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Section 5.3: Reflection principle

Strong Markov Property of Brownian Motion:

Let 7 be a stopping time with respect to Brownian filtration:
1. First time hitting closed set.
2. First time hitting open set.
Then,
YsZ Bsor —B,, $>0

is a Brownian motion which is independent of F...

So, intuitively, Brownian motion “restarts” at stopping times.



Section 5.3: Reflection principle

The following is not surprising then, but will have a surprising corollary!

Theorem
If T is stopping time with respect to the filtration of B; then, given 7 < oo

B_ B; ift<rt
‘"1 B —(B—-B,) ifr<t

is a standard BM (picture!).
Further, the joint distribution of

Bf = max{Bs, 0 < s < t},
and B; satisfies

P(Bf 2x,Bi<x—y)=PBi>x+y). xy=>0



Section 5.3: Reflection principle
Why does second piece hold?
P(Bf >x,Bi<x—y)=P(B: > x+Yy), vV x,y>0

Let 7« be hitting time of x > 0,

P(Bf > x,B < X — y) P(rx < t,Br < x—y)
= P(rx<t,Bi— B, < —y)
= P(rx<t,Bi—B,>y)
= P(x<t,B>x+y)
= PBf =x,Bi>x+y)

= P(B>x+y).

Any interesting things to be inferred by this?



Distribution of By

We have
P(Bf > x,Bi<x—y)=P(B:>x+Yy)

Taking y to be 0 in the above yields
P(Bf > x,B: < x) = P(B: > x).

Similarly (and straightforward as {B; > x} C {B: > x}),

P(B; > X, B > x) = P(B; > x).

Summing yields
P(B; > x) = 2P(B: > X) = P(B; > x) + P(B; < —x) = P(|B{| > x).

= By =sup{Bs,0 < s < t} and | B;| have the same distribution!
This is amazing!



Distribution of By

We can get the density of B;:

d d 1 X e 2 2
fB*(u):aP“B[lSX):a\/ﬁ e~ /2t g — /TTte /2t

For example, we can get the density of hitting time 7a:

a
Pra<t) = P(Bf > a) = 1— P(Bf < a) =1 —/ for (U)ol
0

Differentiation (in f) and then integrating in u gives

f (f / / —u /2td —a2/2t.

Can answer any question you want about hitting times now...



Distribution of By

One easy corollary: we can get sharp tail probabilities for 7,.
We will only use that density of standard normal is bounded:

1 e—x2/202

<
vVar

=0.3989422 < 1/2.

-

O B >~ a a
P >t:/ —€ ds</ =505 = —.
(Ta_ ) ; /7271'33 = : 283/2 \ﬁ

Looked crude, but not so bad: for large t, the integrand concentrates on
s = t. For example, when { = 1000, a = 5,

2 2 _ 01261566, and / f..(s)ds = 0.12563293.
t

N

Coding up: my answer (100,000 trials): 0.1282



Section 5.4: The invariance principle and Donsker’s Theorem

Let X, be i.i.d. with mean 1 and variance o2 < co. Then, the CLT says

Xi+ -+ Xn—np
vn

where “=" means convergence in distribution in usual sense:

= N(0,5%),

1
Vero?

P (n’1/2(8(n) —np) < x) — / e /27" dx, as n — co.

» This is an “invariance” principle, because resulting limit is invariant to the
details of the X; (except for o).

» Invariance has huge implications in getting confidence intervals: can do
so without knowledge of underlying distribution.

» Can this be generalized?



Section 5.4: The invariance principle and Donsker’s Theorem
Let X; be i.i.d. sequence of mean zero, variance one random variables. Let

n
Sn = Z)(”
i=1
and define interpolated process:
S(t) = Sy + (T = [t]) X\t 41-

Scale it by v/n, and define
S(nt)

o

B =

Why? We have EB!"” = 0 and

Lnt]
Var(B{") = 1EVar (Z)(I + (nt — | nt] )XLntJ+1)

i=1
=n""|nt] +n"(nt - |nt])
= {I,
Central limit theorem says
lim P(B" < x) = P(B; < X)

n—oo

for a fixed .



Section 5.4: The invariance principle and Donsker’s Theorem

Can even show for any finite sequence x; < x» < -+ < Xg:

lim P(B" < xi,BY’ < xe,...,BY < X4) = P(By < xi,..., By, < xq).

n— oo ly

and many more such results.

Note:
1. results invariant to distribution of X;.

2. What is most general result?

3. Feels like distribution of any path property will converge:

> / B{"ds — / Bsds.

» max B — max By
0<u<t 0<u<t

4. Would be crazy to try to prove every such theorem individually.



Section 5.4: The invariance principle and Donsker’s Theorem

v

Let C[0, 1] be space of continuous functions on [0, 1].

v

We have a norm on this space: ||f|lcc = sUpg<,<+ [f(1)I-

This induces a metric:

v

a(f,g) = [If — glles-

v

What does it mean for H : C[0, 1] — R to be continuous?

*1f f, — fin C[0, 1], then H(fa) — H(f) in R.

v

Examples:
1. H(f) = f(1).

2. H(f) = maxo<x<1 f(1).



Section 5.4: The invariance principle and Donsker’s Theorem

Theorem (Donsker’s Invariance Principle- Functional Central Limit
Theorem)

For any continuous function H : C[0, 1] — R, the interpolated and scaled
random walk {BS”) :0 < t < 1} satisfies

im_ P[H( )<x] P[H(B)) < x].

So, H(B((,’;)) converges in distribution to H(B.)). We write B = B.
Examples:

1. H(f) = f(t), for some fixed t, gives usual CLT.
2. H(f) = supy<,<1 f(u) implies

< < = <
P(Orr<1§:1<x1 B X) — P(Org;agx1 B: <x) (= P(|Bi1] <x))

fo S)ds says distribution of integral converges...



Section 5.4: The invariance principle and Donsker’s Theorem
Question: if B = B, in sense of Donsker, when can | conclude that

goB" = goB?

Just need that for all continuous H : C[0,1] — R,
H(g o B™) = H(go B).
Exercise: Suppose that g is globally Lipschitz on [0, 1] (Holder continuous

with « = 1). Suppose that H : C[0, 1] — R is continuous. Then the function
Hog: C[0,1] — R, defined via

(Hog)(f) € H(go )
is continuous.

So, if B™ = Bin sense of Donsker’s theorem, then for all continuous H,

H(goB™) = (Ho g)(B™) = (Hog)(B) = H(go B),

Next slide has example with g(x) = e*.



Section 5.4: The invariance principle and Donsker’s Theorem

Consider the following family, indexed by n, of simple models for the price of a
stock:

1. Let& beiid. with P(¢=1) = P(¢ = —-1)=1/2.
2. We discretize [0, 1] into n pieces and define

k+1

i o m, K . o o
X{ )(T) =(1+ ﬁék-ﬂ)x( )(E) = X"(t) = EU + %&')-

3. Then, for t = k/n,

nt
In(X™ (1)) =" In(1 + %g,)
i=1

By Taylor’s formula:

nt

2
In(X™(t)) = > {%& _ %%5;2 +on¥?)| .
i=1

4. Hence, taking exponentials and applying theorem, we have
2 n

X(n)() = eo‘B(,)fozf/Z

in sense of Donsker’s theorem (applied previous with g(x) = exp{ox}).



