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Abstract. We consider the family of active scalar equations on the plane and study the dynamics of two
centrally symmetric patches. We focus on the two-dimensional Euler equation written in the vorticity form

and consider its truncated version. For this model, a non-linear and non-local evolution equation is studied
and a family of stationary solutions {y(x, λ)}, x ∈ [−1, 1], λ ∈ (0, λ0) is found. For these functions, we
have y(x, λ) ∈ C∞(−1, 1) and ∥y(x, λ) − |x|∥C[−1,1] → 0, λ → 0. The relation to the V -states observed

numerically in [15, 3] is discussed.

1. Introduction.

In this paper, we study a certain class of the active scalar equations on the plane. Suppose
we are given a function D(z), z = (x, y) ∈ R2 that satisfies the following properties: D is
radially symmetric, i.e., D(z) = d(|z|), d(r) is monotonically increasing and smooth on
(0,∞). Consider the following transport equation

θ̇ = ∇θ ·
(
∇⊥Aθ + S

)
, θ(0, x, y) = θ0(x, y) (1)

where

Af =

∫
R2

D(z − ξ)f(ξ)dξ, z, ξ ∈ R2, ∇⊥ = (−∂y, ∂x)

The symbol S(t, z) will denote the strain, i.e., an exterior velocity which is assumed to be
incompressible and sufficiently regular. By choosing different d(r) and S(z, t), we can cover
some important cases. For example, taking d(r) = −r−1 and S(z, t) = 0 corresponds to the
so-called surface-quasigeostrophic equation (SQG) for which only the local in time solvability
is known for sufficiently smooth θ0 (see [4] for the recent development). If d(r) = log r and
S(z, t) = 0, one recovers the equation for vorticity for two-dimensional non-viscous Euler
equation. In this situation, the existence of global solution θ(t, x, y) has been known for a
long time [14].

In this paper, we mostly focus on the Euler case, however, we will be digressing to more
general situations later in the text. Let us assume θ0 ∈ L∞(R2) ∩ L1(R2). In that case, the
existence of the global weak solution was established by Yudovich [16]. If θ0 = χΩ0 with
some domain Ω0 : |Ω0| <∞, then one has the evolution of the “patch” as θ(t, z) = χΩ(t) and
Ω(t) is homeomorphic to Ω0.

We consider the case when θ(0, z) = χΩ0(z)+χ−Ω0(z) and −Ω0 = {−z, z ∈ Ω0}. Assuming
Ω0 ∩ −Ω0 = ∅, one has θ(t, z) = χΩ(t)(z) + χ−Ω(t)(z), i.e., it represents evolution of the
centrally symmetric pair of patches (the preservation of central symmetry is a simple feature
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of dynamics). We also take Ω0 to be simply connected with smooth boundary, i.e. ∂Ω0 ∈ C∞.
Under these assumptions, we have ∂Ω(t) ∈ C∞ for all time [5, 2].

Two problems arise naturally in the study of this model. The first one addresses the
following question. Let d(t) = dist(Ω(t), 0). Is it possible for d(t) → 0, t → ∞? The Yu-
dovich theory gives a lower bound: d(t) > exp(− exp(Ct)) and one can study its sharpness.
Naturally, the convergence of d(t) to zero implies the merging of the patches as the configura-
tion is centrally symmetric. In the recent paper [7], the sharpness of the double exponential
estimate was established (even up to a constant C) in the case when equation was considered
with the strain S which was assumed to be incompressible, odd, and Lipschitz-regular. We
have more evidence of the singularity formation in (1): in [9], the phenomenon of double
exponential merging was proved for the Euler equation on the disc, however the presence of
the boundary was used in a substantial way. For the related SQG model, there is a numerical
evidence that two patches merge in finite time [6].

The second problem, intimately related to the first one, is existence of the quasi-stationary
states, i.e., the configurations of two centrally symmetric patches that rotate with constant
angular velocity around the origin without changing the shape (the so-called V -states). For
the 2D Euler, there is a numerical evidence (e.g., [3, 15] and references there) for the existence
of the parametric curve of these V -states: Vλ ∪ −Vλ, i.e., Ω(t) = RωtVλ, where Rθ denotes
the rotation around the origin by the angle θ. Here, dist(Vλ,−Vλ) = 2λ and λ ∈ [0, λ0). For
λ > 0, the boundary Γλ = ∂Vλ seems to be smooth but the two patches form a sharp corner
of 90 degrees and touch at the origin when λ = 0. Assuming existence of the V –states in
the contact position and their regularity away from the origin, Overman [11] did a careful
analysis around the zero. In particular, he explained why the 90 degrees is the only possible
nontrivial angle of the contact.

The paper consists of eight sections and an Appendix. In the second section, the model
with cut-off is introduced and the main result is stated. Section 3 gives some preliminaries
and section 4 explains the strategy of the proof. In the sections 5, 6, and 7, we prove some
auxiliary statements that are used in section 8 to complete the proofs of the main results.
The Appendix has four lemmas we use in the main text.

Notation used in the paper. The symbol L̇ip[0, T ] will indicate the following space L̇ip[0, T ]=
{f ′ ∈ L∞[0, T ], f(0) = 0} equipped with the norm

∥f∥L̇ip[0,T ] = sup
x∈[0,T ]

|f ′(x)|

We will use the following (non-standard) notation

log+ x = | log x|+ 1, x > 0

Let ω(x) be a smooth function such that ω(x) = 1 on |x| < 1/2, ω(x) = 0 on |x| > 1 and
0 ≤ ω(x) ≤ 1. For a parameter a > 0, we consider ωa(x) = ω(x/a) and ωc

a(x) = 1 − ωa(x).
Given two positive functions F1 and F2, we write F1 . F2 if there is a constant C such that

F1 < CF2 , C > 0

We write F1 ∼ F2 if
F1 . F2 . F1 .

The expression “a ≪ 1” will be a short-hand for “there is a sufficiently small a0 such that
0 < a < a0”. For the function P (x), we write ∆x1,x2P = P (x1)− P (x2).
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2. The model with cut-off and the main result.

