An abridged review of the basic theory of probability.

- For: Students of Math 605, Stochastic Models in Biology, at the University of Wisconsin at Madison in the Fall semester of 2013.
- By: David F. Anderson

Review of Proability

Probability theory is used to model experiments (defined loosely) whose outcome can not be predicted with certainty beforehand.

For any such experiment, there is a triple (Ω, \mathcal{F}, P) , called a *probability space*, where

- Ω is the *sample space*,
- *F* is a collection of *events*,
- P is a probability measure.

We will consider each in turn.

The sample space Ω

The *sample space* of an experiment is the set of all possible outcomes.

Elements of Ω are called *sample points* and are often denoted by ω . Subsets of Ω are referred to as *events*.

Example

Consider the experiment of rolling a six-sided die. Then the natural sample space is $\Omega = \{1, 2, 3, 4, 5, 6\}$.

Example

Consider the experiment of tossing a coin three times. Let us write 1 for heads and 0 for tails. Then the sample space consists of all sequences of length three consisting only of zeros and ones. Each of the following representations is valid:

$$\Omega = \{0, 1\}^3$$

- $= \quad \{0,1\}\times\{0,1\}\times\{0,1\}$
- $= \{(x_1, x_2, x_3) : x_i \in \{0, 1\} \text{ for } i = 1, 2, 3\}$

The sample space $\boldsymbol{\Omega}$

Example

Consider the experiment of counting the number of mRNA molecules transcribed by a given gene in some interval of time. Here it is most natural to let

$$\Omega = \{\mathbf{0}, \mathbf{1}, \mathbf{2}, \dots\}.$$

П

Example

Consider the experiment of waiting for a bacteria to divide. In this case, it is natural to take as our sample space all values greater than or equal to zero. That is,

$$\Omega = \{t : t \ge \mathbf{0}\},\$$

where the units of t are specified as hours, for example.

Terminology: A set that is finite or countably infinite is called *discrete*.

Most, though not all, of the sample spaces encountered in this course will be discrete.

The collection of events ${\cal F}$

- Events are simply subsets of the state space Ω.
- They are often denoted by A, B, C, etc., and they are usually the objects we wish to know the probability of.
- They can be described in words, or using mathematical notation.

Example 1, continued. Let *A* be the event that a 2 or a 4 is rolled. That is, $A = \{2, 4\}$.

Example 2, continued. Let *A* be the event that the final two tosses of the coin are tails. Thus,

 $A = \{(1, 0, 0), (0, 0, 0)\}.$

Example 3, continued. Let *A* be the event that no more than 10 mRNA molecules have appeared. Thus,

$$A = \{0, 1, 2, \dots, 10\}.$$

 \square

The collection of events ${\mathcal F}$

For discrete sample spaces, \mathcal{F} will contain all subsets of Ω , and will play very little role. This is the case for nearly all of the models in this course.

When the state space is more complicated, \mathcal{F} is assumed to be a σ -algebra. That is, it satisfies the following three axioms:

1. $\Omega \in \mathcal{F}$.

2. If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$, where A^c is the complement of A.

3. If $A_1, A_2, \ldots, \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

The probability measure P

Definition

The real valued function P, with domain \mathcal{F} , is a *probability measure* if it satisfies the following three axioms

- **1**. $P(\Omega) = 1$.
- 2. If $A \in \mathcal{F}$, then $P(A) \ge 0$.
- 3. If for a sequence of events $A_1, A_2, ...,$ we have that $A_i \cap A_j = \emptyset$ for all $i \neq j$ (i.e. the sets are *mutually exclusive*) then

$$P\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}P(A_i).$$

The probability measure P

The following is a listing of some of the basic properties of any probability measure.

Lemma

Let $P(\cdot)$ be a probability measure. Then

1. If A₁,..., A_n is a finite sequence of mutually exclusive events, then

$$P\left(\bigcup_{i=1}^{n}A_{i}\right)=\sum_{i=1}^{n}P(A_{i}).$$

2. $P(A^c) = 1 - P(A)$.

3. $P(\emptyset) = 0$.

