g has bounded variation. Does Brownian path have bounded variation?



Section 6.1: The Itô Integral: first steps
Q: Does Brownian path have bounded variation? Answer: No.

Let’s try to understand this a bit... first some definitions

1. Let f : [a, b]→ R be a real-valued function defined on a ≤ t ≤ b.

2. Let ∆n = {a = t0 < t1 < · · · < tn−1 < tn = b} be a partition of [a, b].

3. Define the mesh of the partition ∆n by

‖∆n‖ = max
i≤i≤n

(ti − ti−1).

4. Then, for p > 0 define

Qp(f ; a, b,∆n) =
n∑

i=1

|f (ti )− f (ti−1)|p.

Theorem
If {∆n : n = 1, 2, 3, . . . } is a sequence of partitions of [a, b] such that
‖∆n‖ → 0, then

Q2(B; a, b,∆n)→ b − a in L2(dP),

as n→∞.
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Theorem
If {∆n : n = 1, 2, 3, . . . } is a sequence of partitions of [a, b] such that
‖∆n‖ → 0, then

Q2(B; a, b,∆n)→ b − a in L2,

as n→∞.

Proof.
Define

Xi = (Bti − Bti−1 )2 − (ti − ti−1), and Yn =
n∑

i=1

Xi .

Goal is to show that Yn → 0 in L2: E[Y 2
n ]→ 0.

Squaring

Y 2
n =

n∑
i=1

X 2
i + 2

∑
i<j

XiXj .

Taking expectations yields

E(Y 2
n ) =

n∑
i=1

E(X 2
i ).
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Recall,

Xi = (Bti − Bti−1 )2 − (ti − ti−1), and Yn =
n∑

i=1

Xi .

However,

E(Xi )
2 = E(Bti − Bti−1 )4 − 2(ti − ti−1)E(Bti − Bti−1 )2 + (ti − ti−1)2

= 3(ti − ti−1)2 − 2(ti − ti−1)2 + (ti − ti−1)2

= 2(ti − ti−1)2.

Hence,

EY 2
n =

∑
i

EX 2
i = 2

∑
i

(ti − ti−1)2 ≤ 2‖∆n‖(b − a)→ 0,

as ‖∆n‖ → 0, and Yn → 0 in L2. Thus,

‖
∑

i

|Bti − Bti−1 |
2 − (b − a)‖2 = ‖Q2(B; a, b,∆n)− (b − a)‖2 → 0.
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Since we have
lim

‖∆n‖→0

∑
i

(Bti − Bti−1 )2 L2
→ (b − a),

we make the following definition:

Definition: The quadratic variation of Brownian motion B on the interval
[a, b] is defined to be

Q2(B; a, b) = lim
‖∆n‖→0

Q2(B; a, b,∆n) = (b − a),

where convergence is in L2 (and hence in probability).
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Theorem
If ‖∆n‖ → 0, with

∞∑
n=1

‖∆n‖ <∞,

then
Q2(B; a, b,∆n)→ b − a,

almost surely.

For example: ∆n = {k/2n, k = 0, . . . , 2n} =⇒ ‖∆n‖ = 1/2n.

Proof.
Let ε > 0. From Chebyshev:

∞∑
n=1

P(|Yn| > ε) ≤ 1
ε

∑
n

EY 2
n ≤

1
ε2 2(b − a)

∑
n

‖∆n‖ <∞.

Borel-Cantelli =⇒ a.s. we have that

Yn =
n∑

i=1

(Bti − Bti−1 )2 − (b − a)

greater to ε for only finite n. ε arbitrary, so Yn → 0 a.s.
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Corollary
If {∆n, n = 1, 2, . . . } are partitions of [a, b] then

Q1(B; a, b,∆n) =
n∑

i=1

|Bti − Bti−1 | → ∞,

almost surely.

Hence, Brownian motion does not have finite variation.

Proof.
Suppose it is bounded variation, with variation V1(B; a, b). Then,

n∑
i=1

|Bti − Bti−1 |
2 ≤ max

1≤i≤n
|Bti − Bti−1 |

n∑
i=1

|Bti − Bti−1 .

By continuity of B, we know max1≤i≤n |Bti − Bti−1 | → 0. Thus, left side goes
to zero unless

max
1≤i≤n

|Bti − Bti−1 | → ∞.