Consider d(r) = log r (2d Euler). If Ωsc(0) is a simply connected domain with smooth
boundary, the evolution of Γsc(t) = ∂Ωsc(t) is governed by the following integro-differential
equation (see, e.g., [1], formula (8.56); this is a corollary of ∇zD(|z − ξ|) = −∇ξD(|z − ξ|)
and the Green’s formula):

ż(t, α) = C

∫ 2π

0

z′(t, β) log |z(t, β)− z(t, α)|dβ, α ∈ [0, 2π) (2)

where C is an absolute constant and z(α, t) is anti-clockwise parameterization of the curve
Γsc(t). In particular, the right-hand side gives the velocity at any point on the boundary,
z(t, α). If one has two simply connected domains Ω(1) and Ω(2) with vorticity equal to 1
inside each of them, then the velocity at any point z1 ∈ Γ(1) is given by

C

(∫ 2π

0

z′1(t, β) log |z1(t, β)− z1(t, α)|dβ +

∫ 2π

0

z′2(t, β) log |z2(t, β)− z1(t, α)|dβ
)
, α ∈ [0, 2π)

Assume now that two patches are merging at the origin. Then, we can introduce the local
chart in {(x, y) : |x| < δ, |y| < δ} and parameterize the corresponding contours by (x, µ1(t, x))
and (x, µ2(t, x)), see Figure 1. Notice that the velocity at any point (x, µ1(t, x)) can now be
written as

C

(∫ δ

−δ

(1, µ′
1(t, ξ)) log

(
(x− ξ)2 + (µ1(t, x)− µ1(t, ξ))

2
)
dξ−∫ δ

−δ

(1, µ′
2(t, ξ)) log

(
(x− ξ)2 + (µ1(t, x)− µ2(t, ξ))

2
)
dξ

)
+R(x, µ1(t, x))

where the negative sign in front of the second integral comes from the anti-clockwise parame-

terization for the contour Γ(2). Here R is the velocity induced by the
(
Γ(1)∪Γ(2)

)
∩{|z| > δ}.

Clearly, R is smooth inside {|x| < δ/2, |y| < δ/2} and is equal to zero at the origin in the
case when Ω(2) = −Ω(1). Dropping this R as a term negligible around the origin, we end up
with the following expression for the velocity

C

∫ δ

−δ

(A−B, µ′
1(t, ξ)A− µ′

2(t, ξ)B)dξ

where

A = log
(
(x− ξ)2 + (µ1(t, x)− µ1(t, ξ))

2
)
, B = log

(
(x− ξ)2 + (µ1(t, x)− µ2(t, ξ))

2
)

at every point (x, µ1(t, x)), |x| < δ. Following, e.g., [12], we notice that the subtraction of
any tangential vector from the velocity does not change the evolution of the contour. Thus,
we subtract the vector-field

C

∫ δ

−δ

(A−B)dξ · (1, µ′
1(t, x))

which gives a modified velocity

umod(x, µ1(t, x)) = C

(
0,

∫ δ

−δ

(µ′
1(t, ξ)A− µ′

2(t, ξ)B − µ′
1(t, x)A+ µ′

1(t, x)B)dξ

)
3



Notice that the first component of this vector is zero so we have an equation

µ̇1(t, x) = C

∫ δ

−δ

(µ′
1(t, ξ)A− µ′

2(t, ξ)B − µ′
1(t, x)A+ µ′

1(t, x)B)dξ, |x| < δ/2 (3)

for the evolution of µ1(t, x). The similar formula can be obtained for µ2(t, x). We will focus
on the situation when the contours are centrally symmetric so µ2(t, x) = −µ1(t,−x). That
gives us the following equation for µ(t, x) = µ1(t, x):

µ̇(t, x) = C

∫ δ

−δ

(µ′(t, x)− µ′(t, ξ)) log

(
(x+ ξ)2 + (µ(t, x) + µ(t, ξ))2

(x− ξ)2 + (µ(t, x)− µ(t, ξ))2

)
dξ (4)

We allow this equation to hold on all of [−δ, δ] and call it an equation with cut-off. The
rescaling of time makes it possible to adjust the value of C. Moreover, the equation (4)
should be complemented by

µ(0, x) = µ0(x), µ(t, δ) = c(t) (5)

where µ0(x) gives an initial position of the curve and c(t) defines the control or the boundary
value for this local transport equation.

-

6
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Figure 1

In the case of the general kernel D in (1), the resulting equation can be reduced to the
following form

µ̇(t, x) = C

∫ δ

−δ

(µ′(t, x)− µ′(t, ξ))K(x, ξ)dξ, µ(0, x) = µ0(x), µ(t, 1) = c(t) (6)

where C is a floating constant (can be adjusted by time scaling),

K(x, ξ) = H((µ(t, x) + µ(t, ξ))2 + (x+ ξ)2)−H((µ(t, x)− µ(t, ξ))2 + (x− ξ)2)

and H(r) = d(
√
r). If the function d(r) = log r or is homogeneous, the scaling in z allows

one to assume that δ = 1 which we will do from now on (see Figure 2).
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We think that problem with the cut-off might serve as a good model to study the merging
of the central pair. Indeed, the active scalar equations are nonlocal but it is believed that
the singularity of the convolution kernel at r = 0 is responsible for the strong instability
(e.g., merging). That suggests a local version of the equation (2) might be interesting to
study first. For this purpose, we take (6) as a model. The local in time solvability of (6) is
not known and will be addressed elsewhere. However the “raison d’être” is different and can
be formulated as the

Problem 1. Is there a smooth solution to

µ̇(t, x) =

∫ 1

−1

(µ′(t, x)− µ′(t, ξ))K(x, ξ)dξ, x ∈ (−1, 1) (7)

such that

µ(t, x) → y0(x) = |x|, t→ ∞

If so, what are the estimates (lower and upper) on

d(t) = min
x∈[−1,1]

|µ(t, x)− y0(x)|?

The function y0(x) plays a very special role. It is a stationary solution to (7) and it mimics
locally the limiting case (t = ∞) considered in [7]. The advantage of the model (6) is
that we known this singular stationary configuration exactly and the problem 1 asks for the
analysis of its dynamical stability. In particular, is it possible for d(t) to converge to zero
as double-exponential in the case when d(r) = log r (2d Euler)? In [7], this question was
answered affirmatively assuming that a regular strain is allowed (see Appendix in [7]). In
other words, an approximate solution to (7) was constructed and its self-similarity analysis
was performed. The question remains though whether this strain can be dropped and this
is the content of the problem 1.

The problem 1 seems hard. The important step in understanding it is to address the
question of the stationary states for (7).
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Problem 2. Find the family of even positive functions y(x, λ) ∈ C1[−1, 1] such that∫ 1

−1

(y′(x, λ)− y′(ξ, λ))K(x, ξ)dξ = 0, x ∈ [−1, 1] (8)

and

y(0, λ) = λ, λ ∈ (0, λ0); ∥y(x, λ)− |x|∥C[−1,1] → 0, λ→ 0

Quite naturally, we will call these functions “the even V –states for the model with cut-off”.

Since the original problem of the patch evolution is invariant with respect to rotations, we
expect the existence of other families of V –states that are not necessarily even.

The main result of this paper is the following theorem which contains a solution to the
problem 2 for the case of 2d Euler.

