Math 635: Chapter 4 Notes

David F. Anderson*

*anderson@math.wisc.edu

Department of Mathematics

University of Wisconsin - Madison

Spring Semester 2012

Section 4.2

Definition (Precise definition of conditional expectation)

Let

- ▶ X be a random variable with $\mathbb{E}|X| < \infty$ on $(\Omega, \mathcal{F}, \mathsf{P})$ and
- ▶ $\mathcal{G} \subset \mathcal{F}$ be a σ -field (think of it as "generated" by Z, i.e. $\mathcal{G} = \sigma(Z)$).

We say that Y is the conditional expectation of X wrt $\mathcal G$ if Y is $\mathcal G$ measurable and

$$\mathbb{E}(X1_A) = \mathbb{E}(Y1_A)$$
 for all $A \in \mathcal{G}$

Notation: $Y = \mathbb{E}(X|\mathcal{G})$.

Conditional Expectation: Properties

Properties of Conditional Expectations:

1.
$$\mathbb{E}(X + Y|\mathcal{G}) = \mathbb{E}(X|\mathcal{G}) + \mathbb{E}(Y|\mathcal{G})$$

Proof.

Must show that for $A \in \mathcal{G}$:

$$\mathbb{E}\left[\mathbb{E}[X+Y|\mathcal{G}]1(A)\right] = \mathbb{E}\left[\left(\mathbb{E}[X|\mathcal{G}] + \mathbb{E}[Y|\mathcal{G}]\right)1(A)\right].$$

Let $A \in \mathcal{G}$.

$$\begin{split} \mathbb{E}\left[\mathbb{E}[X+Y|\mathcal{G}]\mathbf{1}(A)\right] &= \mathbb{E}[(X+Y)\mathbf{1}(A)] \quad \text{(by definition of Cond. Exp.)} \\ &= \mathbb{E}[X\mathbf{1}(A)] + \mathbb{E}[Y\mathbf{1}(A)] \quad \text{(by linearity of usual expec.)} \\ &= \mathbb{E}[\mathbb{E}[X|\mathcal{G}]\mathbf{1}(A)] + \mathbb{E}[\mathbb{E}[Y|\mathcal{G}]\mathbf{1}(A)] \quad \text{(by def. of cond. Exp.)} \\ &= \mathbb{E}\left[\left(\mathbb{E}[X|\mathcal{G}] + \mathbb{E}[Y|\mathcal{G}]\right)\mathbf{1}(A)\right], \quad \text{(by linearity)} \end{split}$$

and done by uniqueness.

Conditional Expectation: Properties

1. (Tower property) if $\mathcal{H} \subset \mathcal{G}$ then

$$\mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{H}) = \mathbb{E}(\mathbb{E}(X|\mathcal{H})|\mathcal{G}) = \mathbb{E}(X|\mathcal{H})$$

Special case: if $\mathcal{H} = \{\emptyset, \Omega\}$ trivial, only scalars $(Z(\omega) = c, \forall \omega)$ are in \mathcal{H} . Why?

$$\{\omega: Z(\omega) \leq x\} \in \mathcal{H}$$

for all x, means each set is either all or nothing! Only scalars.

Then, requiring Y to satisfy

$$\mathbb{E}X1(A)=\mathbb{E}Y1(A),$$

reduces (since trivial if $A = \emptyset$) to taking $A = \Omega$, in which case we simply require,

$$\mathbb{E}X = \mathbb{E}Y = \mathbb{E}(\mathbb{E}[X|H]) = \mathbb{E}[X|H],$$

since only scalars are measurable. Hence, in this case, the tower property reduces to

$$\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}X.$$

Conditional Expectation: Properties

1. If X and XY are integrable (in L^1) and $Y \in \mathcal{G}$ then

$$\mathbb{E}(XY|\mathcal{G}) = Y\mathbb{E}(X|\mathcal{G})$$

2. Essentially all properties of expectations: i.e. $\mathbb{E}[aX|\mathcal{G}] = a\mathbb{E}[X|\mathcal{G}]$.

Group project: Prove the Tower Property: if $\mathcal{H} \subset \mathcal{G}$ then

$$\mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{H}) = \mathbb{E}(\mathbb{E}(X|\mathcal{H})|\mathcal{G}) = \mathbb{E}(X|\mathcal{H})$$

Note: important for proving that $M_{t \wedge \tau}$ is a martingale if τ is stopping time.

