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Review of Probability

Probability theory is used to model experiments whose outcome can not be
predicted with certainty beforehand.

For any such experiment, there is a triple (Ω,F ,P), called a probability
space, where

I Ω is the sample space,

I F is a collection of events,

I P is a probability measure.

We will consider each in turn.



The sample space Ω

The sample space of an experiment is the set of all possible outcomes.

Elements of Ω are called sample points and are often denoted by ω. Subsets
of Ω are referred to as events.

Example
Consider the experiment of rolling a six-sided die. Then the natural sample
space is Ω = {1, 2, 3, 4, 5, 6}. �

Example
Consider the experiment of tossing a coin three times. Let us write 1 for
heads and 0 for tails. Then the sample space consists of all sequences of
length three consisting only of zeros and ones. Each of the following
representations is valid:

Ω = {0, 1}3

= {0, 1} × {0, 1} × {0, 1}
= {(x1, x2, x3) : xi ∈ {0, 1} for i = 1, 2, 3}
= {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.



The sample space Ω

Example
Roll two die. There are

62 = 36

possible outcomes. The sample space could be

Ω = {(m, n) : 1 ≤ m, n ≤ 6}.

The event that the “sum is 9” is then

B = {(3, 6), (4, 5), (5, 4), (6, 3)}.

Example
Consider the experiment of waiting for a bacteria to divide. In this case, it is
natural to take as our sample space all values greater than or equal to zero.
That is,

Ω = {t : t ≥ 0},

where the units of t are specified as hours, for example. �



The sample space Ω

Terminology: A set that is finite or countably infinite is called discrete.



The collection of events F

I Events are simply subsets of the state space Ω.

I They are often denoted by A,B,C, etc., and they are usually the objects
we wish to know the probability of.

I They can be described in words, or using mathematical notation.

Example 1, continued. Let A be the event that a 2 or a 4 is rolled. That is,
A = {2, 4}. �

Example 2, continued. Let A be the event that the final two tosses of the
coin are tails. Thus,

A = {(1, 0, 0), (0, 0, 0)}.

�



The collection of events F

Example 4, continued. Let A be the event that it took longer than 2 hours for
the bacteria to divide. Then,

A = {t : t > 2}.

�

We will often have need to consider the unions and intersections of events.

1. We write
A ∪ B

for the union of A and B, and

2. either
A ∩ B

or
AB

for the intersection.



The collection of events F

For discrete sample spaces, F will contain all subsets of Ω, and will play very
little role. This is the case for nearly all of the models in this course.

When the state space is more complicated, F is assumed to be a σ-field (or
σ-algebra). That is, it satisfies the following three axioms:

1. Ω ∈ F .

2. If A ∈ F , then Ac ∈ F , where Ac is the complement of A.

3. If A1,A2, . . . ,∈ F , then
∞⋃
i=1

Ai ∈ F .

By DeMorgan’s law, we also get intersections:

⋂
i

Ai =

(⋃
i

Ac
i

)c

∈ F .



The probability measure P

Definition
The real valued function P, with domain F , is a probability measure if it
satisfies the following three axioms

1. P(Ω) = 1.

2. If A ∈ F , then P(A) ≥ 0.

3. If for a sequence of events A1,A2, . . . ,, we have that Ai ∩ Aj = ∅ for all
i 6= j (i.e. the sets are mutually exclusive or disjoint) then

P
( ∞⋃

i=1

Ai

)
=
∞∑
i=1

P(Ai ).



The probability measure P

The following is a listing of some of the basic properties of any probability
measure.

Lemma
Let P(·) be a probability measure. Then

1. If A1, . . . ,An is a finite sequence of mutually exclusive events, then

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai ).

2. P(Ac) = 1− P(A).

3. P(∅) = 0.

4. If A ⊂ B, then P(A) ≤ P(B).

5. P(A ∪ B) = P(A) + P(B)− P(AB).



Conditional probability and independence

Suppose we are interested in the probability that some event A took place,
though we have some extra information in that we know some other event B
took place.

