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Section 4.2

Definition (Precise definition of conditional expectation)
Let

I X be a random variable with E|X | <∞ on (Ω,F ,P) and
I G ⊂ F be a σ-field (think of it as “generated” by Z , i.e. G = σ(Z )).

We say that Y is the conditional expectation of X wrt G if Y is G measurable
and

E(X1A) = E(Y 1A) for all A ∈ G

Notation: Y = E(X |G).



Conditional Expectation: Properties

Properties of Conditional Expectations:

1. E(X + Y |G) = E(X |G) + E(Y |G)

Proof.
Must show that for A ∈ G:

E [E[X + Y |G]1(A)] = E
[(

E[X |G] + E[Y |G]

)
1(A)

]
.

Let A ∈ G.

E [E[X + Y |G]1(A)] = E[(X + Y )1(A)] (by definition of Cond. Exp.)

= E[X1(A)] + E[Y 1(A)] (by linearity of usual expec.)

= E[E[X |G]1(A)] + E[E[Y |G]1(A)] (by def. of cond. Exp.)

= E
[(

E[X |G] + E[Y |G]

)
1(A)

]
, (by linearity)

and done by uniqueness.



Conditional Expectation: Properties

1. (Tower property) if H ⊂ G then

E(E(X |G)|H) = E(E(X |H)|G) = E(X |H)

Special case: if H = {∅,Ω} trivial, only scalars (Z (ω) = c, ∀ω) are in H.
Why?

{ω : Z (ω) ≤ x} ∈ H

for all x , means each set is either all or nothing! Only scalars.

Then, requiring Y to satisfy

EX1(A) = EY 1(A),

reduces (since trivial if A = ∅) to taking A = Ω, in which case we simply
require,

EX = EY = E(E[X |H]) = E[X |H],

since only scalars are measurable. Hence, in this case, the tower
property reduces to

E(E(X |G)) = EX .



Conditional Expectation: Properties

1. If X and XY are integrable (in L1) and Y ∈ G then

E(XY |G) = YE(X |G)

2. Essentially all properties of expectations: i.e. E[aX |G] = aE[X |G].

Group project: Prove the Tower Property: if H ⊂ G then

E(E(X |G)|H) = E(E(X |H)|G) = E(X |H)



Section 4.3: Uniform Integrability

Note: important for proving that Mt∧τ is a martingale if τ is stopping time.

Definition
We say that a collection C of random variables is uniformly integrable if

ρ(x) = sup
Z∈C

E(|Z |1{|Z |>x}), satisfes ρ(x)→ 0 as x →∞.

Why? Recall that for integrable X (i.e. in L1), we have

E[|X |] = E[|X |1{|X |>x}] + E[|X |1{|X |≤x}],

with first term going to zero as x →∞.

Hence, for each Xi ∈ L1, there is a ρi such that

ρi (x) = E(|Xi |1{|Xi |>x}), satisfes ρi (x)→ 0 as x →∞.

Uniformly integrable says there is only one ρ for *all* the RVs in C.



Section 4.3: Uniform Integrability

Lemma
If C ⊂ L1 is finite then it is U.I.

Follows since for Z ∈ C

E(|Z |1{|Z |>x}) ≤ max
Zi∈C

E(|Zi |1{|Zi |>x}) = max
i
ρi (x)

def
= ρ(x)→ 0, as x →∞.

Lemma
If for Z ∈ C we have |Z | ≤ |X | ∈ L1 with a fixed X then C is U.I.



Section 4.3: Uniform Integrability

Lemma (4.1 in book, Uniform integrability and L1 convergence)
If Zn → Z a.s. and {Zn} is U.I. then Zn → Z in L1.

Proof.
By Fatou Z ∈ L1 and E |Z | ≤ ρ(x − ε) + x (for any x and ε > 0) since

E|Z | = E|Z |1{|Z |>x} + E|Z |1{|Z |≤x} ≤ E|Z |1{|Z |>x} + x

and

E|Z |1{|Z |>x} ≤ E lim sup
n→∞

|Zn|1{|Zn|>x−ε}

≤ lim inf
n→∞

E|Zn|1{|Zn|>x−ε}

≤ ρ(x − ε).



Section 4.3: Uniform Integrability

Lemma (4.1 in book, Uniform integrability and L1 convergence)
If Zn → Z a.s. and {Zn} is U.I. then Zn → Z in L1.