Definition

We say that a collection $\mathcal C$ of random variables is **uniformly integrable** if

$$ho(x) = \sup_{Z \in \mathcal{C}} \mathbb{E}(|Z| \mathbf{1}_{\{|Z| > x\}}), \qquad \text{satisfes } \rho(x) \to 0 \text{ as } x \to \infty.$$

Why? Recall that for integrable X (i.e. in L^1), we have

$$\mathbb{E}[|X|] = \mathbb{E}[|X|1_{\{|X| > x\}}] + \mathbb{E}[|X|1_{\{|X| \le x\}}],$$

with first term going to zero as $x \to \infty$.

Hence, for **each** $X_i \in L^1$, there is a ρ_i such that

$$\rho_i(x) = \mathbb{E}(|X_i| \mathbf{1}_{\{|X_i| > x\}}), \quad \text{satisfes } \rho_i(x) \to 0 \text{ as } x \to \infty.$$

Uniformly integrable says there is only one ρ for *all* the RVs in $\mathcal C$.

Lemma

If $C \subset L^1$ is finite then it is U.I.

Follows since for $Z \in \mathcal{C}$

$$\mathbb{E}(|Z|\mathbf{1}_{\{|Z|>x\}}) \leq \max_{Z_i \in \mathcal{C}} \mathbb{E}(|Z_i|\mathbf{1}_{\{|Z_i|>x\}}) = \max_i \rho_i(x) \stackrel{\text{def}}{=} \rho(x) \to 0, \quad \text{as } x \to \infty.$$

Lemma

If for $Z \in \mathcal{C}$ we have $|Z| \leq |X| \in L^1$ with a fixed X then \mathcal{C} is U.I.

Lemma (4.1 in book, Uniform integrability and L^1 convergence) If $Z_n \to Z$ a.s. and $\{Z_n\}$ is U.I. then $Z_n \to Z$ in L^1 .

Proof.

By Fatou $Z \in L^1$ and $E|Z| \le \rho(x - \epsilon) + x$ (for any x and $\epsilon > 0$) since

$$\mathbb{E}|Z| = \mathbb{E}|Z|\mathbf{1}_{\{|Z|>x\}} + \mathbb{E}|Z|\mathbf{1}_{\{|Z|\leq x\}} \le \mathbb{E}|Z|\mathbf{1}_{\{|Z|>x\}} + x$$

and

$$\begin{split} \mathbb{E}|Z|\mathbf{1}_{\{|Z|>x\}} &\leq \mathbb{E}\limsup_{n\to\infty}|Z_n|\mathbf{1}_{\{|Z_n|>x-\epsilon\}} \\ &\leq \liminf_{n\to\infty}\mathbb{E}|Z_n|\mathbf{1}_{\{|Z_n|>x-\epsilon\}} \\ &\leq \rho(x-\epsilon). \end{split}$$

Ш

Lemma (4.1 in book, Uniform integrability and L^1 convergence) If $Z_n \to Z$ a.s. and $\{Z_n\}$ is U.I. then $Z_n \to Z$ in L^1 .

Proof.

We write

$$\begin{aligned} |Z_n - Z| &= |Z_n - Z| \mathbf{1}_{\{|Z_n \le x\}} + |Z_n - Z| \mathbf{1}_{\{|Z_n > x\}} \\ &\le |Z_n - Z| \mathbf{1}_{\{|Z_n| \le x\}} + |Z| \mathbf{1}_{\{|Z_n| > x\}} + |Z_n| \mathbf{1}_{\{|Z_n| > x\}} \end{aligned}$$

Must show that each term converges to zero:

- 1. First term: Dominated Convergence Thm (DCT) with |Z| + x.
- 2. Second term: DCT with |Z| as the majorant: limit is $\rho(x)$.
- 3. Third term: at most $\rho(x)$.

So, we have that for any x

$$\lim_{n\to\infty}\mathbb{E}|Z_n-Z|\leq 0+\rho(x)+\rho(x).$$

By letting $x \to \infty$ we are done.

