## Math 635 – Spring 2012

## Homework 2

Due: Friday, February 24, 2012, beginning of the class. Late homework will not be accepted.

1. Exercise 2.4 in text, page 28. If  $\{M_n, \mathcal{F}_n\}$  is a martingale with

$$\mathbb{E}[M_n^2] < \infty \quad \text{ for all } n \ge 0,$$

show that we can write

$$M_n^2 = N_n + A_n,$$

where (1)  $\{N_n, \mathcal{F}_n\}$  is a martingale; (2)  $A_n$  is monotone (so,  $A_n \geq A_{n-1}$ ); and (3)  $A_n$  is nonanticipating (so  $A_n \in \mathcal{F}_{n-1}$ ). Those who want a hint might try defining the  $A_n$  by first taking  $A_0 = 0$  and then setting

$$A_{n+1} = A_n + \mathbb{E}\left[ (M_{n+1} - M_n)^2 \mid \mathcal{F}_n \right], \text{ for } n \ge 0.$$

(Why may we care about something like this? Note that it implies that if the increments,  $(M_{n+1}-M_n)^2$  are "small", then  $\mathbb{E}M_n^2$  is also small. This is an example of using local dynamics (one time increment) to prove something about the global dynamics.)

2. Recall Theorem 2.8, the  $L^1$  Bounded convergence theorem. Here we will demonstrate that we need not have  $X_n \to X_\infty$  in  $L^1$ .

Let  $X_1, X_2, \ldots$  be independent random variables with

$$P\left(X_{i} = \frac{3}{2}\right) = P\left(X_{i} = \frac{1}{2}\right) = \frac{1}{2}.$$

Let  $M_0 = 1$ , and for n > 0 let  $M_n = X_1 \cdots X_n$ .

- (a) Show that  $M_n$  is a martingale with respect to  $\mathcal{F}_n = \{X_1, \dots, X_n\}$  and that it satisfies all the hypothesis of Theorem 2.8.
- (b) By considering  $\ln M_n$ , us the law of large numbers to conclude that  $M_n \to 0$  a.s. as  $n \to \infty$ .
- (c) Conclude that  $||M_n M_{\infty}||_1$  does not converge to zero as  $n \to \infty$ .
- (d) Explain why this example does not contradict the  $L^2$  bounded convergence theorem.
- 3. For a > 0, let

$$X_t = \frac{1}{\sqrt{a}} B_{at},$$

where  $B_t$  is a Brownian motion. Show that  $X_t$  is a Brownian motion.

4. Let  $X_t$  and  $Y_t$  be independent standard Brownian motions. Show that

$$Z_t = \frac{1}{\sqrt{2}}(X_t - Y_t)$$

is also a standard Brownian motion.

- 5. (Exercise 3.1) Let  $U_t$  be a standard Brownian bridge (see page 41 for the definition).
  - (a) Show that we can write  $U_t = B_t tB_1$  for  $0 \le t \le 1$ .
  - (b) Show that  $Cov(U_s, U_t) = s(1-t)$  for  $0 \le s \le t \le 1$ .
  - (c) Let  $X_t = g(t)B_{h(t)}$ , and find functions g and h such that  $X_t$  has the same covariance as the Brownian bridge. ( $B_t$  is a standard BM.) Hint: narrow your search by taking g(t) = t and assume h is monotone decreasing.
  - (d) Show that  $Y_t = (1+t)U_{t/(1+t)}$  is a BM on  $[0, \infty)$ .