For example, suppose

1. that we want to know the probability that a fair die rolled a 4

2. given that we know an even number came up.

Most people would answer this as 1/3, as there are three possibilities for an
even number, {2, 4, 6}, and as the die was fair, each of the options should be
equally probable. The following definition generalizes this intuition.

Definition
For two events A,B ⊂ Ω, the conditional probability of A given B is

P(A|B) =
P(AB)

P(B)
.

provided that P(B) > 0.



Conditional probability and independence

Example
The probability that it takes a bacteria over 2 hours to divide is 0.64, and the
probability it takes over three hours is 0.51. What is the probability that it will
take over three hours to divide, given that two hours have already passed?

Solution: Let

1. A be the event that the bacteria takes over three hours to split and

2. B be the event that it takes over two hours to split.

Then, because A ⊂ B,

P(A|B) =
P(AB)

P(B)
=

P(A)

P(B)
=
.51
.6

= .85.

�



Independence

We intuitively think of A being independent from B if

P(A|B) = P(A), and P(B|A) = P(B).

More generally, we have the following definition.

Definition
The events A,B ∈ F are called independent if

P(AB) = P(A)P(B).

It is straightforward to check that the definition of independence implies both

P(A|B) = P(A), and P(B|A) = P(B).



Independence

By definition

P(A|B) =
P(AB)

P(B)
, and P(B|A) =

P(AB)

P(A)
.

Rearranging terms yields

P(AB) = P(A|B)P(B), and P(AB) = P(B|A)P(A).

We also have:
P(AB | C) = P(A | BC)P(B | C).



Random variables

Definition
A random variable X is a real-valued (measurable) function defined on the
sample space Ω. That is, X : Ω→ R.

I If the range of X is finite or countably infinite, then X is said to be a
discrete random variable.

I Otherwise X is said to be a continuous random variable.



Random variables

Example
Suppose we roll two die and take Ω = {(i , j) | i , j ∈ {1, . . . , 6}}. We let

X (i , j) = i + j

be the discrete random variable giving the sum of the rolls. The range is
{2, . . . , 12}. �

Example
Consider two bacteria, labeled 1 and 2. Let T1 and T2 denote the times they
will divide to give birth to daughter cells, respectively. Then,
Ω = {(T1,T2) | T1,T2 ≥ 0}. Let X be the continuous random variable giving
the time of the first division: X (T1,T2) = min{T1,T2}. The range of X is
t ∈ R≥0. �



Random variables

Definition
If X is a random variable, then the function FX , or simply F , defined on
(−∞,∞) by

FX (t) = P{X ≤ t}

is called the distribution function, or cumulative distribution function, of X .

Theorem (Properties of the distribution function)
Let X be a random variable defined on some probability space (Ω,F ,P), with
distribution function F . Then,

1. F is nondecreasing. Thus, if s ≤ t , then
F (s) = P{X ≤ s} ≤ P{X ≤ t} = F (t).

2. limt→∞ F (t) = 1.

3. limt→−∞ F (t) = 0.

4. F is right continuous. So, limh→0+ F (t + h) = F (t) for all t ∈ R.



Random variables

Definition
Let X be a discrete random variable. Then for x ∈ R, the function

pX (k) = P{X = k}

is called the probability mass function of X .

By the axioms of probability, a probability mass function pX satisfies

P{X ∈ A} =
∑
k∈A

pX (k).



Random variables

Definition
Let X be a continuous random variable with distribution function
F (t) = P{X ≤ t}. Suppose that there exists a nonnegative, integrable
function f : R→ [0,∞), or sometimes fX , such that

F (x) = P{X ∈ (−∞, x ]} =

∫ x

−∞
f (y)dy .

Then the function f is called the probability density function of X .

We now have that for any A ⊂ R (or, more precisely, for any A in “Borel sets”
of R, but we are going to ignore this point),

P{X ∈ A} =

∫
A

fX (x)dx .



