Notes on conditional expectations for Math 635 in Spring of 2012. David Anderson January 27, 2012

Recall that if X and Y are discrete random variables defined on the same probability space, then the conditional probability mass function of X given Y = y is

$$p_{X|Y}(x|y) = P\{X = x \mid Y = y\} = \frac{p(x,y)}{p_Y(y)}.$$

We therefore define the conditional expectation of X given Y = y for all y such that $p_Y(y) > 0$ to be

$$\mathbb{E}[X|Y=y] = \sum_{x \in \text{Range}(X)} xP\{X=x|Y=y\}$$
$$= \sum_{x} xp_{X|Y}(x|y).$$

We denote by $\mathbb{E}[X|Y]$ the function of the random variable Y whose value at Y=y is $\mathbb{E}[X|Y=y]$. Note that $\mathbb{E}[X|Y]$ is itself a random variable. Further, it is immediate that if X and Y are independent, then for any y

$$\mathbb{E}[X|Y=y] = \sum_{x \in \mathrm{Range}(X)} xP\{X=x|Y=y\} = \sum_{x \in \mathrm{Range}(X)} xP\{X=x\} = \mathbb{E}X.$$

Thus, if X and Y are independent, we have

$$\mathbb{E}[X|Y] = \mathbb{E}X.$$

The following is extremely important

Theorem 1.

$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|Y]].$$

Thus, we have

$$\mathbb{E}[X] = \sum_{y} \mathbb{E}[X|Y = y]P\{Y = y\}.$$

Proof.

$$\begin{split} \mathbb{E}[\mathbb{E}[X|Y]] &= \sum_y \mathbb{E}[X|Y=y]P\{Y=y\} \\ &= \sum_y \sum_x xP\{X=x|Y=y\}P\{Y=y\} \\ &= \sum_x x \sum_y P\{X=x,Y=y\} \\ &= \sum_x xP\{X=x\} \\ &= \mathbb{E}X. \end{split}$$

Let's also consider the fact that

$$\mathbb{E}[f(Y)X|Y] = f(Y)\mathbb{E}[X|Y].$$

This simply says that for all y in the range of Y,

$$\mathbb{E}[f(Y)X|Y = y] = f(y)\mathbb{E}[X|Y = y].$$

But this is immediate now:

$$\mathbb{E}[f(Y)X|Y=y] = \sum_{\tilde{y}} \sum_{x} f(\tilde{y})xP\{Y=\tilde{y}, X=x|Y=y\}$$
$$= \sum_{x} f(y)xP\{X=x|Y=y\}$$
$$= f(y)\mathbb{E}[X|Y=y].$$