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Section 4.2

Definition (Precise definition of conditional expectation)
Let
» X be a random variable with E|X| < co on (2, F,P) and
» G C F be a o-field (think of it as “generated” by Z, i.e. G = o(2)).

We say that Y is the conditional expectation of X wrt G if Y is G measurable
and
E(X14) =E(Y14) forall Ac G

Notation: Y = E(X|G).



Conditional Expectation: Properties

Properties of Conditional Expectations:
1. E(X + Y|G) = E(X|G) + E(Y|G)

Proof.
Must show that for A € G:

E[E[X + Y|G]1(A)] = IEKIE[XIQ] +E[Y|Q])1(A)}.

Let Acg.

E[E[X + Y|G]1(A)] E[(X + Y)1(A)] (by definition of Cond. Exp.)
E[X1(A)] + E[Y1(A)] (by linearity of usual expec.)

= E[E[X|G]1(A)] + E[E[Y|G]1(A)] (by def. of cond. Exp.)
= EKE[XlQ] +E[Y|Q]>1(A)}, (by linearity)

and done by uniqueness.



Conditional Expectation: Properties

1. (Tower property) if H C G then
E(E(X]G)|H) = E(E(X|H)|G) = E(X|H)

Special case: if H = {0, Q} trivial, only scalars (Z(w) = ¢, Vw) are in H.
Why?

{w:ZW) < x}eH
for all x, means each set is either all or nothing! Only scalars.
Then, requiring Y to satisfy

EX1(A) = EY1(A),

reduces (since trivial if A = () to taking A = Q, in which case we simply
require,

EX = EY = E(E[X|H]) = E[X|H],
since only scalars are measurable. Hence, in this case, the tower

property reduces to
E(E(X|G)) = EX.



Conditional Expectation: Properties

1. If X and XY are integrable (in L') and Y € G then
E(XY|G) = YE(X|G)

2. Essentially all properties of expectations: i.e. E[aX|G] = aE[X|G].

Group project: Prove the Tower Property: if H C G then
E(E(X|9)IH) = E(E(X|H)|G) = E(X|H)



Section 4.3: Uniform Integrability

Note: important for proving that M. is a martingale if 7 is stopping time.
Definition
We say that a collection C of random variables is uniformly integrable if

p(x) =supE(|Z|11z1>x31), satisfes p(x) — 0 as x — oo.
ZeC

Why? Recall that for integrable X (i.e. in L"), we have

E[IXI] = E[IXI qx>x] + E[I X1 x1<x ]
with first term going to zero as x — oc.
Hence, for each X; € L', there is a p; such that
pi(X) = E(|Xi|1(1x>x})s satisfes pi(x) — 0 as x — oo.

Uniformly integrable says there is only one p for *all* the RVs in C.



Section 4.3: Uniform Integrability

Lemma
IfC c L' is finite then it is U..

Follows since for Z € C
def
E(1Z11¢21>x) < maxE(|Zi[1{z)>x) = max pi(x) Z p(x) >0, asx— oo

Lemma
If for Z € C we have |Z| < |X| € L' with a fixed X then C is U.1.



Section 4.3: Uniform Integrability

Lemma (4.1 in book, Uniform integrability and L' convergence)
IfZ, — Z a.s. and {Z,} is U.l. then Z, — Z in L.

Proof.
By Fatou Z € L' and E|Z| < p(x — €) + x (for any x and ¢ > 0) since
E|Z| = E|Z[1{zj>x +EIZ|1{z1<xp S E[Z|1{jzj5x) + X

and

E[Z[1{1z>x < EIMSUP |Zo|1 2,5}
n—oo
< NiminfE|Zn|1{z,1>x—e}

<p(x—e).



Section 4.3: Uniform Integrability

Lemma (4.1 in book, Uniform integrability and L' convergence)
IfZ, — Z a.s. and {Z,} is U.l. then Z, — Z in L.

