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Section 5.3: Reflection principle

Strong Markov Property of Brownian Motion:

Let τ be a stopping time with respect to Brownian filtration:

1. First time hitting closed set.

2. First time hitting open set.

Then,
Ys

def
= Bs+τ − Bτ , s ≥ 0

is a Brownian motion which is independent of Fτ .

So, intuitively, Brownian motion “restarts” at stopping times.



Section 5.3: Reflection principle

The following is not surprising then, but will have a surprising corollary!

Theorem
If τ is stopping time with respect to the filtration of Bt then, given τ <∞

B̃t =

{
Bt if t < τ

Bτ − (Bt − Bτ ) if τ ≤ t

is a standard BM (picture!).

Further, the joint distribution of

B∗t = max{Bs, 0 ≤ s ≤ t},

and Bt satisfies

P(B∗t ≥ x ,Bt ≤ x − y) = P(Bt ≥ x + y). x , y ≥ 0



Section 5.3: Reflection principle

Why does second piece hold?

P(B∗t ≥ x ,Bt ≤ x − y) = P(Bt ≥ x + y), ∀ x , y ≥ 0

Let τx be hitting time of x > 0,

P(B∗t ≥ x ,Bt ≤ x − y) = P(τx ≤ t ,Bt ≤ x − y)

= P(τx ≤ t ,Bt − Bτx ≤ −y)

= P(τx ≤ t , B̃t − B̃τx ≥ y)

= P(τx ≤ t , B̃t ≥ x + y)

= P(B∗t ≥ x , B̃t ≥ x + y)

= P(B̃t ≥ x + y).

Any interesting things to be inferred by this?



Distribution of B∗t

We have
P(B∗t ≥ x ,Bt ≤ x − y) = P(Bt ≥ x + y)

Taking y to be 0 in the above yields

P(B∗t ≥ x ,Bt ≤ x) = P(Bt ≥ x).

Similarly (and straightforward as {B∗t ≥ x} ⊂ {Bt ≥ x}),

P(B∗t ≥ x ,Bt ≥ x) = P(Bt ≥ x).

Summing yields

P(B∗t ≥ x) = 2P(Bt ≥ x) = P(Bt ≥ x) + P(Bt ≤ −x) = P(|Bt | ≥ x).

=⇒ B∗t = sup{Bs, 0 ≤ s ≤ t} and |Bt | have the same distribution!
This is amazing!



Distribution of B∗t

P(B∗t ≥ x) = P(|Bt | ≥ x).

We can get the density of B∗t :

fB∗(u) =
d
dx

P(|Bt | ≤ x) =
d
dx

1√
2πt

∫ x

−x
e−s2/2tds =

√
2
πt

e−x2/2t .

For example, we can get the density of hitting time τa:

P(τa ≤ t) = P(B∗t ≥ a) = 1− P(B∗t < a) = 1−
∫ a

0
fB∗

t
(u)du.

Differentiation (in t) and then integrating in u gives

fτa(t) = −
d
dt

∫ a

0

√
2
πt

e−u2/2tdu =
a√

2πt3
e−a2/2t .

Can answer any question you want about hitting times now...



Distribution of B∗t

One easy corollary: we can get sharp tail probabilities for τa.

We will only use that density of standard normal is bounded:

1√
2π

e−x2/2σ2
≤ 1√

2π
= 0.3989422 < 1/2.

P(τa ≥ t) =
∫ ∞

t

a√
2πs3

e−a2/2sds ≤
∫ ∞

t

a
2s3/2 ds =

a√
t
.

Looked crude, but not so bad: for large t , the integrand concentrates on
s = t . For example, when t = 1000, a = 5,

2√
2π

a√
t
= 0.1261566, and

∫ ∞
t

fτa(s)ds = 0.12563293.

Coding up: my answer (100,000 trials): 0.1282



Section 5.4: The invariance principle and Donsker’s Theorem

Let Xn be i.i.d. with mean µ and variance σ2 <∞. Then, the CLT says

X1 + · · ·+ Xn − nµ√
n

⇒ N(0, σ2),

where “⇒” means convergence in distribution in usual sense:

P
(

n−1/2(S(n)− nµ) ≤ x
)
→ 1√

2πσ2

∫ x

−∞
e−x2/2σ2

dx , as n→∞.

I This is an “invariance” principle, because resulting limit is invariant to the
details of the Xi (except for σ).

I Invariance has huge implications in getting confidence intervals: can do
so without knowledge of underlying distribution.

I Can this be generalized?