Theorem 2.1. There is a family of even positive functions y(x, λ) ∈ C1[−1, 1] such that∫ 1

−1

(y′(x, λ)− y′(ξ, λ)) log

(
(x+ ξ)2 + (y(x, λ) + y(ξ, λ))2

(x− ξ)2 + (y(x, λ)− y(ξ, λ))2

)
dξ = 0, x ∈ [−1, 1] (9)

and

y(0, λ) = λ, λ ∈ (0, λ0); lim
λ→0

∥y(x, λ)− |x|∥C[−1,1] = 0

Remark. This result does not immediately imply any progress on problem 1, however
the developed technique might be useful.

Remark. The model with a cut-off we introduced is only a model, obviously. However,
in the case of 2d Euler (or SQG) equation on the torus T2 = [−1, 1]2, the analog of y0(x)
is the following configuration: θs(x, y) = sign x · sign y which represents two patches that
touch each other at the 90 degrees angle. The method developed in this paper is likely to be
directly applicable to the bifurcation analysis of this case which is NOT a model. We will
address this issue elsewhere.

Remark. The bifurcation analysis of the stationary states is a classical subject in the
mechanics of fluids (see, e.g., [13, 17] for the recent developments). We, however, focus on
the technically hard case when the singular stationary state is considered.

3. Preliminaries.

The main result of this paper is solution to problem 2 in the case of 2d Euler equation
with a cut-off. We start with some preliminary calculations for the general case as that will
help us understand problem 2 better.

Assume that y(x, λ) solves the problem 2. Since y is even in x, we have

y′(x, λ)

∫ 1

0

K1(x, ξ)dξ =

∫ 1

0

y′(ξ, λ)K2(x, ξ)dξ, y(0, λ) = λ (10)

where

K1(x, ξ) = K(x, ξ)+K(x,−ξ) = H((y(x)+ y(ξ))2 +(x+ ξ)2)−H((y(x)− y(ξ))2 +(x− ξ)2)

+H((y(x) + y(ξ))2 + (x− ξ)2)−H((y(x)− y(ξ))2 + (x+ ξ)2)
6



and

K2(x, ξ) = K(x, ξ)−K(x,−ξ) = H((y(x)+ y(ξ))2 +(x+ ξ)2)−H((y(x)− y(ξ))2 +(x− ξ)2)

−H((y(x) + y(ξ))2 + (x− ξ)2) +H((y(x)− y(ξ))2 + (x+ ξ)2)

We suppress the dependence of y on λ and just write y(x) here.

3.1. The explicit solution for the model case. Let us go back to the equation (1).
Instead of taking the singular kernels in the convolution, one can consider the smooth bump
D(z). The “typical” behavior around the origin then would be, e.g.,

D(z) = C + |z|2 + o(|z|2), |z| → 0

Keeping only the quadratic part, we get

K(x, ξ) = 4(y(x)y(ξ) + xξ), K1(x, ξ) = 8y(x)y(ξ), K2(x, ξ) = 8xξ

The equation (7) takes the following form

y′(x)y(x)

∫ 1

0

y(ξ)dξ = x

∫ 1

0

ξy′(ξ)dξ

which easily integrates to

y(x) =

√
λ2 +

B

A
x2

where

A =

∫ 1

0

y(x)dx, B =

∫ 1

0

xy′(x)dx

We have the following compatibility equations
B =

√
λ2 +

B

A
− A

A =

∫ 1

0

√
λ2 +

B

A
x2dx


B =

√
λ2 +

B

A
− A

√
AB = λ2

∫ λ−1
√
BA−1

0

√
1 + ξ2dξ

Introduce
B/A = u, AB = v

Then

v =
u(λ2 + u)

(u+ 1)2
,

√
v = λ2

∫ λ−1√u

0

√
1 + ξ2dξ

We assume that λ ∈ (0, λ0), λ0 ≪ 1 and |u− 1| ≪ 1 and so |v − 1/4| ≪ 1. Therefore, if

u = 1 + α, v = 1/4 + β, α, β ≪ 1

then
β = α/4 + λ2/4 +O(α2 + λ2α)

and

α = 2β − λ2 log
1

λ
+O(β2 + λ2α)

Thus,

β = −0.5λ2 log
1

λ
+
λ2

2
+O(λ4 log2 λ), α = −2λ2 log

1

λ
+ λ2 +O(λ4 log2 λ)
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This calculation shows that Vλ exists and the asymptotics in λ→ 0 can be easily established.
Since

y(x) =
√
λ2 + (1 + α)x2, α < 0

the curve will intersect the line y = x at the point

x∗λ =
λ

|α|1/2
=

(
2 log

1

λ

)−1/2

(1 + o(1))

Now, let us address the question of self-similarity. Rescale

µ(x̂) = λ−1y(x̂λ) =
√
1 + (1 + α)x̂2, |x̂| < λ−1

This shows that

sup
|x̂|<λ−1

|µ(x̂)−
√
1 + x̂2| → 0

and so the self-similar behavior is global.
The model case we just considered is the situation in which the interaction is substantially

long-range and the self-similarity of the stationary state is global. The curve that we have
in the limit is hyperbola. That seems like a common feature of many long-range models and
2d Euler in particular as will be seen from the subsequent analysis. However, for 2d Euler
this self-similarity will be proved only over |x| < Cλ with arbitrary fixed C. Notice also that
the analogous calculation is possible if the smooth strains are imposed, e.g., a rotation.

3.2. Properties of the kernels K1 and K2. Below, we will write K1(2)(x, ξ, y) when we
want to emphasize the dependence of the kernel on the function y.

Lemma 3.1. The following is true

K1(x, ξ, y) = 4y(x)y(ξ)(H ′(η1) +H ′(η2)), K2(x, ξ, y) = 4xξ(H ′(α1) +H ′(α2))

where

η1 > (x+ ξ)2, η2 > (x− ξ)2

and

α1(2) > (x− ξ)2

Proof. Apply the mean value theorem to the first and second terms in the expression. This
gives

K1 =
(
H((y(x) + y(ξ))2 + (x+ ξ)2)−H((y(x)− y(ξ))2 + (x+ ξ)2)

)
+
(
H((y(x) + y(ξ))2 + (x− ξ)2)−H((y(x)− y(ξ))2 + (x− ξ)2)

)
and

K2 =
(
H((y(x) + y(ξ))2 + (x+ ξ)2)−H((y(x) + y(ξ))2 + (x− ξ)2)

)
+
(
H((y(x)− y(ξ))2 + (x+ ξ)2)−H((y(x)− y(ξ))2 + (x− ξ)2)

)
�
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If H = log x, we have the following representation