Expectations of random variables

Let X be a random variable. Then, the expected value of X is

E[X ] =
∑

x∈R(X)

x · P{X = x}

in the case of discrete X , and

E[X ] =

∫ ∞
−∞

x · fX (x)dx ,

in the case of continuous X .

The expected value of a random variable is also called its mean or
expectation and is often denoted µ or µX .



Expectations of random variables

Example
Consider a random variable taking values in {1, . . . , n} with

P{X = i} =
1
n
, i ∈ {1, . . . , n}.

We say that X is distributed uniformly over {1, . . . , n}. What is the
expectation?

Solution. We have

E[X ] =
n∑

k=1

kP{X = k} =
n∑

ik=1

k
1
n

=
1
n

n(n + 1)

2
=

n + 1
2

.

�



Expectations of random variables

Example
Suppose that X is exponentially distributed with density function

f (x) =

{
λe−λx , x ≥ 0

0 , else
,

where λ > 0 is a constant. In this case,

EX =

∫ ∞
0

xλe−λx dx =
1
λ
. (1)

�



Expectations of random variables

Theorem
Let X be a random variable and let g : R→ R be a function. Then,

E[g(X )] =
∑

x∈R(X)

g(x)pX (x),

in the case of discrete X, and

E[g(X )] =

∫ ∞
∞

g(x)fX (x)dx ,

in the case of continuous X.

An important property of expectations is that for any random variable X , real
numbers α1, . . . , αn, and functions g1, . . . , gn : R→ R,

E[α1g1(X ) + · · ·+ αngn(X )] = α1E[g1(X )] + · · ·+ αnE[gn(X )].



Variance of a random variable

The variance gives a measure on the “spread” of a random variable around
its mean.

Definition
Let µ denote the mean of a random variable X . The variance and standard
deviation of X are

Var(X ) = E[(X − E[X ])2]

σX =
√

Var(X ),

respectively.

Also,

Var(X ) = E[X 2]− (E[X ])2.



Some common discrete random variables

Bernoulli random variables: X is a Bernoulli random variable with
parameter p ∈ (0, 1) if

P{X = 1} = p,

P{X = 0} = 1− p.

For a Bernoulli random variable with a parameter of p,

E[X ] = p and Var(X ) = p(1− p).

For any event A ∈ F , we define the indicator function 1A, or IA, to be equal to
one if A occurs, and zero otherwise. That is,

1A(ω) =

{
1, if ω ∈ A
0, if ω /∈ A .

1A is a Bernoulli random variable with parameter P(A).



Some common discrete random variables

Binomial random variables: Consider n independent repeated trials of a
Bernoulli random variable. Let X be the number of “successes” (i.e. 1’s) in
the n trials.

The range of X is {0, 1, . . . , n} and the probability mass function is

P{X = k} =

{ (n
k

)
pk (1− p)n−k , if k ∈ {0, 1, . . . , n}

0 , else
.

For a binomial random variable with parameters n and p,

E[X ] = np and Var(X ) = np(1− p).



Some common discrete random variables

Poisson random variables: A random variable with range {0, 1, 2, . . . } is a
Poisson random variable with parameter λ > 0 if

P{X = k} =

 e−λ λ
k

k! , k = 0, 1, 2, . . .

0 , else
.

For a Poisson random variable with a parameter of λ,

E[X ] = λ and Var(X ) = λ.

Later we will see the Poisson process, which will be an essential tool in this
class.



Some common continuous random variables

Uniform random variables. Consider an interval (a, b), where we will often
have a = 0 and b = 1. The random variable is said to be uniformly distributed
over (a, b) if

F (t) =


0 t < 1

(t − a)/(b − a) a ≤ t < b

1 t ≥ b

,

f (t) = F ′(t) =


1

b−a a < t < b

0 else
.

For a uniform random variable over the interval (a, b),

E[X ] =
a + b

2
and Var(X ) =

(b − a)2

12
.