Lemma

Conditional expectation is a contraction:

$$\mathbb{E}|\mathbb{E}(Z|\mathcal{G})| \leq \mathbb{E}|Z|$$

Proof.

Easy: consider $Z = Z_+ - Z_-$. Then,

$$\begin{split} \mathbb{E}|\mathbb{E}[Z|\mathcal{G}]| &= \mathbb{E}|\mathbb{E}[Z_{+}|\mathcal{G}] - \mathbb{E}[Z_{-}|\mathcal{G}]| \\ &\leq \mathbb{E}|\mathbb{E}[Z_{+}|\mathcal{G}] + \mathbb{E}[Z_{-}|\mathcal{G}]| \\ &= \mathbb{E}[\mathbb{E}[|Z||\mathcal{G}]] \\ &= \mathbb{E}|Z|. \end{split}$$

Question: L^p , for $p \ge 1$, contraction?

Lemma

If $Z_n \to Z$ a.s. and Z_n is U.I. then $E(Z_n | \mathcal{G}) \to E(Z | \mathcal{G})$ in L^1 and in probability.

Proof.

Previous lemmas.

- 1. We first get $Z_n \to Z$ in L^1 by Lemma 1.
- 2. then by the previous lemma $\mathbb{E}(Z_n|\mathcal{G}) \to \mathbb{E}(Z|\mathcal{G})$ in L^1

$$\mathbb{E}\big|\mathbb{E}[Z_n|\mathcal{G}] - \mathbb{E}[Z|\mathcal{G}]\big| \leq \mathbb{E}[\mathbb{E}[|Z_n - Z||\mathcal{G}]] = \mathbb{E}|Z_n - Z| \to 0.$$

 L^1 convergence is stronger than convergence in prob, so done.

Conditions for Uniform Integrability

How to check for uniform integrability?

Lemma

If
$$\phi(x)/x \to \infty$$
 as $x \to \infty$ and $\mathbb{E}\phi(|Z|) \le B < \infty$ for $Z \in \mathcal{C}$, then \mathcal{C} is U.I.

Proof.

1. Let
$$\Psi(x) = \frac{\phi(x)}{x} \implies x = \phi(x)/\Psi(x)$$
.

2. For any $Z \in \mathcal{C}$,

$$\mathbb{E}(|Z|1_{\{|Z| \ge x\}}) = \mathbb{E}\left[\frac{\phi(|Z|)}{\Psi(|Z|)}1_{\{|Z| \ge x\}}\right]$$

$$\leq \frac{1}{\min\{\Psi(y) : y \ge x\}} \mathbb{E}[\phi(|Z|)1_{\{|Z| \ge x\}}]$$

$$\leq \frac{B}{\min\{\Psi(y) : y \ge x\}}$$

But, $\Psi(x) \to \infty$ as $x \to \infty$.

Example: $\phi(x) = x^2$. Says that if $\mathbb{E}|Z_n|^2 \le B$ for all n, then U.I. (we already knew about convergence!)

More generally: if $C \subset L^p$ with p > 1, then it is U.I.

Conditions for Uniform Integrability

Lemma

If Z is in L¹ then there exists convex ϕ with $\phi(x)/x \to \infty$ and $E(\phi(|Z|)) < \infty$.

Proof.

Omit.

Lemma

If $C = {\mathbb{E}(Z|\mathcal{G}) : \mathcal{G} \subset \mathcal{F}}$ then C is U.I.

Proof.

Use the previous lemma: $\mathbb{E}\phi(|Z|)<\infty$ and also by Jensen's inequality

$$\mathbb{E}\phi(|\mathbb{E}(Z|\mathcal{G})|) \leq \mathbb{E}(\mathbb{E}\phi(|Z|)|\mathcal{G})) = \mathbb{E}\phi(|Z|) \leq \infty.$$

This is enough for the U.I. by previous Lemma (using this specific ϕ).

Definition

If the collection

$$\{\mathcal{F}_t: 0 \leq t < \infty\}$$

of sub σ -fields of \mathcal{F} (so $\mathcal{F}_t \subset \mathcal{F}$) satisfies

$$s \le t \implies \mathcal{F}_s \subset \mathcal{F}_t$$

then the collection is called a filtration.