Proof.
We write

1Zn = 2| = |20 = ZN(1zo<xy + |20 — 212503
<|NZn = Z 1 zy1<xy + 12111201553 + 12011 {1z01> 01

Must show that each term converges to zero:
1. First term: Dominated Convergence Thm (DCT) with |Z| + x.
2. Second term: DCT with |Z] as the majorant: limit is p(x).
3. Third term: at most p(x).

So, we have that for any x
lim B Zy — 2| < 0+ p(x) + p(x).

By letting x — co we are done.



Section 4.3: Uniform Integrability

Lemma
Conditional expectation is a contraction:

E[E(Z|G)| < E|Z|

Proof.
Easy: consider Z = Z, — Z_. Then,

E[E[Z|G]] = E[E[Z:|9] - E[Z-|G]|
< E[E[Z;|G] + E[Z-|]|
E[E[|Z]|9]]
E|Z|.

Question: LP, for p > 1, contraction?



Section 4.3: Uniform Integrability

Lemma
IfZ, — Z a.s. and Z, is U.I. then E(Z,|G) — E(Z|G) in L' and in probability.

Proof.
Previous lemmas.

1. We firstget Z, — Zin L' by Lemma 1.
2. then by the previous lemma E(Z,|G) — E(Z|G) in L'

E|E[Z:|G] — E[Z|G]| < E[E[|Z, — Z||G]] = E|Z, — Z| — O.

L' convergence is stronger than convergence in prob, so done.



Conditions for Uniform Integrability
How to check for uniform integrability?

Lemma
Ifp(x)/x — o0 as x — oo and E¢(|Z|) < B < oo forZ € C, thenC is U..

Proof.
1. Let W(x) = @ = X = ¢(x)/V(x).
2. Forany Z € C,

E(1Z1gz120) =E W(Jlé‘l))mz‘z”}

)
S min(u(y) -y > x4
- B

< (U0 y =X

But, ¥(x) — oo as x — oo. O

1Z)1 {12120

Example: ¢(x) = x2. Says that if E|Z,|? < B for all n, then U.I. (we already
knew about convergence!)

More generally: if C C LP with p > 1, then itis U.1.



Conditions for Uniform Integrability

Lemma
If Z is in L' then there exists convex ¢ with ¢(x)/x — oo and E(¢(|Z])) < oo.

Proof.
Omit. 0

Lemma
IfC ={E(Z|G) : G C F} thenC is U.l

Proof.
Use the previous lemma: E¢(|Z|) < oo and also by Jensen’s inequality

Eo(|E(Z]9)]) < E(E(]Z])|9)) = Eé(|Z]) < oo.

This is enough for the U.l. by previous Lemma (using this specific ¢). O



Section 4.4: Martingales in Continuous Time

Definition
If the collection
{Ft:0 <t < o0}

of sub o-fields of F (so F; C F) satisfies
s<t = FsCFy,

then the collection is called a filtration.

Definition
If the process X; is such that X; is 7 measurable,

{w: Xi(w) < x} € F,

then we say that X; is adapted to the filtration {7:}.



Section 4.4: Martingales in Continuous Time

Definition
We say that X; is a martingale with respect to 7; if it is adapted to i,
E|X:| < co and

E[X:|Fs] = Xs for t > s,

and we say it is a submartingale if all assumptions hold with

E[X:|Fs] > Xs, fort>s.

We will be interested in continuous martingales: i.e. there exists Qo C Q such
that X; is continuous on Qq:

w € Qy = t— Xi(w) is continuous,

and P(Qp) = 1.



Section 4.4: Martingales in Continuous Time

Important filtration: the one associated to the Brownian motion, B;.
Natural choice: Ft = o(Bs: s < t).

It turns out that this is not the nicest choice, so we also include all the
probability zero events from [0, T] and also any subsets of these (null sets).
(This is denoted by N.)

Then Fo = o(N) and
F: = smallest o — algebra containing N and o(Bs : s < t).
we have the nice property that

Fi= () Fs=Fu  rightcontinuity property
{s:s>t}
These
1. Having all sets of measure zero in filtration
2. Right continuity
are called the "usual conditions”.



Section 4.4: Martingales in Continuous Time

Stopping times: Same definition.