Proof.
We write

|Zn − Z | = |Zn − Z |1{|Zn≤x} + |Zn − Z |1{|Zn>x}

≤ |Zn − Z |1{|Zn|≤x} + |Z |1{|Zn|>x} + |Zn|1{|Zn|>x}

Must show that each term converges to zero:

1. First term: Dominated Convergence Thm (DCT) with |Z |+ x .

2. Second term: DCT with |Z | as the majorant: limit is ρ(x).

3. Third term: at most ρ(x).

So, we have that for any x

lim
n→∞

E|Zn − Z | ≤ 0 + ρ(x) + ρ(x).

By letting x →∞ we are done.



Section 4.3: Uniform Integrability

Lemma
Conditional expectation is a contraction:

E|E(Z |G)| ≤ E|Z |

Proof.
Easy: consider Z = Z+ − Z−. Then,

E|E[Z |G]| = E|E[Z+|G]− E[Z−|G]|
≤ E|E[Z+|G] + E[Z−|G]|
= E[E[|Z ||G]]

= E|Z |.

Question: Lp, for p ≥ 1, contraction?



Section 4.3: Uniform Integrability

Lemma
If Zn → Z a.s. and Zn is U.I. then E(Zn|G)→ E(Z |G) in L1 and in probability.

Proof.
Previous lemmas.

1. We first get Zn → Z in L1 by Lemma 1.

2. then by the previous lemma E(Zn|G)→ E(Z |G) in L1

E
∣∣E[Zn|G]− E[Z |G]

∣∣ ≤ E[E[|Zn − Z ||G]] = E|Zn − Z | → 0.

L1 convergence is stronger than convergence in prob, so done.



Conditions for Uniform Integrability
How to check for uniform integrability?

Lemma
If φ(x)/x →∞ as x →∞ and Eφ(|Z |) ≤ B <∞ for Z ∈ C, then C is U.I.

Proof.

1. Let Ψ(x) =
φ(x)

x
=⇒ x = φ(x)/Ψ(x).

2. For any Z ∈ C,

E(|Z |1{|Z |≥x}) = E
[
φ(|Z |)
Ψ(|Z |) 1{|Z |≥x}

]
≤ 1

min{Ψ(y) : y ≥ x}E[φ(|Z |)1{|Z |≥x}]

≤ B
min{Ψ(y) : y ≥ x}

But, Ψ(x)→∞ as x →∞.

Example: φ(x) = x2. Says that if E|Zn|2 ≤ B for all n, then U.I. (we already
knew about convergence!)

More generally: if C ⊂ Lp with p > 1, then it is U.I.



Conditions for Uniform Integrability

Lemma
If Z is in L1 then there exists convex φ with φ(x)/x →∞ and E(φ(|Z |)) <∞.

Proof.
Omit.

Lemma
If C = {E(Z |G) : G ⊂ F} then C is U.I.

Proof.
Use the previous lemma: Eφ(|Z |) <∞ and also by Jensen’s inequality

Eφ(|E(Z |G)|) ≤ E(Eφ(|Z |)|G)) = Eφ(|Z |) ≤ ∞.

This is enough for the U.I. by previous Lemma (using this specific φ).



Section 4.4: Martingales in Continuous Time

Definition
If the collection

{Ft : 0 ≤ t <∞}

of sub σ-fields of F (so Ft ⊂ F) satisfies

s ≤ t =⇒ Fs ⊂ Ft ,

then the collection is called a filtration.

Definition
If the process Xt is such that Xt is Ft measurable,

{ω : Xt (ω) ≤ x} ∈ Ft ,

then we say that Xt is adapted to the filtration {Ft}.



Section 4.4: Martingales in Continuous Time

Definition
We say that Xt is a martingale with respect to Ft if it is adapted to it,
E|Xt | <∞ and

E[Xt |Fs] = Xs for t > s,

and we say it is a submartingale if all assumptions hold with

E[Xt |Fs] ≥ Xs, for t ≥ s.

We will be interested in continuous martingales: i.e. there exists Ω0 ⊂ Ω such
that Xt is continuous on Ω0:

ω ∈ Ω0 =⇒ t → Xt (ω) is continuous,

and P(Ω0) = 1.



Section 4.4: Martingales in Continuous Time
Important filtration: the one associated to the Brownian motion, Bt .

Natural choice: Ft = σ(Bs : s ≤ t).

It turns out that this is not the nicest choice, so we also include all the
probability zero events from [0,T ] and also any subsets of these (null sets).
(This is denoted by N .)

Then F0 = σ(N ) and

Ft = smallest σ − algebra containing N and σ(Bs : s ≤ t).

we have the nice property that

Ft =
⋂
{s:s>t}

Fs = Ft+ right continuity property

These

1. Having all sets of measure zero in filtration

2. Right continuity

are called the ”usual conditions”.