Definition

If the process X_t is such that X_t is \mathcal{F}_t measurable,

$$\{\omega: X_t(\omega) \leq x\} \in \mathcal{F}_t,$$

then we say that X_t is **adapted** to the filtration $\{\mathcal{F}_t\}$.

Definition

We say that X_t is a **martingale** with respect to \mathcal{F}_t if it is adapted to it, $\mathbb{E}|X_t| < \infty$ and

$$\mathbb{E}[X_t|\mathcal{F}_s] = X_s \text{ for } t > s,$$

and we say it is a submartingale if all assumptions hold with

$$\mathbb{E}[X_t|\mathcal{F}_s] \geq X_s, \quad \text{ for } t \geq s.$$

We will be interested in continuous martingales: i.e. there exists $\Omega_0 \subset \Omega$ such that X_t is continuous on Ω_0 :

$$\omega \in \Omega_0 \implies t \to X_t(\omega)$$
 is continuous,

and $P(\Omega_0) = 1$.

Important filtration: the one associated to the Brownian motion, B_t .

Natural choice: $\mathcal{F}_t = \sigma(B_s : s \leq t)$.

It turns out that this is not the nicest choice, so we also include all the probability zero events from [0,T] and also any subsets of these (null sets). (This is denoted by \mathcal{N} .)

Then
$$\mathcal{F}_0 = \sigma(\mathcal{N})$$
 and

$$\mathcal{F}_t = \text{smallest } \sigma - \text{algebra containing } \mathcal{N} \text{ and } \sigma(B_s : s \leq t).$$

we have the nice property that

$$\mathcal{F}_t = \bigcap_{\{s:s>t\}} \mathcal{F}_s = \mathcal{F}_{t+}$$
 right continuity property

These

- 1. Having all sets of measure zero in filtration
- 2. Right continuity

are called the "usual conditions".

Stopping times: Same definition.

Definition

If $\{\mathcal{F}_t\}$ is a filtration, then $\tau:\Omega\to\mathbb{R}\cup\{\infty\}$ is a **stopping time** with respect to $\{\mathcal{F}_t\}$ if

$$\{\omega: \tau(\omega) \le t\} \in \mathcal{F}_t, \text{ for all } t \ge 0.$$

Also, as before, on the set $\{\omega : \tau(\omega) < \infty\}$, we can define the **stopped variable** X_{τ} via

$$X_{\tau}(\omega) = X_{\tau(\omega)}(\omega).$$

Main Theorem of chapter:

Theorem (Doob's Stopping time theorem:)

Assume that M_t is continuous martingale with respect to \mathcal{F}_t . If τ is a stopping time wrt $\{\mathcal{F}_t\}$, then

$$X_t = M_{\tau \wedge t}$$

is also a continuous martingale with respect to $\{\mathcal{F}_t\}$.

Proof: Note: continuity is inherited from continuity of *M*.

We need two things:

- 1. $\mathbb{E}|X_t| < \infty$ and
- 2. $\mathbb{E}(X_t|\mathcal{F}_s) = X_s$ for $s \leq t$.

Idea: The proof is a bit harder than in the discrete case, but we can use the discrete result as an ingredient. Approximate with discrete processes and use previous results.

Recall:

$$X_t = M_{\tau \wedge t}$$

First show: $\mathbb{E}|X_t| < \infty$.

Fix s < t (for now take s = 0). For any $n \ge 1$, define random time τ_n to be smallest element of

$$S(n) = \left\{ s + (t-s)k\frac{1}{2^n} : 0 \le k < \infty \right\}$$

such that

$$\tau \leq \tau_n$$
.

and takes ∞ if $\tau(\omega) = \infty$.

We have that (i) $\tau_n(\omega) \to \tau(\omega)$ for all ω (mesh size gets finer and finer) and (ii) τ_n is a stopping time (you know when you hit it): for $x \in [u_i, u_{i+1})$ (each in S(n))

$$\{\tau_n \le x\} = \{\min\{u \in S(n) : \tau \le u\} \le x\}$$
$$= \{\tau \le u_i\} \in \mathcal{F}_{u_i} \subset \mathcal{F}_x.$$

We restrict $\{M, \mathcal{F}\}$ to the set S(n):

$$\{M_u, \mathcal{F}_u\}_{S(n)}$$
.