Some common continuous random variables

Normal random variables. Also called Gaussian random variables,

1. play a central role in the theory of probability due to their connection to
the central limit theorem and Brownian motions.

A random variable X is called a normal with mean µ and variance σ2, and we
write X ∼ N(µ, σ2), if its density is

f (x) =
1√

2πσ2
exp

{
− (x − µ)2

2σ2

}
, x ∈ R.

A standard normal random variable is a normal random variable with µ = 0
and σ = 1. For a normal random variable with parameters µ and σ2,

E[X ] = µ and Var(X ) = σ2.



Some common continuous random variables

Exponential random variables. Many simulation methods will consists of
generating a sequence of correctly chosen exponential random variables.

A random variable X has an exponential distribution with parameter λ > 0 if it
has a probability density function

f (x) =

 λe−λx , x ≥ 0

0 , else
.

For an exponential random variable with a parameter of λ > 0,

E[X ] =
1
λ

and Var(X ) =
1
λ2 .



Transformations of random variables

Theorem
Let U be uniformly distributed on the interval (0, 1). Suppose that pk ≥ 0 for
each k ∈ {0, 1, . . . , }, and that

∑
k pk = 1. Define

qk = P{X ≤ k} =
k∑

i=0

pi .

Let
X = min{k | qk ≥ U}.

Then,
P{X = k} = pk .



More than one random variable

To discuss more than one random variable defined on the same probability
space (Ω,F ,P), we need joint distributions.

Definition
Let X1, . . . ,Xn be discrete random variables with domain Ω. Then

pX1,...,Xn (x1, . . . , xn) = P{X1 = x1, . . . ,Xn = xn}

is called the joint probability mass function of X1, . . . ,Xn.

Definition
We say that X1, . . . ,Xn are jointly continuous if there exists a function
f (x1, . . . , xn), defined for all reals, such that for all A ⊂ Rn

P{(X1, . . . ,Xn) ∈ A} =

∫
· · ·
∫
(x1,...,xn∈A)

f (x1, . . . , xn)dx1 . . . dxn.

The function f (x1, . . . , xn) is called the join probability density function.



More than one random variable

Expectations are found in the obvious way.

Theorem
If h : Rn → R then

E[h(X1, . . . ,Xn)] =
∑

x1∈R(X1)

· · ·
∑

xn∈R(Xn)

h(x1, . . . , xn)pX1,...,XN (x1, . . . , xn).

Corollary
For random variables X and Y on the same probability space

E(X + Y ) = E(X ) + E(Y ).



More than one random variable

Definition
The random variables X and Y are independent if for any sets of real
numbers A and B

P{X ∈ A,Y ∈ B} = P{X ∈ A}P{Y ∈ B}.

This implies that X and Y are independent if and only if

p(x , y) = pX (x)pY (y)

f (x , y) = fX (x)fY (y),

for discrete and continuous random variables, respectively.



More than one random variable

Theorem
Let X and Y be independent random variables. Then for all real valued
functions g and h,

E[g(X )h(Y )] = E[g(X )]E[h(Y )].

One important application of the above theorem is the relation

E[XY ] = E[X ]E[Y ]

if X and Y are independent.

More generally, if X1,X2, . . . ,Xn are independent random variables, then

E[X1 · · ·Xn] = E[X1] · · ·E[Xn].



Variance of linear combinations.

Suppose that
X = X1 + X2 + · · ·+ Xn.

We already know that for any Xi defined on the same probability space

E[X ] =
n∑

i=1

E[Xi ].

For the variance of a linear combination, a direct calculation shows that for
ai ∈ R,

Var

(
n∑

i=1

aiXi

)
=

n∑
i=1

a2
i Var(Xi ) + 2

∑∑
i<j

aiajCov(Xi ,Xj ),

Therefore, if the Xi are pairwise independent,

Var

(
n∑

i=1

aiXi

)
=

n∑
i=1

a2
i Var(Xi ).