Definition
If {F:} is afiltration, then 7 : @ — RU {oo} is a stopping time with respect to
{Fi} if

{w:7(w) <t} € F, forallt>0.

Also, as before, on the set {w : 7(w) < o}, we can define the stopped
variable X via

X () = Xo) ().



Section 4.4: Martingales in Continuous Time

Main Theorem of chapter:

Theorem (Doob’s Stopping time theorem:)

Assume that M; is continuous martingale with respect to F;. If  is a stopping
time wrt {F:}, then
XI = M‘r/\f

is also a continuous martingale with respect to { Fi}.

Proof: Note: continuity is inherited from continuity of M.

We need two things:
1. E|X;| < oo and
2. E(Xi|Fs) = Xsfors < t.

Idea: The proof is a bit harder than in the discrete case, but we can use the
discrete result as an ingredient. Approximate with discrete processes and
use previous results.



Section 4.4: Martingales in Continuous Time

Recall:
Xi = M‘r/\t

First show: E|X;| < oco.

Fix s < t (for now take s = 0). For any n > 1, define random time 7, to be
smallest element of

S(n):{s+(t—s)k%:0§k<oo}

such that
T < Th.

and takes oo if 7(w) = co.

We have that (i) 7(w) — 7(w) for all w (mesh size gets finer and finer) and
(ii) mn is a stopping time (you know when you hit it): for x € [u;, uiy1) (each in
S(n)
{m < x} ={min{u e S(n): 7 < u} < x}
:{TSU[}E.FU[C]'—X.



Section 4.4: Martingales in Continuous Time

We restrict {M, F} to the set S(n):
{Muy, Fu}s(n)-

Then we get a discrete martingale {My, Fu}s(n), and similarly |M,| is a
discrete time submartingale.

Since |M,| is a (discrete) submartingale on S(n), and t, 7, € S(n), we have
E|Minr,| < E|M| < co.
Letting n — oo and using Fatou we get for all t > 0
E|X:| = E|Mir-| < IinnlLQfEW’”"' < E|M| < oo,

which proves the integrability of X;.



Section 4.4: Martingales in Continuous Time
To prove the martingale identity, we again use the fact that M, is a discrete
martingale on S(n) to get
E(Mf/\Tn‘]:S) = MS/\Tn' (*)

where we used that s, t, 7, € S(n).

Now we need to show that as n — oo both sides converge to the right thing.

By the a.s. continuity of {M;} and 7, — T we have
> Minr, = Min- = X; and
> Msnry, = Mspr = Xs

almost surely.

But we need convergence
E(Miar,|Fs) = E(Miar|Fs),

which will follow if we prove that Mia -, is U.1.



Section 4.4: Martingales in Continuous Time
For this we use the trick introduced at the end of the U.l. section: there exists
a convex ¢ with ¢(x)/x — oo s.t. E¢(|My]) < oo (t is fixed!).

By the convexity of ¢ (Jensen) and E¢(|M:|) < oo we get that ¢(|My]) is a
discrete submartingale on S(n).

So by the discrete version of the stopping time thm (used for submartingales)

we get
E¢(|Minr,|) < Ep(|Mr]) < oo

1. By lemma from last class (Lemma 4.4): we have the U.I. property for
Min-,, which converges a.s. to Min-.
2. SoLemma 4.3 gives the L' convergence

1
E(Minry| Fs) 5 E(Minr | Fs)
and this is enough to prove the martingale identity.

> E(Minr, | Fs) = E(Miar|Fs) in L' and (if we look at the other side of the
equation (x)) we have
> ]E(MI/\TNI.Fs) — Ms/\-,- a.s.
which means E(M;-|Fs) = Msa, a.s. (exercise 4.2 c).