Section 5.4: The invariance principle and Donsker’s Theorem
Let Xi be i.i.d. sequence of mean zero, variance one random variables. Let

Sn =
n∑

i=1

Xi ,

and define interpolated process:

S(t) = Sbtc + (t − btc)Xbtc+1.

Scale it by
√

n, and define

B(n)
t =

S(nt)√
n
.

Why? We have EB(n)
t = 0 and

Var(B(n)
t ) =

1
n

Var

bntc∑
i=1

Xi + (nt − bntc)Xbntc+1


= n−1bntc+ n−1(nt − bntc)
= t .

Central limit theorem says

lim
n→∞

P(B(n)
t ≤ x) = P(Bt ≤ x)

for a fixed t .
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Can even show for any finite sequence x1 ≤ x2 ≤ · · · ≤ xd :

lim
n→∞

P(B(n)
t1
≤ x1,B

(n)
t2
≤ x2, . . . ,B

(n)
td
≤ xd) = P(Bt1 ≤ x1, . . . ,Btd ≤ xd).

and many more such results.

Note:

1. results invariant to distribution of Xi .

2. What is most general result?

3. Feels like distribution of any path property will converge:

I

∫
B(n)

s ds =⇒
∫

Bsds.

I max
0≤u≤1

B(n)
u =⇒ max

0≤u≤1
Bu

4. Would be crazy to try to prove every such theorem individually.
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I Let C[0, 1] be space of continuous functions on [0, 1].

I We have a norm on this space: ‖f‖∞ = sup0≤t≤1 |f (t)|.

I This induces a metric:

d(f , g) = ‖f − g‖∞.

I What does it mean for H : C[0, 1]→ R to be continuous?

* If fn → f in C[0, 1], then H(fn)→ H(f ) in R.

I Examples:
1. H(f ) = f (1).

2. H(f ) = max0≤x≤1 f (t).
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Theorem (Donsker’s Invariance Principle- Functional Central Limit
Theorem)
For any continuous function H : C[0, 1]→ R, the interpolated and scaled
random walk {B(n)

t : 0 ≤ t ≤ 1} satisfies

lim
n→∞

P[H(B(n)
(·) ) ≤ x ] = P[H(B(·)) ≤ x ].

So, H(B(n)
(·) ) converges in distribution to H(B(·)). We write B(n) ⇒ B.

Examples:

1. H(f ) = f (t), for some fixed t , gives usual CLT.

2. H(f ) = sup0≤u≤1 f (u) implies

P(max
0≤t≤1

B(n)
t ≤ x)→ P(max

0≤t≤1
Bt ≤ x) (= P(|B1| ≤ x))

3. H(f ) =
∫ 1

0 f (s)ds says distribution of integral converges...
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Question: if B(n) ⇒ B, in sense of Donsker, when can I conclude that

g ◦ B(n) ⇒ g ◦ B?

Just need that for all continuous H : C[0, 1]→ R,

H(g ◦ B(n))⇒ H(g ◦ B).

Exercise: Suppose that g is globally Lipschitz on [0, 1] (Holder continuous
with α = 1). Suppose that H : C[0, 1]→ R is continuous. Then the function
H ◦ g : C[0, 1]→ R, defined via

(H ◦ g)(f ) def
= H(g ◦ f )

is continuous.

So, if B(n) ⇒ B in sense of Donsker’s theorem, then for all continuous H,

H(g ◦ B(n)) = (H ◦ g)(B(n))⇒ (H ◦ g)(B) = H(g ◦ B),

Next slide has example with g(x) = ex .
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Consider the following family, indexed by n, of simple models for the price of a
stock:

1. Let ξi be i.i.d. with P(ξi = 1) = P(ξi = −1) = 1/2.
2. We discretize [0, 1] into n pieces and define

X (n)(
k + 1

n
) = (1 +

σ√
n
ξk+1)X (n)(

k
n
) =⇒ X (n)(t) =

nt∏
i=1

(1 +
σ√
n
ξi).

3. Then, for t = k/n,

ln(X (n)(t)) =
nt∑

i=1

ln(1 +
σ√
n
ξi)

By Taylor’s formula:

ln(X (n)(t)) =
nt∑

i=1

[
σ√
n
ξi −

1
2
σ2

n
ξ2

i + O(n−3/2)

]
.

4. Hence, taking exponentials and applying theorem, we have

σ−1 ln(X (n)(t)) + σ−1 1
2
σ2

n
⇒ Bt

X (n)(·)⇒ eσB(·)−σ
2t/2

in sense of Donsker’s theorem (applied previous with g(x) = exp{σx}).