Variance of linear combinations.

Example
Let X be a binomial random variable with parameters n and p. Since X is the
number of successes in n independent trials, we can write

X = X1 + · · ·+ Xn,

where Xi is 1 if ith trial was success, and zero otherwise.

Since the Xi ’s are independent Bernoulli random variables and
E[Xi ] = P{Xi = 1} = p:

E[X ] =
n∑

i=1

E[Xi ] =
n∑

i=1

p = np.

Because each of the Xi ’s are independent

Var(X ) =
n∑

i=1

Var(Xi ) =
n∑

i=1

p(1− p) = np(1− p).

�



Variance of linear combinations.

Proposition
Let X1, . . . ,Xn be n independent random variables with mean µ and variance
σ2. Let X̄ = (1/n)(X1 + · · ·Xn) be the average of the sample. Then

E(X̄ ) = µ, Var(X̄ ) =
σ2

n
.

Proof.
Calculating shows

E[X̄ ] = E
(

X1 + · · ·+ Xn

n

)
=

1
n

nµ = µ

Var(X̄ ) = Var
(

1
n

(X1 + · · ·+ Xn)

)
=

1
n2 nσ2 =

σ2

n
.



Weak Law of Large Numbers

Let X1,X2,X3, . . . be a sequence of independent and identically distributed
random variables with µ = E[Xi ] and σ2 = Var(Xi ) <∞, i = 1, 2, . . . . Then
for all ε > 0

lim
n→∞

P
{∣∣∣∣X1 + · · ·+ Xn

n
− µ

∣∣∣∣ > ε

}
= 0.



Strong law of large numbers

Let X1,X2,X3, . . . be a sequence of independent and identically distributed
random variables with mean µ. then

P
{

lim
n→∞

X1 + · · ·+ Xn

n
= µ

}
= 1.

So
X̄ = (X1 + · · ·Xn)/n

converges to µ almost surely, or with a probability of one.



Central limit theorem

Let X1,X2, . . . be a sequence of independent and identically distributed
random variables, each with expectation µ and variance σ2. Then the
distribution of

Zn =
X1 + · · ·+ Xn − nµ

σ
√

n

converges to the distribution of a standard normal random variable. That is,
for any t ∈ (−∞,∞)

lim
n→∞

P{Zn ≤ t} = lim
n→∞

P
{

X1 + · · ·+ Xn − nµ
σ
√

n
≤ t
}

=
1√
2π

∫ t

−∞
e−x2/2dx .



Stochastic versus deterministic models

Before proceeding too far, it is important to understand the basic terms
“stochastic” and “deterministic.”

A process is deterministic if its future is completely determined by its present
and past. Examples of deterministic processes include solutions to
differential and difference equations.

Example
The initial value problem

ẋ(t) = 3x(t) x(0) = 2,

has the solution x(t) = 2e3t . �

Example
Consider the difference equation

F1 = F2 = 1

Fn = Fn−1 + Fn−2, for n > 2.

Then {Fn}∞n=1 is the well known Fibonacci sequence: {1, 1, 2, 3, 5, 8, . . . }. �



Stochastic versus deterministic models

On the other hand, a stochastic process is a random process evolving in time.

Informally, this means that even if you have full knowledge of the state of the
system (and it’s entire past), you can not be sure of it’s value at future times.

More formally, a stochastic process is a collection of random variables, X (t)
or Xt , indexed by time.

Example
Consider rolling a fair, six-sided die many times, and for k ∈ {1, 2, . . . }, let Zk

be the outcome of the k th roll. Let s

Xn =
n∑

k=1

Zk .

• Thus, Xn is the accumulated total of the first n rolls.

• Knowing X1 = 3 only tells you that X2 ∈ {4, . . . , 9}, with equal probability.

• Note that time, indexed here by n, is discrete in that we only update the
system after each roll of the die. �



Stochastic versus deterministic models

Example
Consider a frog sitting in a pond with k lily pads, labeled 1 through k .