K1(x, ξ, y) = log

(
(x+ ξ)2 + (y(x) + y(ξ))2

(x− ξ)2 + (y(x)− y(ξ))2
· (x− ξ)2 + (y(x) + y(ξ))2

(x+ ξ)2 + (y(x)− y(ξ))2

)
Then, assuming that y(x) ≥ 0,

(x− ξ)2 + (y(x) + y(ξ))2

(x− ξ)2 + (y(x)− y(ξ))2
= 1 +

4y(x)y(ξ)

(x− ξ)2 + (y(x)− y(ξ))2
≥ 1

and
(x+ ξ)2 + (y(x) + y(ξ))2

(x+ ξ)2 + (y(x)− y(ξ))2
= 1 +

4y(x)y(ξ)

(x+ ξ)2 + (y(x)− y(ξ))2
≥ 1

Therefore, we have

log

(
1 +

4y(x)y(ξ)

(x− ξ)2 + (y(x)− y(ξ))2

)
≤ K1 . log

(
1 +

4y(x)y(ξ)

(x− ξ)2

)
provided that y ≥ 0. Similarly, for K2,

log

(
1 +

4xξ

(x− ξ)2 + (y(x)− y(ξ))2

)
≤ K2 = log

(
1 +

4xξ

(x− ξ)2 + (y(x) + y(ξ))2

)
+ log

(
1 +

4xξ

(x− ξ)2 + (y(x)− y(ξ))2

)
. log

(
1 +

4xξ

(x− ξ)2

)
and this holds for all y.

The following lemma is trivial.

Lemma 3.2. Let 0 ≤ a ≤ b ≤ C. Then, b ∼ a+ b and

1

b− a

∫ b

a

dη

η
∼ b−1 ∼ (a+ b)−1, a > b/2

and
1

a+ b
. 1

b− a

∫ b

a

dη

η
. log+ a

a+ b
, a < b/2

Suppose that y ∈ [0, C]. Then, applying this lemma to K1 with

a = (y(x)− y(ξ))2 + (x+ ξ)2, b = (y(x) + y(ξ))2 + (x+ ξ)2

and then with

a = (y(x)− y(ξ))2 + (x− ξ)2, b = (y(x) + y(ξ))2 + (x− ξ)2

gives

y(x)y(ξ)

y2(x) + y2(ξ) + (x− ξ)2
. K1 . y(x)y(ξ)

log+((x− ξ)2 + (y(x)− y(ξ))2)

y2(x) + y2(ξ) + (x− ξ)2
(11)

For K2, the same reasoning yields

xξ

x2 + ξ2 + (y(x)− y(ξ))2
. K2 . xξ

log+((x− ξ)2 + (y(x)− y(ξ))2)

y2(x) + y2(ξ) + (x− ξ)2
9



4. The implicit function theorem, the 2d Euler case.

In this section, we will apply the scheme of the implicit function theorem to the 2d Euler
with cut-off which corresponds to H(x) = log x. However, we first notice that the problem
allows the following scaling.

Lemma 4.1. If y(x) solves∫ 1

−1

y′(x) log

(
(x+ ξ)2 + (y(x) + y(ξ))2

(x− ξ)2 + (y(x)− y(ξ))2

)
dξ =

∫ 1

−1

y′(ξ) log

(
(x+ ξ)2 + (y(x) + y(ξ))2

(x− ξ)2 + (y(x)− y(ξ))2

)
dξ

then yα(x) = αy(x/α) solves∫ α

−α

y′α(x) log

(
(x+ ξ)2 + (yα(x) + yα(ξ))

2

(x− ξ)2 + (yα(x)− yα(ξ))2

)
dξ

=

∫ α

−α

y′α(ξ) log

(
(x+ ξ)2 + (yα(x) + yα(ξ))

2

(x− ξ)2 + (yα(x)− yα(ξ))2

)
dξ

for every α > 0.

Proof. The proof is an immediate calculation. �
Consider yλ(x) and take

ŷ(x̂, λ) = λ−1y(x̂λ, λ), |x̂| < λ−1

We will perform this scaling many times in the paper. It allows to reduce the problem to
the one on the larger interval |x̂| < λ−1 with the normalization ŷ(0, λ) = 1.

Remark 2. The perturbative analysis done below will be carried out around the hyperbola
ŷ(x̂) =

√
x̂2 + 1, not |x̂|. The explanation to that is the following. The model case suggests

that {ŷ(x̂, λ)} might have some limiting behavior as λ → 0. If so, can one guess the
asymptotical curve? To this end, let us make very natural assumptions that

ŷ(x̂, λ) → f(x̂), ŷ′(x̂, λ) → f ′(x̂)

on every interval x̂ ∈ [−C,C] and that

ŷ(x̂, λ) = x̂(1 + o(1)), ŷ′(x̂, λ) = 1 + o(1), |x̂| ≫ 1

uniformly in λ ∈ (0, λ0]. For |x̂| < C,

(f ′(x̂) + o(1))

∫ 1/λ

0

[
log

(
1 +

4ŷ(x̂, λ)ŷ(ξ̂, λ)

(x̂− ξ̂)2 + (ŷ(x̂, λ)− ŷ(ξ̂, λ))2

)

+ log

(
1 +

4ŷ(x̂, λ)ŷ(ξ̂, λ)

(x̂+ ξ̂)2 + (ŷ(x̂, λ)− ŷ(ξ̂, λ))2

)]
dξ̂

=

∫ 1/λ

0

(1 + o(1))

[
log

(
1 +

4x̂ξ̂

(x̂− ξ̂)2 + (ŷ(x̂, λ)− ŷ(ξ̂, λ))2

)
10



+ log

(
1 +

4x̂ξ̂

(x̂+ ξ̂)2 + (ŷ(x̂, λ)− ŷ(ξ̂, λ))2

)]
dξ̂

For the l.h.s., the asymptotics of the integrand as ξ̂ → ∞ is

4ŷ(x̂, λ)

ξ̂
+ o(ξ̂−1)

and for the r.h.s., it is
4x̂

ξ̂
+ o(ξ̂−1)

Here we work under assumption that |x̂| < C. Taking λ→ 0, we get

(f ′f − x̂) log
(
1/λ
)
+ o
(
log
(
1/λ
))

= 0

This leads to f ′f − x̂ = 0 and (since f(0) = 1)

f(x̂) = (x̂2 + 1)1/2 (12)

This formula was obtained under strong assumptions so does not imply the self-similarity
per se. However, one can take

ỹ(x, λ) = (x2 + λ2)1/2

as an approximate solution. Plugging it into the equation, one can represent the resulting
correction as the strain. Similarly to [7], one can show that this strain satisfies the uniform
bound

sup
|z|<1,λ∈(0,1)

|S(z, λ)|
|z|

< C

The novelty of the current paper is that we construct the exact solution and thus make
S(z, λ) = 0. It will also be proved that the exact solutions converge to hyperbola in the
scaling limit but only locally, over x ∈ Iλ, where |Iλ| → 0, λ→ 0.

