Math 632 - Spring 2012

Homework 5

Due: Tuesday, November 6th.

- 1. Exercise 2.26.
- 2. Exercise 2.28.
- 3. Exercise 2.38.
- 4. Exercise 2.44.
- 5. Exercise 2.47
- 6. Exercise 2.58.
- 7. Exercise 3.1.
- 8. Exercise 3.6.
- 9. Exercise 3.16. In order to see the benefit of this new strategy, begin by computing the long run cost per unit time if no replacement is made.
- 10. For a homogeneous Poisson process $\{N(t), t \geq 0\}$ of rate 1, we know from renewal theory that

$$\lim_{t \to \infty} \frac{1}{t} N(t) = 1.$$

If N' is a non-homogeneous Poisson process with intensity

$$\lambda(t) = \frac{1}{1+t},$$

what is the asymptotic form of N'(t)? That is, find a function $\gamma(t)$ such that

$$\lim_{t \to \infty} \frac{1}{\gamma(t)} N'(t)$$

exists and is finite. Hint: How can we represent a non-homogeneous Poisson process with intensity $\lambda(t)$?