Section 4.4: Martingales in Continuous Time

Theorem (Maximal inequality in cont. time)
If M; is a cont. nonnegative submartingale and A > 0, p > 1 then

PP < sup M > >\> <EM?
{t0<t<T}

Also: if ||Mr|lp = EIM2| < oo, for p > 1, then

I sup_ Millp < =L |IMr],
{t0<t<T} P

Proof.
Restrictto S(n, T) = {t; : t; = tT/2",0 < i < 2"} and use the discrete results
with Fatou’s lemma. Basic idea:

sup M:; =~ sup M;
teS(n,T) 0<t<T

with equality in limit as n — oo. Specifically, we have (a.s.)

lim 1( sup M; > X) =1( sup M > })
n=o0  “tes(n,T) 0<t<T

Now apply Fatou with discrete result. O



Section 4.4: Martingales in Continuous Time
Theorem (Martingale convergence theorems in continuous time)
If
1. {M} is a continuous martingale,
2. p>1andE|M|P < B < o for all t,
then M — M, a.s and in L?

E|M; — Mx|P — 0, ast — oo,
and E|M-|P < B.

If{M;} is a cont martingale and E|M;| < B < oo for all t then My — M. a.s
andE|M| < B.

Proof: Use the discrete result to get that M, - M (n € {0,1,2,...}), then
we only need to show that the fluctuations (in non-integer parts) are small.

Note that for any integer m < t, we have
M — M| < |Mm — Ms| +  sup  |M; — M.

{t:m<t<oco}

First term is trivial as m — oo, it goes to zero with prob. 1. Need limit of
second term.



Section 4.4: Martingales in Continuous Time
Need
lim  sup |[Mi—Ms|=0

M=00 (tm<t<oo}

This can be done by the maximal inequality.

P( sup  |M;— Mn| > X) < APE(|My — Mn|P).
{t:m<t<n}

which implies (since M, — M. in LP),
P( sup  |Mi— Mpy| > ) <A PE(|Msx — Mp|®) — 0, as m — oo.
{t:m<t<oco}
DCT then tells us can pass limit on probability to conclude
P(lim  sup |M;— Mpn| > X)=0,

M=% ftm<t<oo}
giving us convergence:
P( lim sup  |M;— My =0)=1—-P(lim sup |Mi— Mn| > 0)

M=o ftm<t<oo} M=o ftm<t<oo}
oo
=1-P lim sup M; — Mn| >1/n
(H {m%oo {t:m<t<oco} | m| / })

=1.



Section 4.4: Martingales in Continuous Time

For LP convergence: for all integers m < t, we have

M = Mes|lp < [|M: — Minl|p + [|Mm — Mos|[p-

Since S; = |M; — M| is a submartingale, we have for t < n,
M — Minlp < [|Mn — Mnl|p,

yielding
M = Meslp < [|Mm — Mesllp + sUP [|Mn — Mp|lp.
{n:n>m}

Above is independent of t, so:

limsup |M: — Mo |lp < [|Mim — Mxsllp + Sup  ||Mn — M|, — 0, as m — .
t— o0 {n:n>m}



Section 4.4: Martingales in Continuous Time

L' proof:
» let 7, be the hitting time of level n by |M;|:

Tn = inf{t : |M¢| > n}.

v

The martingale M:, -, is bounded so it will converge by first part of
theorem.

v

In particular, for w for which 7,(w) = oo, and so
Mt(w) = MfATn(w)a

we have M; converges.

v

So we just have to prove that
U{Tn = oo}.
n=1

has probability one.

v

This can be proved with the maximal inequality (next slide).
Fatou’s lemma again gives bound E|M.| < liminf;_, . E|M:| < B.

v



Section 4.4: Martingales in Continuous Time
So we just have to prove that

U{Tn = oo}.

n=1

has probability one.

From Maximal:

>l m

P('sup [Mi| > A) < E(|Mr[)/X <
0<t<T
Implying (DCT on f(T) = 1(supg< < 7 M| > N)),

( sup |Mi| > A)
0<t<0

>/\UJ

Converting to 7, this is

P(th=00)=1—P( sup |[Mi|>n)>1—

0<t<o0

:.\ uy)

taking unions and using continuity of probability function (note:
{Tm = o0} C {Tm41 = o0}):
PUpti{w : mh = c0}) = P(mlim {Tm = o0}) = mlim P({mm = o0})

=1.



Section 4.5: Classic Brownian Motion martingales

We now have:
1. Brownian motion.