4. If $A \subset B$, then $P(A) \leq P(B)$.

5.
$$P(A \cup B) = P(A) + P(B) - P(AB)$$
.

Conditional probability and independence

Definition

For two events $A, B \subset \Omega$, the *conditional probability of A given B* is

$$P(A|B) = rac{P(AB)}{P(B)}.$$

provided that P(B) > 0.

Independence

We intuitively think of A being independent from B if

P(A|B) = P(A), and P(B|A) = P(B).

More generally, we have the following definition.

Definition The events $A, B \in \mathcal{F}$ are called *independent* if

P(AB) = P(A)P(B).

It is straightforward to check that the definition of independence implies both

P(A|B) = P(A), and P(B|A) = P(B).

Random variables

Recall that for some probability space (Ω, \mathcal{F}, P) , a random variable *X* is a real-valued function defined on the sample space Ω .

That is,

$$X:\Omega \to \mathbb{R}$$

and $X(\omega) \in \mathbb{R}$ for each $\omega \in \Omega$.

The values that a random variable can take (i.e. its *range*) is called its *state space*.

- If the state space of X is finite or countably infinite, then X is said to be a *discrete random variable*.
- Otherwise *X* is said to be a *continuous random variable*.

Random variables

Example

Suppose we roll two die and take $\Omega = \{(i, j) \mid i, j \in \{1, \dots, 6\}\}$. We let

$$X(i,j)=i+j$$

be the discrete random variable giving the sum of the rolls. The range is $\{2, \ldots, 12\}$.

We can now ask for probabilities associated with the random variable X. For example, we may be interested in

$$P\{\omega: 1 \le X(\omega) \le 6\}.$$
 (1)

Note that we are still asking for a probability of a subset of Ω , that is, an element of \mathcal{F} .

We often do not care about the probability space itself and will simply write

$$P\{1\leq X\leq 6\},$$

where it is understood that the equation above is shorthand for (1).

Random variables

A stochastic process $\{X_t\}$, $t \in I$, is a collection of random variables defined on a common probability space, and where *I* is some index set.

As in the case of a random variable, it is technically correct to write things like $X_t(\omega)$, where $\omega \in \Omega$, the common probability space, and

 $P\{\omega: X_{t_1}(\omega) \in A_1, X_{t_2}(\omega) \in A_2\}.$

However, we will most often instead simply write X_t and

 $P\{X_{t_1} \in A_1, X_{t_2} \in A_2\}$

and largely ignore the probability space upon which the process is defined.

Transformations of random variables

Theorem

Let U be uniformly distributed on the interval (0, 1) and let F be an invertible distribution function. Then $X = F^{-1}(U)$ has distribution function F.

Proof.

Letting $X = F^{-1}(U)$ where U is uniform(0, 1), we have

$$P\{X \le t\} = P\{F^{-1}(U) \le t\} \\ = P\{U \le F(t)\} \\ = F(t).$$

Transformations of random variables

Example

Suppose we want an $exp(\lambda)$ random variable.

Has distribution function $F:\mathbb{R}_{\geq 0} \rightarrow [0,1)$

$$F(t) = 1 - e^{-\lambda t}, \quad t \ge 0.$$

Therefore, $F^{-1}: [0, 1) \rightarrow \mathbb{R}_{\geq 0}$ is given by

$$F^{-1}(u) = -\frac{1}{\lambda}\ln(1-u), \quad 0 \le u \le 1.$$

If *U* is uniform(0, 1), then so is 1 - U. Thus, to simulate a realization of $X \sim \text{Exp}(\lambda)$, you first simulate *U* from uniform(0, 1), and then set

$$x = -\frac{1}{\lambda}\ln(U) = \ln(1/U)/\lambda.$$

Transformations of random variables

Theorem Let *U* be uniformly distributed on the interval (0, 1). Suppose that $p_k \ge 0$ for each $k \in \{0, 1, ..., \}$, and that $\sum_k p_k = 1$. Let

$$X=\min\left\{k\ \Big|\ \sum_{i=0}^k p_i\geq U\right\}.$$

Then,

$$P\{X=k\}=p_k.$$