Then we get a discrete martingale $\{M_u, \mathcal{F}_u\}_{S(n)}$, and similarly $|M_u|$ is a discrete time submartingale.

Since $|M_u|$ is a (discrete) submartingale on S(n), and $t, \tau_n \in S(n)$, we have

$$\mathbb{E}|M_{t\wedge \tau_n}| \leq \mathbb{E}|M_t| < \infty.$$

Letting $n \to \infty$ and using Fatou we get for all $t \ge 0$

$$\mathbb{E}|X_t| = \mathbb{E}|M_{t \wedge \tau}| \leq \liminf_{n \to \infty} \mathbb{E}|M_{t \wedge \tau_n}| \leq \mathbb{E}|M_t| < \infty,$$

which proves the integrability of X_t .

To prove the martingale identity, we again use the fact that M_u is a discrete martingale on S(n) to get

$$\mathbb{E}(M_{t\wedge\tau_n}|\mathcal{F}_s)=M_{s\wedge\tau_n}.$$
 (*)

where we used that $s, t, \tau_n \in S(n)$.

Now we need to show that as $n \to \infty$ both sides converge to the right thing.

By the a.s. continuity of $\{M_t\}$ and $\tau_n \to \tau$ we have

- $ightharpoonup M_{t \wedge \tau_n} o M_{t \wedge \tau} = X_t \text{ and }$
- $\blacktriangleright \ \textit{M}_{\textit{S} \land \tau_{\textit{n}}} \rightarrow \textit{M}_{\textit{S} \land \tau} = \textit{X}_{\textit{S}}$

almost surely.

But we need convergence

$$\mathbb{E}(M_{t \wedge \tau_n} | \mathcal{F}_s) \to \mathbb{E}(M_{t \wedge \tau} | \mathcal{F}_s),$$

which will follow if we prove that $M_{t \wedge \tau_n}$ is U.I.

For this we use the trick introduced at the end of the U.I. section: there exists a convex ϕ with $\phi(x)/x \to \infty$ s.t. $\mathbb{E}\phi(|M_t|) < \infty$ (t is fixed!).

By the convexity of ϕ (Jensen) and $\mathbb{E}\phi(|M_t|) < \infty$ we get that $\phi(|M_u|)$ is a discrete submartingale on S(n).

So by the discrete version of the stopping time thm (used for submartingales) we get

$$\mathbb{E}\phi(|M_{t\wedge \tau_n}|) \leq \mathbb{E}\phi(|M_t|) < \infty$$

- 1. By lemma from last class (Lemma 4.4): we have the U.I. property for $M_{t \wedge \tau_n}$, which converges a.s. to $M_{t \wedge \tau}$.
- 2. SoLemma 4.3 gives the L^1 convergence

$$\mathbb{E}(M_{t\wedge\tau_n}|\mathcal{F}_s)\stackrel{L^1}{\to}\mathbb{E}(M_{t\wedge\tau}|\mathcal{F}_s)$$

and this is enough to prove the martingale identity.

- ▶ $\mathbb{E}(M_{t \wedge \tau_n} | \mathcal{F}_s) \to \mathbb{E}(M_{t \wedge \tau} | \mathcal{F}_s)$ in L^1 and (if we look at the other side of the equation (*)) we have
- $\mathbb{E}(M_{t \wedge \tau_n} | \mathcal{F}_s) \to M_{s \wedge \tau} \text{ a.s.}$

which means $\mathbb{E}(M_{t \wedge \tau} | \mathcal{F}_s) = M_{s \wedge \tau}$ a.s. (exercise 4.2 c).

Theorem (Maximal inequality in cont. time)

If M_t is a cont. nonnegative submartingale and $\lambda>0,\,p\geq 1$ then

$$\lambda^{\rho} P \left(\sup_{\{t: 0 \le t \le T\}} M_t > \lambda \right) \le \mathbb{E} M_T^{\rho}$$

Also: if $||M_T||_p = \mathbb{E}|M_T^p| < \infty$, for p > 1, then

$$||\sup_{\{t:0\leq t\leq T\}}M_t||_{\rho}\leq \frac{\rho}{\rho-1}||M_T||_{\rho}$$

Proof.