In the lemma below, we show that all possible solutions y(x, λ) have the following common
feature.

Lemma 4.2. If y(x) solves (10), then there is x∗ ∈ (0, 1) at which y(x∗) = x∗. That is, the
graph of y(x) intersects the line y = x.

Proof. Suppose instead that y(x) > x for all x ∈ (0, 1). Then,

4y(x)y(ξ)

(x− ξ)2 + (y(x)− y(ξ))2
>

4xξ

(x− ξ)2 + (y(x)− y(ξ))2

and
4y(x)y(ξ)

(x+ ξ)2 + (y(x)− y(ξ))2
>

4xξ

(x− ξ)2 + (y(x) + y(ξ))2

Therefore, K1(x, ξ) > K2(x, ξ) > 0. Now, assume that

max
x∈[0,1]

y′(x) = y′(x1)

Then, ∫ 1

0

y′(ξ)K1(x1, ξ)dξ ≤ y′(x1)

∫ 1

0

K1(x1, ξ)dξ =

∫ 1

0

y′(ξ)K2(x1, ξ)dξ

11



and this inequality is strict unless y′(x) = const. This is impossible by, e.g., the smoothness
assumption. �

Now that we established what properties the solution y(x, λ) needs to possess, we are
ready to prove its existence.

Consider small δ > 0 and the sets

Ω = {f : ∥f(x)− x∥L̇ip[0,1] ≤ δ}, I = {λ : λ ∈ (0, λ0], λ0 ≪ 1}

We will look for y =
√
λ2 + f 2(x), where (f, λ) ∈ Ω× I. Notice that f(x) =

∫ x

0
f ′(t)dt and

∥f ′ − 1∥L∞[0,1] ≪ 1. Therefore,
f(x) = x(1 +O(δ))

In particular, f(x) > 0 for x > 0.

Consider the functional (we specify the dependence of K1(2) on y here)

F (f, λ) =

ff ′
∫ 1

0

K1(x, τ, y)dτ −
√
λ2 + f 2(x)

∫ 1

0

y′(τ)K2(x, τ, y)dτ

x
√
x2 + λ2 log+(x2 + λ2)

where y =
√
λ2 + f 2(x)

which acts from Ω× I to L∞[0, 1]. Moreover, F (x, 0) = 0.

The equation (10) can be rewritten as

F (f, λ) = 0

We will solve it in the following way (this is essentially the implicit function theorem proof
[8] but we prefer to give the argument for the sake of completeness). Write

F (f, λ) = F (x, λ) +
(
DfF (x, λ)

)
ψ +Q(ψ)

where ψ = f − x and this representation defines an operator Q. That can be rewritten as

ψ = −
(
DfF (x, λ)

)−1

Q(ψ) + ψ0(λ), ψ0 = −
(
DfF (x, λ)

)−1

F (x, λ) (13)

Next, we will show that this equation can be solved by contraction mapping principle in
Bδ = {∥ψ∥L̇ip[0,1] ≤ δ}, δ ≪ 1. To this end, we only need to prove:

(a) Linear part:

∥
(
DfF (x, λ)

)−1∥L∞[0,1],L̇ip[0,1] < Ĉ (14)

if λ ∈ (0, λ1) with λ1 ≪ 1.

(b) Frechet differentiability:

∥Q(ψ)∥L∞[0,1] = o(1)∥ψ∥L̇ip[0,1] (15)

and
∥Q(ψ2)−Q(ψ1)∥L∞[0,1] = o(1)∥ψ2 − ψ1∥L̇ip[0,1] (16)

with o(1) → 0 as δ → 0 uniformly in λ ∈ (0, 1) and ψ, ψ1(2) ∈ Bδ.
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(c) Small initial data:
∥ψ0(λ)∥L̇ip[0,1] < δ/2 (17)

where λ ∈ [0, λ0], λ0 < λ1.

We will first make λ1 so small that (a) holds. Then, we choose δ small enough to have

o(1) in (b) at most (10Ĉ)−1 uniformly in λ ∈ (0, 1). Finally, we take λ0 so small that (c)
holds. This will ensure existence and uniqueness of solution in the complete metric space Bδ.
Then, it will be easy to bootstrap its regularity from Lip[−1, 1] to C1[−1, 1]. The continuous
dependence on λ and

∥y(x, λ)− x∥C[0,1] → 0, λ→ 0

will follow from the proof.

5. The analysis of Gateaux derivative for H(x) = log x.

Taking ft = f + tu, u ∈ L̇ip[0, 1], plugging it into F , and computing the derivative in t at
t = 0 with positive x fixed, results in

(DfF (f, λ))u =
1

x
√
x2 + λ2 log+(x2 + λ2)

(I1 + . . .+ I6) (18)

We have

I1 =

(
f ′
∫ 1

0

K1(x, τ, y)dτ

)
u, y =

√
λ2 + f 2

I2 =

(
f

∫ 1

0

K1(x, τ, y)dτ

)
u′

I3 = ff ′
∫ 1

0

δK1(x, τ, y)dτ

where

δK1 =
2(y(x) + y(ξ))(δy(x) + δy(ξ))

(x+ ξ)2 + (y(x) + y(ξ))2
− 2(y(x)− y(ξ))(δy(x)− δy(ξ))

(x− ξ)2 + (y(x)− y(ξ))2

+
2(y(x) + y(ξ))(δy(x) + δy(ξ))

(x− ξ)2 + (y(x) + y(ξ))2
− 2(y(x)− y(ξ))(δy(x)− δy(ξ))

(x+ ξ)2 + (y(x)− y(ξ))2

and

δy =
fu√
λ2 + f2

I4 = −

(
f√

λ2 + f 2

∫ 1

0

y′K2(x, τ, y)dτ

)
u

I5 = −
√
λ2 + f2

∫ 1

0

δy′K2(x, τ, y)dτ

where

δy′ =
f ′√

λ2 + f 2
u+

f√
λ2 + f 2

u′ − f 2f ′u

(λ2 + f 2)3/2
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I6 = −
√
λ2 + f2

∫ 1

0

y′(τ)δK2(x, τ, y)dτ

where

δK2 =
2(y(x) + y(ξ))(δy(x) + δy(ξ))

(x+ ξ)2 + (y(x) + y(ξ))2
− 2(y(x)− y(ξ))(δy(x)− δy(ξ))

(x− ξ)2 + (y(x)− y(ξ))2

−2(y(x) + y(ξ))(δy(x) + δy(ξ))