We know left hand side does not go to zero!
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Point of all this: we need to be careful to define

I(f )(ω) =

∫ T

0
f (ω, t)dBt .

We will assume that

1. f (·, t) ∈ Ft , and so is adapted to filtration Ft .

2. f (·, ·) ∈ Ft × B (where B is Borel of [0,T ]). (so not pathological)

Note: every function you can think of that satisfies the first condition satisfies
the second condition.

Examples:

1. f (ω, t) = tBt .

2. f (ω, t) = exp{B4
t } − t2.

This class is much too large for us right now and we will make further
restrictions on f .
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Definition
We define H2 = H2[0,T ] to be all measurable, adapted functions f satisfying
following integrability condition:

E
[∫ T

0
f 2(ω, t)dt

]
<∞.

Note that

E
[∫ T

0
f 2(ω, t)dt

]
=

∫
Ω

∫ T

0
f 2(ω, t)dt dP(ω),

so condition says simply that f ∈ L2(dP × dt)

(in fact, is closed linear subspace of L2(dP × dt): fn ∈ H, fn
L2
→ f =⇒ f ∈ H).

Fubini’s theorem implies that for f ∈ H2

E
[∫ T

0
f 2(ω, t)dt

]
=

∫ T

0
E[f 2(ω, t)]dt .
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Start with simplest case possible:

f (ω, t) = 1(a,b] ( not random).

We then define

I(f )(ω) =

∫ b

a
dBt = Bb − Ba.

What about if there is some randomness?

Example

f (ω, t) = X1(a,b],

with X ∈ Fa. (X could be any function of Bs up to time a). We should have

I(f )(ω) =

∫ b

a
X (ω)dBt = X (ω)

∫ b

a
dBt = X (Bb − Ba).
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More generally, consider linear combinations (simple functions):

f (ω, t) =
n−1∑
i=0

ai (ω)1(ti ,ti+1]

with

1. ai ∈ Fti ,

2. Ea2
i <∞ and

3. t0 < t1 < · · · < tn = T .

The collection of these will be denoted by H2
0.

Insisting on linearity, the integral should be

I(f )(ω) =
n−1∑
i=0

ai (ω)(Bti+1 − Bti ).

We would like to extend this to H2.
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Lemma (6.1 in text, Itô Isometry on H2

0)
For f ∈ H2

0 we have
||I(f )||L2(dP) = ||f ||L2(dP×dt).

That is,

E
(∫ T

0
f (ω, t)dBt

)2

= E
∫ T

0
f 2(ω, t)dt .

Proof.
Just compute out! Use independent increments...

E
(∫ T

0
f (ω, t)dBt

)2

= E

(
n−1∑
i=0

ai (ω)(Bti+1 − Bti )

)2

=
n−1∑
i=0

Ea2
i (Bti+1 − Bti )

2

=
n−1∑
i=0

(ti+1 − ti )Ea2
i

E
∫ T

0
f 2(ω, t)dt = E

∫ T

0

n−1∑
i=0

a2
i 1(ti ,ti+1]dt = E

n−1∑
i=0

a2
i (ti+1 − ti ) =

n−1∑
i=0

Ea2
i (ti+1 − ti ).
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1. Remember, we want the Itô integral on H2[0,T ] ( ⊂ L2(dP × dt))
functions:

E
[∫ T

0
f 2(ω, t)dt

]
<∞.

2. We will follow ideas from Riemann integration by approximating such
general functions with simple functions H2

0 (sums of indicator functions)

The first necessary step is the following:

Lemma (6.2 in text)
H2

0 is dense in H2: for any f ∈ H2 there is a sequence fn ∈ H2
0 such that

‖f − fn‖L2(dP×dt) = E
∫ T

0
(fn(t)− f (t))2dt → 0, as n→∞.
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Corollary to main Theorem of Section 6.6:

Theorem
We define the approximation operator An : H2 → H2

0 in the following way:

An(f ) =
2n−1∑
i=1

1
ti − ti−1

[∫ ti

ti−1

f (ω, u)du

]
1(ti < t ≤ ti+1),

where ti = iT/2n for 0 ≤ i ≤ 2n. This maps H2[0,T ] to H2
0[0,T ] and

||An(f )||∞ ≤ ||f ||∞
||An(f )||L2(dP×dt) ≤ ||f ||L2(dP×dt)

lim
n→∞

||An(f )− f ||L2(dP×dt) = 0

for all f ∈ H2.