Restrict to $S(n, T) = \{t_i : t_i = tT/2^n, 0 \le i \le 2^n\}$ and use the discrete results with Fatou's lemma. Basic idea:

$$\sup_{t \in \mathcal{S}(n,T)} M_t \approx \sup_{0 \le t \le T} M_t$$

with equality in limit as $n \to \infty$. Specifically, we have (a.s.)

$$\lim_{n \to \infty} \mathbf{1}(\sup_{t \in S(n,T)} M_t > \lambda) = \mathbf{1}(\sup_{0 \le t \le T} M_t > \lambda)$$

Now apply Fatou with discrete result.

Theorem (Martingale convergence theorems in continuous time) If

- 1. $\{M_t\}$ is a continuous martingale,
- 2. p > 1 and $\mathbb{E}|M_t|^p \le B < \infty$ for all t,

then $M_t \to M_\infty$ a.s and in L^p

$$\mathbb{E}|M_t-M_{\infty}|^{\rho}\to 0, \ \textit{as}\ t\to \infty,$$

and $\mathbb{E}|M_{\infty}|^{p} \leq B$.

If $\{M_t\}$ is a cont martingale and $\mathbb{E}|M_t| \leq B < \infty$ for all t then $M_t \to M_\infty$ a.s and $\mathbb{E}|M_\infty| \leq B$.

Proof: Use the discrete result to get that $M_n \to M_\infty$ ($n \in \{0, 1, 2, ...\}$), then we only need to show that the fluctuations (in non-integer parts) are small.

Note that for any integer $m \le t$, we have

$$|\mathit{M}_t - \mathit{M}_{\infty}| \leq |\mathit{M}_m - \mathit{M}_{\infty}| + \sup_{\{t: m \leq t < \infty\}} |\mathit{M}_t - \mathit{M}_{\infty}|.$$

First term is trivial as $m \to \infty$, it goes to zero with prob. 1. Need limit of second term.

Need

$$\lim_{m\to\infty}\sup_{\{t:m\le t<\infty\}}|M_t-M_\infty|=0$$

This can be done by the maximal inequality.

$$P(\sup_{\{t:m < t < n\}} |M_t - M_m| > \lambda) \le \lambda^{-p} \mathbb{E}(|M_n - M_m|^p).$$

which implies (since $M_n \to M_\infty$ in L^p),

$$P(\sup_{\{t: m \leq t < \infty\}} |M_t - M_m| > \lambda) \leq \lambda^{-p} \mathbb{E}(|M_\infty - M_m|^p) \to 0, \text{ as } m \to \infty.$$

DCT then tells us can pass limit on probability to conclude

$$P(\lim_{m\to\infty}\sup_{\{t:m< t<\infty\}}|M_t-M_m|>\lambda)=0,$$

giving us convergence:

$$P(\lim_{m \to \infty} \sup_{\{t: m \le t < \infty\}} |M_t - M_m| = 0) = 1 - P(\lim_{m \to \infty} \sup_{\{t: m \le t < \infty\}} |M_t - M_m| > 0)$$

$$= 1 - P\left(\bigcup_{n=1}^{\infty} \left\{ \lim_{m \to \infty} \sup_{\{t: m \le t < \infty\}} |M_t - M_m| > 1/n \right\} \right)$$

$$= 1.$$

For L^{ρ} convergence: for all integers $m \leq t$, we have

$$||M_t - M_{\infty}||_p \le ||M_t - M_m||_p + ||M_m - M_{\infty}||_p.$$

Since $S_t = |M_t - M_m|$ is a submartingale, we have for t < n,

$$||M_t - M_m||_p \le ||M_n - M_m||_p$$

yielding

$$\| \textit{M}_t - \textit{M}_{\infty} \|_{\it p} \leq \| \textit{M}_m - \textit{M}_{\infty} \|_{\it p} + \sup_{\{n:n \geq m\}} \| \textit{M}_n - \textit{M}_m \|_{\it p}.$$