(x− ξ)2 + (y(x) + y(ξ))2
+

2(y(x)− y(ξ))(δy(x)− δy(ξ))

(x+ ξ)2 + (y(x)− y(ξ))2

5.1. The derivative at f(x) = x. Define Lλ = (DfF )(x, λ). If f = x in the previous
section, then

Lλu =
1

x
√
x2 + λ2 log+(x2 + λ2)

(
Î1,λ + . . .+ Î6,λ

)
We again have

Î1,λ =

(∫ 1

0

K1(x, τ, yλ)dτ

)
u

with

yλ(x) =
√
λ2 + x2

Î2,λ = x

(∫ 1

0

K1(x, τ, yλ)dτ

)
u′

Î3,λ = x

∫ 1

0

δK1(x, τ, yλ)dτ

where

δK1 =
2(yλ(x) + yλ(ξ))(δyλ(x) + δyλ(ξ))

(x+ ξ)2 + (yλ(x) + yλ(ξ))2
− 2(yλ(x)− yλ(ξ))(δyλ(x)− δyλ(ξ))

(x− ξ)2 + (yλ(x)− yλ(ξ))2

+
2(yλ(x) + yλ(ξ))(δyλ(x) + δyλ(ξ))

(x− ξ)2 + (yλ(x) + yλ(ξ))2
− 2(yλ(x)− yλ(ξ))(δyλ(x)− δyλ(ξ))

(x+ ξ)2 + (yλ(x)− yλ(ξ))2

and

δyλ =
x√

λ2 + x2
u

Î4,λ = −
(

x√
λ2 + x2

∫ 1

0

y′λK2(x, τ, yλ)dτ

)
u

Î5,λ = −
√
λ2 + x2

∫ 1

0

δy′λK2(x, τ, yλ)dτ

where

δy′λ =
1√

λ2 + x2
u+

x√
λ2 + x2

u′ − x2

(λ2 + x2)3/2
u

Î6,λ = −
√
λ2 + x2

∫ 1

0

y′λ(τ)δK2(x, τ, yλ)dτ

14



and

δK2 =
2(yλ(x) + yλ(ξ))(δyλ(x) + δyλ(ξ))

(x+ ξ)2 + (yλ(x) + yλ(ξ))2
− 2(yλ(x)− yλ(ξ))(δyλ(x)− δyλ(ξ))

(x− ξ)2 + (yλ(x)− yλ(ξ))2

−2(yλ(x) + yλ(ξ))(δyλ(x) + δyλ(ξ))

(x− ξ)2 + (yλ(x) + yλ(ξ))2
+

2(yλ(x)− yλ(ξ))(δyλ(x)− δyλ(ξ))

(x+ ξ)2 + (yλ(x)− yλ(ξ))2

5.2. The operator Lλ. For Lλ, we have the following formula

Lλ = A1u
′ + A2u+

∫ 1

0

D1(x, ξ, λ)u(ξ)dξ +

∫ 1

0

D2(x, ξ, λ)u
′(ξ)dξ

The equation
Lλu = g

can be rewritten as

A1(x, λ)u
′ + A2(x, λ)u+

∫ 1

0

M(x, ξ, λ)u′(ξ)dξ = g (19)

if one assumes u(0) = 0 and

M(x, ξ, λ) = D2(x, ξ, λ) +

∫ 1

ξ

D1(x, τ, λ)dτ

In the calculation above, we used

lim
x→0

(
u(x)

∫ 1

0

D1(x, τ, λ)dτ

)
= 0

This equality follows from the estimate |u(x)| . x and from the analysis of∫ 1

0

D1(x, τ, λ)dτ

when x→ 0 (see (46) below).
Let us introduce the integral operator Mλ with the kernel M(x, τ, λ), e.g.,

Mλf =

∫ 1

0

M(x, τ, λ)f(τ)dτ

For the coefficients, we have

A1 =

∫ 1

0

K1(x, τ, yλ)dτ

√
x2 + λ2 log+(x2 + λ2)

The expression for A2 is more complicated,

A2 =
1

x
√
x2 + λ2 log+(x2 + λ2)

(∫ 1

0

K1(x, τ, yλ)dτ− (20)

x√
λ2 + x2

∫ 1

0

y′λ(τ)K2(x, τ, yλ)dτ +B2

)
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where

B2 =
2x√
x2 + λ2

∫ 1

0

(
x− ξ

√
λ2 + x2√
λ2 + ξ2

)(
yλ(x) + yλ(ξ)

(x+ ξ)2 + (yλ(x) + yλ(ξ))2

− yλ(x)− yλ(ξ)

(x− ξ)2 + (yλ(x)− yλ(ξ))2

)
dξ

+
2x√
x2 + λ2

∫ 1

0

(
x+

ξ
√
λ2 + x2√
λ2 + ξ2

)(
yλ(x) + yλ(ξ)

(x− ξ)2 + (yλ(x) + yλ(ξ))2

− yλ(x)− yλ(ξ)

(x+ ξ)2 + (yλ(x)− yλ(ξ))2

)
dξ

For D1(2), one has

D2(x, ξ, λ) = − 1

x log+(x2 + λ2)
K2(x, ξ, yλ)

ξ√
λ2 + ξ2

and

D1(x, ξ, λ) =
1

x
√
λ2 + x2 log+(x2 + λ2)

[
2xξ√
λ2 + ξ2

(
yλ(x) + yλ(ξ)

(x+ ξ)2 + (yλ(x) + yλ(ξ))2

+
yλ(x)− yλ(ξ)

(x− ξ)2 + (yλ(x)− yλ(ξ))2
+

yλ(x) + yλ(ξ)

(x− ξ)2 + (yλ(x) + yλ(ξ))2
+

yλ(x)− yλ(ξ)

(x+ ξ)2 + (yλ(x)− yλ(ξ))2

)
−2ξ2

√
λ2 + x2

ξ2 + λ2

(
yλ(x) + yλ(ξ)

(x+ ξ)2 + (yλ(x) + yλ(ξ))2

+
yλ(x)− yλ(ξ)

(x− ξ)2 + (yλ(x)− yλ(ξ))2
− yλ(x) + yλ(ξ)

(x− ξ)2 + (yλ(x) + yλ(ξ))2
− yλ(x)− yλ(ξ)

(x+ ξ)2 + (yλ(x)− yλ(ξ))2

)
−λ

2
√
λ2 + x2

(λ2 + ξ2)3/2
K2(x, ξ, yλ)

]
In this section, we will obtain estimates/asymptotics of all four terms in the case when

λ→ 0. It will be trivial to do that away from 0: e.g., for every δ > 0 both A1(2)(λ) → A1(2)(0)
uniformly over x ∈ [δ, 1]. The behavior around 0 is delicate and will require more careful
treatment.

