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Review of Proability

Probability theory is used to model experiments (defined loosely)
whose outcome can not be predicted with certainty beforehand.

For any such experiment, there is a triple (Ω,F ,P), called a
probability space, where

I Ω is the sample space,

I F is a collection of events,

I P is a probability measure.

We will consider each in turn.



The sample space Ω
The sample space of an experiment is the set of all possible
outcomes.

Elements of Ω are called sample points and are often denoted by ω.
Subsets of Ω are referred to as events.

Example
Consider the experiment of rolling a six-sided die. Then the natural
sample space is Ω = {1,2,3,4,5,6}. �

Example
Consider the experiment of tossing a coin three times. Let us write 1
for heads and 0 for tails. Then the sample space consists of all
sequences of length three consisting only of zeros and ones. Each of
the following representations is valid:

Ω = {0,1}3

= {0,1} × {0,1} × {0,1}
= {(x1, x2, x3) : xi ∈ {0,1} for i = 1,2,3}
= {(0,0,0), (0,0,1), (0,1,0), (1,0,0), (0,1,1), (1,0,1), (1,1,0), (1,1,1)}.



The sample space Ω

Example
Consider the experiment of counting the number of mRNA molecules
transcribed by a given gene in some interval of time. Here it is most
natural to let

Ω = {0,1,2, . . . }.

�

Example
Consider the experiment of waiting for a bacteria to divide. In this
case, it is natural to take as our sample space all values greater than
or equal to zero. That is,

Ω = {t : t ≥ 0},

where the units of t are specified as hours, for example. �



The sample space Ω

Terminology: A set that is finite or countably infinite is called discrete.

Most, though not all, of the sample spaces encountered in this course
will be discrete.



The collection of events F
I Events are simply subsets of the state space Ω.

I They are often denoted by A,B,C, etc., and they are usually the
objects we wish to know the probability of.

I They can be described in words, or using mathematical notation.

Example 1, continued. Let A be the event that a 2 or a 4 is rolled.
That is, A = {2,4}. �

Example 2, continued. Let A be the event that the final two tosses of
the coin are tails. Thus,

A = {(1,0,0), (0,0,0)}.

�

Example 3, continued. Let A be the event that no more than 10
mRNA molecules have appeared. Thus,

A = {0,1,2, . . . ,10}.

�



The collection of events F

For discrete sample spaces, F will contain all subsets of Ω, and will
play very little role. This is the case for nearly all of the models in this
course.

When the state space is more complicated, F is assumed to be a
σ-algebra. That is, it satisfies the following three axioms:

1. Ω ∈ F .

2. If A ∈ F , then Ac ∈ F , where Ac is the complement of A.

3. If A1,A2, . . . ,∈ F , then
∞⋃
i=1

Ai ∈ F .



The probability measure P

Definition
The real valued function P, with domain F , is a probability measure if
it satisfies the following three axioms

1. P(Ω) = 1.

2. If A ∈ F , then P(A) ≥ 0.

3. If for a sequence of events A1,A2, . . . ,, we have that Ai ∩ Aj = ∅
for all i 6= j (i.e. the sets are mutually exclusive) then

P
( ∞⋃

i=1

Ai

)
=
∞∑
i=1

P(Ai ).



The probability measure P

The following is a listing of some of the basic properties of any
probability measure.

Lemma
Let P(·) be a probability measure. Then

1. If A1, . . . ,An is a finite sequence of mutually exclusive events,
then

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai ).

2. P(Ac) = 1− P(A).

3. P(∅) = 0.

4. If A ⊂ B, then P(A) ≤ P(B).

5. P(A ∪ B) = P(A) + P(B)− P(AB).



Conditional probability and independence

Definition
For two events A,B ⊂ Ω, the conditional probability of A given B is

P(A|B) =
P(AB)

P(B)
.

provided that P(B) > 0.



Independence

We intuitively think of A being independent from B if

P(A|B) = P(A), and P(B|A) = P(B).

More generally, we have the following definition.

Definition
The events A,B ∈ F are called independent if

P(AB) = P(A)P(B).

It is straightforward to check that the definition of independence
implies both

P(A|B) = P(A), and P(B|A) = P(B).



Random variables

Recall that for some probability space (Ω,F ,P), a random variable X
is a real-valued function defined on the sample space Ω.

That is,
X : Ω→ R

and X (ω) ∈ R for each ω ∈ Ω.

The values that a random variable can take (i.e. its range) is called its
state space.

I If the state space of X is finite or countably infinite, then X is said
to be a discrete random variable.

I Otherwise X is said to be a continuous random variable.



Random variables

Example
Suppose we roll two die and take Ω = {(i , j) | i , j ∈ {1, . . . ,6}}. We let

X (i , j) = i + j

be the discrete random variable giving the sum of the rolls. The range
is {2, . . . ,12}. �



Random variables

We can now ask for probabilities associated with the random variable
X . For example, we may be interested in

P{ω : 1 ≤ X (ω) ≤ 6}. (1)

Note that we are still asking for a probability of a subset of Ω, that is,
an element of F .

We often do not care about the probability space itself and will simply
write

P{1 ≤ X ≤ 6},

where it is understood that the equation above is shorthand for (1).



Random variables

A stochastic process {Xt}, t ∈ I, is a collection of random variables
defined on a common probability space, and where I is some index
set.

As in the case of a random variable, it is technically correct to write
things like Xt (ω), where ω ∈ Ω, the common probability space, and

P{ω : Xt1 (ω) ∈ A1,Xt2 (ω) ∈ A2}.

However, we will most often instead simply write Xt and

P{Xt1 ∈ A1,Xt2 ∈ A2}

and largely ignore the probability space upon which the process is
defined.



Transformations of random variables

Theorem
Let U be uniformly distributed on the interval (0,1) and let F be an
invertible distribution function. Then X = F−1(U) has distribution
function F .

Proof.
Letting X = F−1(U) where U is uniform(0,1), we have

P{X ≤ t} = P{F−1(U) ≤ t}
= P{U ≤ F (t)}
= F (t).



Transformations of random variables

Example
Suppose we want an exp(λ) random variable.

Has distribution function F : R≥0 → [0,1)

F (t) = 1− e−λt , t ≥ 0.

Therefore, F−1 : [0,1)→ R≥0 is given by

F−1(u) = −1
λ

ln(1− u), 0 ≤ u ≤ 1.

If U is uniform(0,1), then so is 1− U. Thus, to simulate a realization
of X ∼ Exp(λ), you first simulate U from uniform(0,1), and then set

x = −1
λ

ln(U) = ln(1/U)/λ.

�



Transformations of random variables

Theorem
Let U be uniformly distributed on the interval (0,1). Suppose that
pk ≥ 0 for each k ∈ {0,1, . . . , }, and that

∑
k pk = 1. Let

X = min

{
k
∣∣∣∣ k∑

i=0

pi ≥ U

}
.

Then,
P{X = k} = pk .


	The probability space