Above is independent of *t*, so:

$$\limsup_{t\to\infty}\|\textit{M}_t-\textit{M}_\infty\|_{\textit{p}}\leq \|\textit{M}_m-\textit{M}_\infty\|_{\textit{p}}+\sup_{\{n:n\geq m\}}\|\textit{M}_n-\textit{M}_m\|_{\textit{p}}\to 0, \text{ as } m\to\infty.$$

L^1 proof:

▶ let τ_n be the hitting time of level n by $|M_t|$:

$$\tau_n = \inf\{t : |M_t| \ge n\}.$$

- ▶ The martingale $M_{t \wedge \tau_n}$ is bounded so it will converge by first part of theorem.
- ▶ In particular, for ω for which $\tau_n(\omega) = \infty$, and so

$$M_t(\omega) = M_{t \wedge \tau_n}(\omega),$$

we have M_t converges.

So we just have to prove that

$$\bigcup_{n=1}^{\infty} \{ \tau_n = \infty \}.$$

has probability one.

- ▶ This can be proved with the maximal inequality (next slide).
- ▶ Fatou's lemma again gives bound $\mathbb{E}|M_{\infty}| \leq \liminf_{t \to \infty} \mathbb{E}|M_t| \leq B$.

So we just have to prove that

$$\bigcup_{n=1}^{\infty} \{ \tau_n = \infty \}.$$

has probability one.

From Maximal:

$$P(\sup_{0 \le t \le T} |M_t| \ge \lambda) \le \mathbb{E}(|M_T|)/\lambda \le \frac{B}{\lambda}.$$

Implying (DCT on $f(T) = 1(\sup_{0 \le t \le T} |M_t| \ge \lambda)$),

$$P\left(\sup_{0\leq t\leq\infty}|M_t|\geq\lambda\right)\leq\frac{B}{\lambda}.$$

Converting to τ_n this is

$$P(\tau_n = \infty) = 1 - P(\sup_{0 < t < \infty} |M_t| \ge n) \ge 1 - \frac{B}{n}.$$

taking unions and using continuity of probability function (note:

$$\{\tau_m = \infty\} \subset \{\tau_{m+1} = \infty\}$$
):

$$P\left(\bigcup_{n=1}^{\infty} \{\omega : \tau_n = \infty\}\right) = P\left(\lim_{m \to \infty} \{\tau_m = \infty\}\right) = \lim_{m \to \infty} P\left(\{\tau_m = \infty\}\right)$$

$$= 1$$

We now have:

- 1. Brownian motion.
- 2. Notion of martingale in continuous time.
- 3. Stopping time theorem: $M_{t \wedge \tau}$ is a Martingale if τ is a stopping time.
- 4. Convergence theorems: martingales converge! "Given ω , $M_t(\omega) \to M_\infty(\omega)$ in classical sense."

We can start using this to compute things pertaining to Brownian motion.

Lemma

Each of the following process is a continuous martingale with respect to the standard Brownian filtration:

- 1. *B*_t,
- 2. $B_t^2 t$,
- 3. $\exp(\alpha B_t \alpha^2 t/2)$, for $\alpha \in \mathbb{R}$.

Proof: Continuity, adapted, integrability are immediate. Only really check Martingale identity. For example, if s < t,

$$\mathbb{E}[B_t|\mathcal{F}_s] = \mathbb{E}[B_t - B_s + B_s|\mathcal{F}_s] = \mathbb{E}[B_t - B_s|\mathcal{F}_s] + \mathbb{E}[B_s|\mathcal{F}_s] = B_s.$$

$$\mathbb{E}[B_t^2 - t | \mathcal{F}_s] = \mathbb{E}[(B_t - B_s + B_s)^2 - t | \mathcal{F}_s]
= \mathbb{E}[(B_t - B_s)^2 + 2B_s(B_t - B_s) + B_s^2 - t | \mathcal{F}_s]
= (t - s) + B_s^2 - t
= B_s^2 - s.$$

Finally, let

$$X_t = \exp(\alpha B_t - \alpha^2 t/2).$$

 B_t is N(0, t), so

$$\mathbb{E}X_t = e^{-\alpha^2 t/2} \int_{-\infty}^{\infty} e^{\alpha x} \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}} dx = 1,$$

and for s < t,

$$\mathbb{E}[X_t|\mathcal{F}_s] = \mathbb{E}[\exp(\alpha B_t - \alpha^2 t/2)|\mathcal{F}_s]$$

$$= \mathbb{E}[\exp(\alpha (B_t - B_s) - \alpha^2 (t - s)/2) \exp(\alpha B_s - \alpha^2 s/2)|\mathcal{F}_s]$$

$$= X_s \mathbb{E}[\exp(\alpha (B_t - B_s) - \alpha^2 (t - s)/2)]$$

$$= X_s.$$

We have a similar theorem as in random walk.