We start with the following calculation that will simplify the expressions above.
We write

√
x̂2 + 1−

√
ξ̂2 + 1 = (x̂− ξ̂)r1(x, ξ) (21)

where

r1 =
x̂+ ξ̂

√
x̂2 + 1 +

√
ξ̂2 + 1

= 1 +O
( 1

x̂ξ̂

)
, if x̂, ξ̂ ≫ 1 (22)

Similarly,

√
x̂2 + 1 +

√
ξ̂2 + 1 = (x̂+ ξ̂)r−1

1 , r−1
1 =

√
x̂2 + 1 +

√
ξ̂2 + 1

x̂+ ξ̂
(23)
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Thus, we have for K2

(x̂+ ξ̂)2 + (
√
x̂2 + 1 +

√
ξ̂2 + 1)2

(x̂− ξ̂)2 + (
√
x̂2 + 1−

√
ξ̂2 + 1)2

·
(x̂+ ξ̂)2 + (

√
x̂2 + 1−

√
ξ̂2 + 1)2

(x̂− ξ̂)2 + (
√
x̂2 + 1 +

√
ξ̂2 + 1)2

(24)

=
(x̂+ ξ̂)2(1 + r−2

1 )

(x̂− ξ̂)2(1 + r21)
· (x̂+ ξ̂)2 + (x̂− ξ̂)2r21

(x̂− ξ̂)2 + (x̂+ ξ̂)2r−2
1

=
(x̂+ ξ̂)2

(x̂− ξ̂)2

after the cancelation.
Similarly, for K1

(x̂+ ξ̂)2 + (
√
x̂2 + 1 +

√
ξ̂2 + 1)2

(x̂− ξ̂)2 + (
√
x̂2 + 1−

√
ξ̂2 + 1)2

·
(x̂− ξ̂)2 + (

√
x̂2 + 1 +

√
ξ̂2 + 1)2

(x̂+ ξ̂)2 + (
√
x̂2 + 1−

√
ξ̂2 + 1)2

(25)

=
(x̂+ ξ̂)2

(x̂− ξ̂)2
r−4
1

Therefore, we have
K2(x, τ, yλ) = K2(x, τ, y0) (26)

and
K1(x, τ, yλ) = K1(x, τ, y0)− 4 log r1 (27)

Now, we are ready for the analysis of the asymptotics for the coefficients in Lλ.

1. The coefficient A1.

Consider A1(x, 0) first. We have

A1(x, 0) =
1

x log+(x2)

∫ 1

0

log

(
x+ ξ

x− ξ

)2

dξ (28)

=
1

log+(x2)

∫ 1/x

0

log

(
1 + u

1− u

)2

du = 2 + o(1), x→ 0

and it is smooth in (0, 1). At the point x = 0, we define A1(0, 0) = 2, i.e., by its right limit.

Lemma 5.1. We have
lim
λ→0

∥A1(x, λ)− A1(x, 0)∥C[0,1] = 0 (29)

Proof. If x = λx̂, then ∫ 1

0

K1(x, τ, yλ)dτ =

λ

∫ 1/λ

0

log

 (x̂+ ξ̂)2 + (
√
x̂2 + 1 +

√
ξ̂2 + 1)2

(x̂− ξ̂)2 + (
√
x̂2 + 1−

√
ξ̂2 + 1)2

·
(x̂− ξ̂)2 + (

√
x̂2 + 1 +

√
ξ̂2 + 1)2

(x̂+ ξ̂)2 + (
√
x̂2 + 1−

√
ξ̂2 + 1)2

 dξ̂

Many estimates done below will be based on the following standard argument that we explain
now in detail.
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We have several regimes:

(1). x̂ ∈ [0, 1]. Notice that integration over any fixed interval ξ̂ ∈ [0, C] gives a contribution

O(λ), so we only need to control large ξ̂. Using (25), one gets the following asymptotics for
the expression under the logarithm

(x̂+ ξ̂)2

(x̂− ξ̂)2
r−4
1 =

(
1 +

4x̂

ξ̂
+O(ξ̂−2)

)(
1 + 4

√
x̂2 + 1− x̂

ξ̂
+O(ξ̂−2)

)
, ξ̂ → ∞

Then, using the Taylor expansion for the logarithm, we get

λ

∫ 1/λ

0

log

 (x̂+ ξ̂)2 + (
√
x̂2 + 1 +

√
ξ̂2 + 1)2

(x̂− ξ̂)2 + (
√
x̂2 + 1−

√
ξ̂2 + 1)2

·
(x̂− ξ̂)2 + (

√
x̂2 + 1 +

√
ξ̂2 + 1)2

(x̂+ ξ̂)2 + (
√
x̂2 + 1−

√
ξ̂2 + 1)2

 dξ̂

= 4λ
√
x̂2 + 1 log(1/λ) +O(λ) = 4

√
x2 + λ2 log(1/λ) +O(λ) = (30)

= 2
√
x2 + λ2 log+(x2 + λ2) +O(λ)

Given any fixed δ ∈ (0, 1), we have two cases.

(2). Take x ∈ (δ, 1]. We trivially get

lim
λ→0

max
x∈[δ,1]

∣∣∣∣∫ 1

0

K1(x, τ, yλ)dτ −
∫ 1

0

K1(x, τ, y0)dτ

∣∣∣∣ = 0 (31)

(3). Let x ∈ (λ, δ]. We substitute (23) to (25) and get∫ 1

0

K1(x, τ, yλ)dτ = 2λ

∫ 1/λ

0

log

∣∣∣∣∣ x̂+ ξ̂

ξ̂ − x̂

∣∣∣∣∣ dξ̂ + 4λ

∫ 1/λ

0

log

(
1 +

√
x̂2 + 1− x̂

x̂+ ξ̂
+O(ξ̂−2)

)
dξ̂

= 2x

∫ 1/x

0

log

∣∣∣∣1 + t

1− t

∣∣∣∣ dt+ 4λ(
√
1 + x̂2 − x̂)

∫ 1/x

0

1

1 + t
dt+O(λ)

= 4x log(1/x)+O(x)+4λ(
√
1 + x̂2−x̂) log(1/x)+O(λ) = 4 log(1/x)(x+λ

√
1 + x̂2−λx̂)+O(x)

= 2
√
x2 + λ2 log+(x2 + λ2) +O(x) (32)

The bounds above imply

lim
λ→0

∥∥∥∥∥∥∥∥
∫ 1

0

K1(x, τ, yλ)dτ

√
x2 + λ2 log+(x2 + λ2)

−

∫ 1

0

K1(x, τ, y0)dτ

x log+(x2)