Proof.
The first two statements are easy, the last one is a bit harder and we omit.

Example: if f (ω, t) = Bt , we average Bt over (ti−1, ti ), so is in Fti , and take
that as value on (ti , ti+1].
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Now we will be able to define I(f ) for any f ∈ H2!

1. Let fn ∈ H2
0 be an approximating sequence (in L2(dP × dt)).

2. We know I(fn) are well-defined random variables in L2(dP) (since
fn ∈ H2

0).

3. Want to define I(f ) ∈ L2(dP) via

I(f ) = lim
n→∞

I(fn),

where convergence should be in L2(dP): Itô Isometry will let us go back
and forth.

Question: is this well defined?

1. Does such a limit exist for a given sequence fn?

2. Would a different approximating sequence give a different random
variable?
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Lemma
This is well-defined.

Proof.
The limit exists.

1. We know that fn → f in L2(dP × dt) so the sequence is Cauchy:

I i.e. for ε > 0 there exists N such that ||fk − fl ||2 ≤ ε for any k , l ≥ N.

2. By the Itô isometry

E
∫ T

0
|fn(t)− fm(t)|2dt = E

(∫ T

0
fn(t)dBt −

∫ T

0
fm(t)dBt

)2

,

I(fn) is Cauchy in L2(dP).

3. But L2(dP) is complete, i.e. any Cauchy sequence will be a converging
sequence, so there will be a limiting L2(dP) random variable which we
can denote by I(f ).
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Lemma
This is well-defined.

Proof.
Different approximating sequences will give the same limit.

1. Suppose that fn, f ′n are both approximating sequences for f .

2. Since they both converge to f , their difference will converge to 0 by
triangle inequality:

‖fn − f ′n‖L2(dP×dt) ≤ ‖fn − f ′‖L2(dP×dt) + ‖f − f ′n‖L2(dP×dt) → 0.

3. By the Itô isometry we have

‖I(fn)− I(f ′n)‖L2(dP) = E
(∫ T

0
fn(t)− f ′n(t)dBt

)2

= E
∫ T

0
(fn(t)− f ′n(t))2dt → 0.

which shows that the limit does not depend on the sequence.
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We can now extend the Itô Isometry to all of H2[0,T ]!

Theorem (Itô Isometry on H2)
For any f ∈ H2[0,T ]:

‖I(f )‖L2(dP) = ‖I(f )‖L2(dP×dt),

or

E
(∫ T

0
f (ω, t)dBt

)2

= E
∫ T

0
f 2(ω, t)dt .

Proof.

1. Choose an approximating sequence fn.

2. Then ||f − fn||L2(dP×dt) → 0 which gives (triangle inequality)

‖fn‖L2(dP×dt) → ‖f‖L2(dP×dt).

3. Similarly, we also have

‖I(fn)‖L2(dP) → ‖I(f )‖L2(dP)

and since we know the Itô isometry in H2
0 the lemma follows.
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That is

E
∫ T

0
f 2
n (t)dt → E

∫ T

0
f 2(t)dt

and

E
∫ T

0
f 2
n (t) = E

(∫ T

0
fn(t)dBt

)2

→ E
(∫ T

0
f (t)dBt

)2

.

So,

E
∫ T

0
f 2(t)dt = E

(∫ T

0
f (t)dBt

)2

.

�
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Linearity of the process.

1. If fn, gn ∈ H2
0, then by definition∫ t

0
fn(s)dBs +

∫ t

0
gn(s)dBs =

∫ t

0
(fn(s) + gn(s))dBs.

2. Is it true for general f , g ∈ H2? Yes:
I use that fn → f , gn → g =⇒ fn + gn → f + g (in L2(dP × dt))

I Then

I(fn + gn) → I(f + g) ( in L2(dP))

I(fn + gn) = I(fn) + I(gn) → I(f ) + I(g).

So,
I(f + g) = I(f ) + I(g).

Homework: prove that
∫ t

0 f (ω, s)dBs is mean zero.