1. The frog starts the day by sitting on a randomly chosen pad (for
example, they could be chosen with equal probability).

2. However, after a random amount of time, the frog will jump to another
pad, also randomly chosen.

3. Letting t = 0 denote the start of the day, we let X (t) ∈ {1, . . . , k} denote
the lily pad occupied by the frog at time t . In this example, time is
naturally continuous.

However, if we are only interested in which lily pad the frog is on after a given
number of jumps,

1. then we may let Zn denote the lily pad occupied by the frog after the nth
jump,

2. with Z0 defined to be the starting lily pad.

3. The process Zn is discrete in time.

4. The processes Zn and X (t) are clearly related, and Zn is usually called
the embedded discrete process associated with X (t).



Example: Bacterial Growth

Let’s consider two oversimplified models for bacterial growth (by growth here,
I mean the growth of the size of the colony, not of an individual bacterium):

I one deterministic

I one stochastic.

We suppose
I there are 10 bacteria at time zero.
I each bacteria divides at an “average” rate of once per three hours.

Deterministic model: a “reasonable” model would be

d
dt

x(t) =
1
3

x(t) x(0) = 10, (2)

with solution
x(t) = 10et/3,

where the units of t are hours.



Example: Bacterial Growth

Stochastic Model: Without going into the finer details, assume

1. Each bacteria divides after a random (independent, exponential) amount
of time with an average wait of 3 hours.

Similar to equation (2) for the deterministic model, it is possible to write down
systems of equations describing the time evolution of model

1. Evolution of individual sample paths – instance of experiment (like the
ODE model)

2. Evolution of the distribution (probability of being in certain states)



Example: Bacterial Growth - evolution of sample paths

I Below is a plot of the solution of the deterministic system versus three
different realizations of the stochastic system.
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I Stochastic realizations/experiments appear to follow the deterministic
system in a “noisy” way.

I It is clear that the behavior of a single realization or experiment of the
stochastic system can not be predicted with absolute accuracy.



Example: population growth - evolution of distribution
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Example: Bacterial Growth and Death

Now suppose that we change the model “slightly” in that:

1. we allow bacteria to die as well as divide.

2. we suppose we begin with only two bacteria.

We suppose that they die after about five hours.

Our new deterministic model could be

ẋ(t) =
1
3

x(t)− 1
5

x(t) =
2

15
x(t), x(0) = 2,

with solution
x(t) = 2e2t/15.



Example: Bacterial Growth and Death

For the stochastic model, we now model the two possible changes to the size
of the colony separately. That is, the next event is either

1. a growth event (via a division) or

2. a decrease event (via a death).



Example: Bacterial Growth and Death

I Deterministic vs. three realizations/experiments of stochastic system.
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I The models now behave qualitatively differently:

one of the realizations of the stochastic model (i.e. one of the colonies
under observation) has been completely wiped out, something not
possible in the deterministic modeling context .



Example: Lotka-Volterra
Think of A as a prey and B as a predator.

A
κ1→ 2A, A + B

κ2→ 2B, B
κ3→ ∅,

with A(0) = B(0) = 1000 and κ1 = 2, κ2 = .002, κ3 = 2.
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Stochastic model
ODE model

Behavior is qualitatively different:
1. Deterministic always periodic

while stochastic oscillates in
random way.

2. Predator and/or prey will end up
extinct in stochastic model.
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Some questions

We start to see some of the different types of questions that become
interesting in the stochastic context as opposed to the deterministic:

1. For a given birth and death rate in bacteria example, what is the
probability that the colony will eventually die out?

2. For models in which extinction is eventually guaranteed: what is the
expected amount of time before extinction?

3. If we know a stochastic processes Xt neither dies out, nor goes to infinity,
and if a < b are real numbers, then what is the probability that the value
of the process is between a and b for very large t? That is, what is

lim
t→∞

Prob{a ≤ Xt ≤ b}?

4. How did I make those plots?
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