Section 4.4: Martingales in Continuous Time

Stopping times: Same definition.

Definition
If {Ft} is a filtration, then τ : Ω→ R∪ {∞} is a stopping time with respect to
{Ft} if

{ω : τ(ω) ≤ t} ∈ Ft , for all t ≥ 0.

Also, as before, on the set {ω : τ(ω) <∞}, we can define the stopped
variable Xτ via

Xτ (ω) = Xτ(ω)(ω).



Section 4.4: Martingales in Continuous Time

Main Theorem of chapter:

Theorem (Doob’s Stopping time theorem:)
Assume that Mt is continuous martingale with respect to Ft . If τ is a stopping
time wrt {Ft}, then

Xt = Mτ∧t

is also a continuous martingale with respect to {Ft}.

Proof: Note: continuity is inherited from continuity of M.

We need two things:

1. E|Xt | <∞ and

2. E(Xt |Fs) = Xs for s ≤ t .

Idea: The proof is a bit harder than in the discrete case, but we can use the
discrete result as an ingredient. Approximate with discrete processes and
use previous results.
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Recall:
Xt = Mτ∧t

First show: E|Xt | <∞.

Fix s < t (for now take s = 0). For any n ≥ 1, define random time τn to be
smallest element of

S(n) =

{
s + (t − s)k

1
2n : 0 ≤ k <∞

}
such that

τ ≤ τn.

and takes∞ if τ(ω) =∞.

We have that (i) τn(ω)→ τ(ω) for all ω (mesh size gets finer and finer) and
(ii) τn is a stopping time (you know when you hit it): for x ∈ [ui , ui+1) (each in
S(n))

{τn ≤ x} = {min{u ∈ S(n) : τ ≤ u} ≤ x}
= {τ ≤ ui} ∈ Fui ⊂ Fx .



Section 4.4: Martingales in Continuous Time

We restrict {M,F} to the set S(n):

{Mu,Fu}S(n).

Then we get a discrete martingale {Mu,Fu}S(n), and similarly |Mu| is a
discrete time submartingale.

Since |Mu| is a (discrete) submartingale on S(n), and t , τn ∈ S(n), we have

E|Mt∧τn | ≤ E|Mt | <∞.

Letting n→∞ and using Fatou we get for all t ≥ 0

E|Xt | = E|Mt∧τ | ≤ lim inf
n→∞

E|Mt∧τn | ≤ E|Mt | <∞,

which proves the integrability of Xt .



Section 4.4: Martingales in Continuous Time

To prove the martingale identity, we again use the fact that Mu is a discrete
martingale on S(n) to get

E(Mt∧τn |Fs) = Ms∧τn . (∗)

where we used that s, t , τn ∈ S(n).

Now we need to show that as n→∞ both sides converge to the right thing.

By the a.s. continuity of {Mt} and τn → τ we have
I Mt∧τn → Mt∧τ = Xt and
I Ms∧τn → Ms∧τ = Xs

almost surely.

But we need convergence

E(Mt∧τn |Fs)→ E(Mt∧τ |Fs),

which will follow if we prove that Mt∧τn is U.I.



Section 4.4: Martingales in Continuous Time
For this we use the trick introduced at the end of the U.I. section: there exists
a convex φ with φ(x)/x →∞ s.t. Eφ(|Mt |) <∞ (t is fixed!).

By the convexity of φ (Jensen) and Eφ(|Mt |) <∞ we get that φ(|Mu|) is a
discrete submartingale on S(n).

So by the discrete version of the stopping time thm (used for submartingales)
we get

Eφ(|Mt∧τn |) ≤ Eφ(|Mt |) <∞

1. By lemma from last class (Lemma 4.4): we have the U.I. property for
Mt∧τn , which converges a.s. to Mt∧τ .

2. SoLemma 4.3 gives the L1 convergence

E(Mt∧τn |Fs)
L1
→ E(Mt∧τ |Fs)

and this is enough to prove the martingale identity.