2. Notion of martingale in continuous time.
3. Stopping time theorem: M;. . is a Martingale if 7 is a stopping time.

4. Convergence theorems: martingales converge! “Given w,
M;(w) — Mo (w) in classical sense.”

We can start using this to compute things pertaining to Brownian motion.



Section 4.5: Classic Brownian Motion martingales

Lemma
Each of the following process is a continuous martingale with respect to the
standard Brownian filtration:

1. B,
2. B2 -t
3. exp(aB: — o?t/2), for a € R.

Proof: Continuity, adapted, integrability are immediate. Only really check
Martingale identity. For example, if s < t,

]E[B[‘fs] = ]E[B[ - Bs + lej:s] = E[B( - lej:s] + ]E[Bs‘fs] = Bs.

E[B; — t|Fs] = E[(Bi— Bs+ Bs)® — t|F]
= E[(Bt - Bs)2 U ZBS(BI - BS) + Bg - t‘]:S]
= (t—-s)+B—t

= B-—s.



Section 4.5: Classic Brownian Motion martingales

Finally, let
X; = exp(aB; — a’t/2).

B is N(0, 1), so

—a?t/2 * ax 1 _2
EXi=e e ——e dx =1,

—oo \/27Tt

and for s < t,

E[X;|Fs] Elexp(aB: — a’t/2)| Fs]
E[exp(a(B: — Bs) — o’(t — s)/2) exp(aBs — o”s/2)| Fs]
= XsE[exp(a(B; — Bs) — &®(t — 8)/2)]

= Xs.



Section 4.5: Classic Brownian Motion martingales

We have a similar theorem as in random walk.

Theorem
Let B: be a standard Brownian motion. If A, B > 0 and

T=min{t: Bt = —-B or B; = A},
then P(t < o0) =1 and

B

PB-=A)= 5

and E(7) = AB.
Proofs are similar. To prove finiteness, use geometric random variable
argument:

P( sup [Bpi1— By >A+B)=€e< 1

n<t<n+1
Events Ep = {SUP,<;<, 1 |Bn+1 — Bn} are independent, so

P(r>n+1)<(1-¢)" = P(r <o0)=1.
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Rest of proof is same too.

EB, = A- P(B, = A)

P(B, = —B
—A-P(B, = A) -

_B.
_B.

—~
—_

However,
1. Binr is @a martingale.

2. EBin, = 0 for all t.
3. |Bins| <A+ B.
So, by dominated convergence theorem,

EB; =E lim Bixnr = lim EBiar = 0.
t—oco t—oco

Solving yields
£

P(B-=A)= —.



Section 4.5: Classic Brownian Motion martingales

Consider hitting time of one-sided boundary:
Ta = inf{t: By = a}.
Will show P(7a2 < 00) = 1 and Er, = oo for all a.

Proof.
Suppose a > 0. Let b > 0 be arbitrary. Then,

b
P(1a < 00) > P(Brjar_, = @) = atb

b is arbitrary and right hand side — 1 as b — oo.

Next, and as before,

E7ra > EraAT_p = ab — oo, as b — co.



Section 4.5: Classic Brownian Motion martingales

Theorem
Let f € C3(R) (the bounded continuous functions with three bounded

continuous derivatives. If B is a standard Brownian motion with respect to
{F:}, then

f(Br) — (0 / ~f"(Bs)ds

is a {Ft}-martingale.
Notes:
1. This is a Riemannian integral (calculus) since B; is continuous.
2. Taking f(x) = x shows B is a martingale.
3. Taking f(x) = x® shows B? — t is a martingale.
4. Taking f(x) = x® shows

t
B -3 / Bsds,
0

is a martingale.



Section 4.5: Classic Brownian Motion martingales

Theorem
Let f € C3(R) (the bounded continuous functions with three bounded

continuous derivatives. If B; is a standard Brownian motion with respect to
{F t} , then

f(B:) — f(0 / =1"(Bs)ds
is a {Ft}-martingale.

Proof.
Let r < t. And consider

E[f(B:) — f(0) — (f(Br) — f(0))|F:] = E[f(Bt) — f(B)|F].