Theorem

Let B_t be a standard Brownian motion. If A, B > 0 and

$$\tau = \min\{t : B_t = -B \text{ or } B_t = A\},\$$

then $P(\tau < \infty) = 1$ and

$$P(B_{\tau} = A) = \frac{B}{A + B}$$
 and $\mathbb{E}(\tau) = AB$.

Proofs are similar. To prove finiteness, use geometric random variable argument:

$$P(\sup_{n < t < n+1} |B_{n+1} - B_n| > A + B) = \epsilon < 1$$

Events $E_n = \{\sup_{n \le t \le n+1} |B_{n+1} - B_n\}$ are independent, so

$$P(\tau > n+1) \le (1-\epsilon)^n \implies P(\tau < \infty) = 1.$$

Rest of proof is same too.

$$\mathbb{E}B_{\tau} = A \cdot P(B_{\tau} = A) - B \cdot P(B_{\tau} = -B)$$

= $A \cdot P(B_{\tau} = A) - B \cdot (1 - P(\tau = A)).$

However,

- 1. $B_{t\wedge\tau}$ is a martingale.
- 2. $\mathbb{E}B_{t\wedge \tau}=0$ for all t.
- 3. $|B_{t \wedge \tau}| < A + B$.

So, by dominated convergence theorem,

$$\mathbb{E}B_{\tau} = \mathbb{E}\lim_{t\to\infty} B_{t\wedge\tau} = \lim_{t\to\infty} \mathbb{E}B_{t\wedge\tau} = 0.$$

Solving yields

$$P(B_{\tau}=A)=\frac{B}{A+B}.$$

Consider hitting time of one-sided boundary:

$$\tau_a=\inf\{t:B_t=a\}.$$

Will show $P(\tau_a < \infty) = 1$ and $\mathbb{E}\tau_a = \infty$ for all a.

Proof.

Suppose a > 0. Let b > 0 be arbitrary. Then,

$$P(\tau_a < \infty) \ge P(B_{\tau_a \wedge \tau_{-b}} = a) = \frac{b}{a+b}.$$

b is arbitrary and right hand side \rightarrow 1 as $b \rightarrow \infty$.

Next, and as before,

$$\mathbb{E}\tau_a \geq \mathbb{E}\tau_a \wedge \tau_{-b} = ab \to \infty$$
, as $b \to \infty$.

Theorem

Let $f \in C^3_b(\mathbb{R})$ (the bounded continuous functions with three bounded continuous derivatives. If B_t is a standard Brownian motion with respect to $\{F_t\}$, then

$$f(B_t) - f(0) - \int_0^t \frac{1}{2} f''(B_s) ds$$

is a $\{\mathcal{F}_t\}$ -martingale.

Notes:

- 1. This is a Riemannian integral (calculus) since B_t is continuous.
- 2. Taking f(x) = x shows B_t is a martingale.
- 3. Taking $f(x) = x^2$ shows $B_t^2 t$ is a martingale.
- 4. Taking $f(x) = x^3$ shows

$$B_t^3 - 3 \int_0^t B_s ds$$

is a martingale.

Theorem

Let $f \in C_b^3(\mathbb{R})$ (the bounded continuous functions with three bounded continuous derivatives. If B_t is a standard Brownian motion with respect to $\{F_t\}$, then

$$f(B_t) - f(0) - \int_0^t \frac{1}{2} f''(B_s) ds$$

is a $\{\mathcal{F}_t\}$ -martingale.

Proof.

Let r < t. And consider

$$\mathbb{E}[f(B_t) - f(0) - (f(B_r) - f(0))|\mathcal{F}_r] = \mathbb{E}[f(B_t) - f(B_r)|\mathcal{F}_r].$$