I E(Mt∧τn |Fs)→ E(Mt∧τ |Fs) in L1 and (if we look at the other side of the
equation (∗)) we have

I E(Mt∧τn |Fs)→ Ms∧τ a.s.

which means E(Mt∧τ |Fs) = Ms∧τ a.s. (exercise 4.2 c).
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Theorem (Maximal inequality in cont. time)
If Mt is a cont. nonnegative submartingale and λ > 0, p ≥ 1 then

λpP

(
sup

{t :0≤t≤T}
Mt > λ

)
≤ EMp

T

Also: if ‖MT‖p = E|Mp
T | <∞, for p > 1, then

|| sup
{t :0≤t≤T}

Mt ||p ≤
p

p − 1
||MT ||p

Proof.
Restrict to S(n,T ) = {ti : ti = tT/2n, 0 ≤ i ≤ 2n} and use the discrete results
with Fatou’s lemma. Basic idea:

sup
t∈S(n,T )

Mt ≈ sup
0≤t≤T

Mt

with equality in limit as n→∞. Specifically, we have (a.s.)

lim
n→∞

1( sup
t∈S(n,T )

Mt > λ) = 1( sup
0≤t≤T

Mt > λ)

Now apply Fatou with discrete result.



Section 4.4: Martingales in Continuous Time
Theorem (Martingale convergence theorems in continuous time)
If

1. {Mt} is a continuous martingale,

2. p > 1 and E|Mt |p ≤ B <∞ for all t ,

then Mt → M∞ a.s and in Lp

E|Mt −M∞|p → 0, as t →∞,

and E|M∞|p ≤ B.

If {Mt} is a cont martingale and E|Mt | ≤ B <∞ for all t then Mt → M∞ a.s
and E|M∞| ≤ B.

Proof: Use the discrete result to get that Mn → M∞ (n ∈ {0, 1, 2, . . . }), then
we only need to show that the fluctuations (in non-integer parts) are small.

Note that for any integer m ≤ t , we have

|Mt −M∞| ≤ |Mm −M∞|+ sup
{t :m≤t<∞}

|Mt −M∞|.

First term is trivial as m→∞, it goes to zero with prob. 1. Need limit of
second term.
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Need

lim
m→∞

sup
{t :m≤t<∞}

|Mt −M∞| = 0

This can be done by the maximal inequality.

P( sup
{t :m≤t≤n}

|Mt −Mm| > λ) ≤ λ−pE(|Mn −Mm|p).

which implies (since Mn → M∞ in Lp),

P( sup
{t :m≤t<∞}

|Mt −Mm| > λ) ≤ λ−pE(|M∞ −Mm|p)→ 0, as m→∞.

DCT then tells us can pass limit on probability to conclude

P( lim
m→∞

sup
{t :m≤t<∞}

|Mt −Mm| > λ) = 0,

giving us convergence:

P( lim
m→∞

sup
{t :m≤t<∞}

|Mt −Mm| = 0) = 1− P( lim
m→∞

sup
{t :m≤t<∞}

|Mt −Mm| > 0)

= 1− P

(
∞⋃

n=1

{
lim

m→∞
sup

{t :m≤t<∞}
|Mt −Mm| > 1/n

})
= 1.
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For Lp convergence: for all integers m ≤ t , we have

‖Mt −M∞‖p ≤ ‖Mt −Mm‖p + ‖Mm −M∞‖p.

Since St = |Mt −Mm| is a submartingale, we have for t < n,

‖Mt −Mm‖p ≤ ‖Mn −Mm‖p,

yielding
‖Mt −M∞‖p ≤ ‖Mm −M∞‖p + sup

{n:n≥m}
‖Mn −Mm‖p.

Above is independent of t , so:

lim sup
t→∞

‖Mt −M∞‖p ≤ ‖Mm −M∞‖p + sup
{n:n≥m}

‖Mn −Mm‖p → 0, as m→∞.
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L1 proof:

I let τn be the hitting time of level n by |Mt |:

τn = inf{t : |Mt | ≥ n}.

I The martingale Mt∧τn is bounded so it will converge by first part of
theorem.

I In particular, for ω for which τn(ω) =∞, and so

Mt (ω) = Mt∧τn (ω),

we have Mt converges.
I So we just have to prove that

∞⋃
n=1

{τn =∞}.

has probability one.
I This can be proved with the maximal inequality (next slide).
I Fatou’s lemma again gives bound E|M∞| ≤ lim inft→∞ E|Mt | ≤ B.
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So we just have to prove that

∞⋃
n=1

{τn =∞}.

has probability one.

From Maximal:
P( sup

0≤t≤T
|Mt | ≥ λ) ≤ E(|MT |)/λ ≤

B
λ
.

Implying (DCT on f (T ) = 1(sup0≤t≤T |Mt | ≥ λ)),

P

(
sup

0≤t≤∞
|Mt | ≥ λ

)
≤ B
λ
.

Converting to τn this is

P(τn =∞) = 1− P( sup
0≤t≤∞

|Mt | ≥ n) ≥ 1− B
n
.

taking unions and using continuity of probability function (note:
{τm =∞} ⊂ {τm+1 =∞}):

P (∪∞n=1{ω : τn =∞}) = P( lim
m→∞

{τm =∞}) = lim
m→∞

P({τm =∞})

= 1.



