Math 635 – Spring 2012

Homework 3

Due: March 12, 2012, beginning of the class. Late homework will not be accepted.

1. (Exercise 4.1, a) (Tower property) Use the definition of conditional expectation to prove that if \mathcal{H} is a sub- σ field of \mathcal{G} then

$$\mathbb{E}(\mathbb{E}(X|\mathcal{G})|\mathcal{H}) = \mathbb{E}(X|\mathcal{H}).$$

- 2. (Exercise 4.2, a) Show that if $\mathbb{E}(|X_n X|^{\alpha}) \to 0$ for some $\alpha > 0$, then X_n converges to X in probability.
- 3. (Exercise 4.5) Suppose that τ is a stopping time for the filtration $\{\mathcal{F}_n\}$ and that there is a constant N such that for all $n \geq 0$ we have

$$P(\tau \le n + N \mid \mathcal{F}_n) \ge \epsilon > 0. \tag{1}$$

Informally, equation (1) tells us that - no matter what has happened so far - there is at least an ϵ chance that we will stop sometime in the next N steps.

Use induction and the trivial relation

$$P(\tau > kN) = P(\tau > kN \text{ and } \tau > (k-1)N)$$

to show that $P(\tau > kN) \le (1 - \epsilon)^k$. Conclude that we have $P(\tau < \infty) = 1$ and that $\mathbb{E}\tau^p < \infty$ for all $p \ge 1$.

Note: Here one should note that $P(A|\mathcal{F}_n)$ is interpreted as $\mathbb{E}(1_A|\mathcal{F}_n)$, and any honest calculation with $P(A|\mathcal{F}_n)$ must rest on the properties of conditional expectations.

4. Show that with probability one the standard BM is not strictly increasing on any interval. Hints: First show that it is enough to prove that $P(B_t \text{ is strictly increasing on } [a, b]) = 0$ for any $0 \le a < b$. Then use the fact that

 $P(B_t \text{ is strictly increasing on } [a, b]) \leq P(B_{t_1} < B_{t_2} < \dots B_{t_k}), \text{ if } a \leq t_1 < t_2 < \dots \leq b.$