Section 4.5: Classic Brownian Motion martingales

We now have:

1. Brownian motion.

2. Notion of martingale in continuous time.

3. Stopping time theorem: Mt∧τ is a Martingale if τ is a stopping time.

4. Convergence theorems: martingales converge! “Given ω,
Mt (ω)→ M∞(ω) in classical sense.”

We can start using this to compute things pertaining to Brownian motion.
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Lemma
Each of the following process is a continuous martingale with respect to the
standard Brownian filtration:

1. Bt ,

2. B2
t − t ,

3. exp(αBt − α2t/2), for α ∈ R.

Proof: Continuity, adapted, integrability are immediate. Only really check
Martingale identity. For example, if s < t ,

E[Bt |Fs] = E[Bt − Bs + Bs|Fs] = E[Bt − Bs|Fs] + E[Bs|Fs] = Bs.

E[B2
t − t |Fs] = E[(Bt − Bs + Bs)2 − t |Fs]

= E[(Bt − Bs)2 + 2Bs(Bt − Bs) + B2
s − t |Fs]

= (t − s) + B2
s − t

= B2
s − s.
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Finally, let
Xt = exp(αBt − α2t/2).

Bt is N(0, t), so

EXt = e−α
2t/2

∫ ∞
−∞

eαx 1√
2πt

e−
x2
2t dx = 1,

and for s < t ,

E[Xt |Fs] = E[exp(αBt − α2t/2)|Fs]

= E[exp(α(Bt − Bs)− α2(t − s)/2) exp(αBs − α2s/2)|Fs]

= XsE[exp(α(Bt − Bs)− α2(t − s)/2)]

= Xs.
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We have a similar theorem as in random walk.

Theorem
Let Bt be a standard Brownian motion. If A,B > 0 and

τ = min{t : Bt = −B or Bt = A},

then P(τ <∞) = 1 and

P(Bτ = A) =
B

A + B
and E(τ) = AB.

Proofs are similar. To prove finiteness, use geometric random variable
argument:

P( sup
n≤t≤n+1

|Bn+1 − Bn| > A + B) = ε < 1

Events En = {supn≤t≤n+1 |Bn+1 − Bn} are independent, so

P(τ > n + 1) ≤ (1− ε)n =⇒ P(τ <∞) = 1.
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Rest of proof is same too.

EBτ = A · P(Bτ = A)− B · P(Bτ = −B)

= A · P(Bτ = A)− B · (1− P(τ = A)).

However,

1. Bt∧τ is a martingale.

2. EBt∧τ = 0 for all t .

3. |Bt∧τ | ≤ A + B.

So, by dominated convergence theorem,

EBτ = E lim
t→∞

Bt∧τ = lim
t→∞

EBt∧τ = 0.

Solving yields

P(Bτ = A) =
B

A + B
.
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Consider hitting time of one-sided boundary:

τa = inf{t : Bt = a}.

Will show P(τa <∞) = 1 and Eτa =∞ for all a.

Proof.
Suppose a > 0. Let b > 0 be arbitrary. Then,

P(τa <∞) ≥ P(Bτa∧τ−b = a) =
b

a + b
.

b is arbitrary and right hand side→ 1 as b →∞.

Next, and as before,

Eτa ≥ Eτa ∧ τ−b = ab →∞, as b →∞.
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Theorem
Let f ∈ C3

b (R) (the bounded continuous functions with three bounded
continuous derivatives. If Bt is a standard Brownian motion with respect to
{Ft}, then

f (Bt )− f (0)−
∫ t

0

1
2

f ′′(Bs)ds

is a {Ft}-martingale.

Notes:

1. This is a Riemannian integral (calculus) since Bt is continuous.

2. Taking f (x) = x shows Bt is a martingale.

3. Taking f (x) = x2 shows B2
t − t is a martingale.

4. Taking f (x) = x3 shows

B3
t − 3

∫ t

0
Bsds,

is a martingale.



Section 4.5: Classic Brownian Motion martingales

Theorem
Let f ∈ C3

b (R) (the bounded continuous functions with three bounded
continuous derivatives. If Bt is a standard Brownian motion with respect to
{Ft}, then

f (Bt )− f (0)−
∫ t

0

1
2

f ′′(Bs)ds

is a {Ft}-martingale.

Proof.
Let r < t . And consider

E[f (Bt )− f (0)− (f (Br )− f (0))|Fr ] = E[f (Bt )− f (Br )|Fr ].