∥∥∥∥∥∥∥∥
L∞[0,1]

= 0 (33)

Indeed, given any ϵ > 0, we use (28),(30), and (32) to get∥∥∥∥∥∥∥∥
∫ 1

0

K1(x, τ, yλ)dτ

√
x2 + λ2 log+(x2 + λ2)

−

∫ 1

0

K1(x, τ, y0)dτ

x log+(x2)

∥∥∥∥∥∥∥∥
L∞[0,δ]

. 1

log+(δ2 + λ2)
< ϵ/2
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for δ < δ(ϵ) and λ < δ(ϵ). For fixed δ < δ(ϵ), we have∥∥∥∥∥∥∥∥
∫ 1

0

K1(x, τ, yλ)dτ

√
x2 + λ2 log+(x2 + λ2)

−

∫ 1

0

K1(x, τ, y0)dτ

x log+(x2)

∥∥∥∥∥∥∥∥
L∞[δ,1]

≤ ϵ/2,

as long as λ < λ(ϵ) (by (31)). This yields (33). �

Later, we will need the following result

Lemma 5.2. Suppose ∥g(x)− x∥L̇ip[0,1] ≤ δ ≪ 1. Then,∣∣∣∣∣∣∣∣
∫ 1

0

K1(x, τ,
√
λ2 + g2(τ))dτ

√
x2 + λ2 log+(x2 + λ2)

∣∣∣∣∣∣∣∣ . 1

uniformly in x ∈ [0, 1], λ ∈ (0, 1], and g.

Its proof repeats the argument in the previous lemma (see also the proof of lemma 7.2
below to check how the problem can be reduced to the homogeneous one for which the
scaling can be easily performed to get the desired bound). This result can also be obtained
by comparing to the case g = x and using the stability estimates established in lemma 7.1
below.

2. The coefficient A2.

Lemma 5.3. For every fixed δ > 0, we have

A2(x, λ) → A2(x, 0) =
2 log(x−2 + 1)

x log+(x2)
, λ→ 0 (34)

uniformly over x ∈ [δ, 1]. Moreover, we have an estimate

A2(x, λ) ∼
1

x
(35)

which holds uniformly in x ∈ (0, 1] and λ ∈ (0, 1].

Proof. The expression for A2(x, 0) is easy to compute and the first part of the lemma is
immediate. The formula for A2(x, λ) contains three terms. The first one involves K1 and its
asymptotics was established before. Consider the second term. By (21), we get∫ 1

0

y′λK2(x, τ, yλ)dτ = λ

∫ 1/λ

0

ξ̂√
ξ̂2 + 1

log

(
x̂+ ξ̂

x̂− ξ̂

)2

dξ̂

The similar analysis yields:
(1). Uniformly in x ∈ (δ, 1], we get∫ 1

0

y′λK2(x, τ, yλ)dτ →
∫ 1

0

K2(x, τ, y0)dτ, as λ→ 0 (36)
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(2). If x̂ ∈ [0, 1], then we can split the integral into two. The first one is∫ 1

0

ξ̂√
ξ̂2 + 1

log

(
x̂+ ξ̂

x̂− ξ̂

)2

dξ̂

We have ∫ 1

0

ξ̂ log
(
1 +

2x̂ξ̂

(x̂− ξ̂)2

)
dξ̂ = x̂2

∫ x̂−1

0

t log
(
1 +

2t

(1− t)2

)
dt ∼ x̂

So, the integration over [0, 1] amounts to O(x) after multiplication by λ.
For the integral over [1, λ−1], we get∫ 1/λ

1

ξ̂√
ξ̂2 + 1

log

(
x̂+ ξ̂

x̂− ξ̂

)2

dξ̂ = 4x̂ log(1/λ) +O(x̂)

Multiplication by λ yields∫ 1

0

y′λK2(x, τ, yλ)dτ = x
(
4 log(1/λ) +O(1)

)
(3). If x ∈ (λ, δ), then the integral over [0, 1] can be handled as before and its contribution

is at most x̂−1. The integral over [1, 1/λ] gives∫ 1/λ

1

(1+O(ξ̂−2)) log

(
x̂+ ξ̂

x̂− ξ̂

)2

dξ̂ = x̂

∫ 1/x

1/x̂

(
1 +

1

x̂2t2

)
log

(
1 + t

1− t

)2

dt = 4x̂(log(1/x)+O(1))

and we have ∫ 1

0

y′λK2(x, τ, yλ)dτ = 4x(log(1/x) +O(1)), λ→ 0

Summarizing, we get the uniform bound∫ 1

0

y′λK2(x, τ, yλ)dτ =

{
4x(log(1/λ) +O(1)), x < λ
4x(log(1/x) +O(1)), x > λ

(37)

For the third term in the expression for A2, we have

B2 = B
(1)
2 +B

(2)
2

B
(1)
2 =

2x√
x2 + λ2

∫ 1

0

(
x− ξ

√
λ2 + x2√
λ2 + ξ2

)(
yλ(x) + yλ(ξ)

(x+ ξ)2 + (yλ(x) + yλ(ξ))2

− yλ(x)− yλ(ξ)

(x− ξ)2 + (yλ(x)− yλ(ξ))2

)
dξ

B
(2)
2 =

2x√
x2 + λ2

∫ 1

0

(
x+

ξ
√
λ2 + x2√
λ2 + ξ2

)(
yλ(x) + yλ(ξ)

(x− ξ)2 + (yλ(x) + yλ(ξ))2

− yλ(x)− yλ(ξ)

(x+ ξ)2 + (yλ(x)− yλ(ξ))2

)
dξ

Rescale the variables and recall the formulas (21) and (23).
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One gets

B
(1)
2 = −λ 4x̂√

x̂2 + 1

∫ 1/λ

0

ξ̂r1√
1 + ξ̂2

(
x̂

√
1 + ξ̂2 + ξ̂

√
1 + x̂2

)
(1 + r21)

dξ̂ (38)

As before, we consider two cases.

(1). x̂ ∈ [0, 1]. For the integral over [0, 1],

0 ≤
∫ 1

0

ξ̂r1√
1 + ξ̂2

(
x̂

√
1 + ξ̂2 + ξ̂

√
1 + x̂2

)
(1 + r21)

dξ̂ . 1

The other integral allows the estimate∫ 1/λ

1

ξ̂r1√
1 + ξ̂2

(
x̂

√
1 + ξ̂2 + ξ̂

√
1 + x̂2

)
(1 + r21)

dξ̂ . log(1/λ)

since r1 ≤ 1.

(2). x̂ ∈ [1, 1/λ]. We can write

0 ≤
∫ 1/λ

0

ξ̂r1√
1 + ξ̂2

(
x̂

√
1 + ξ̂2 + ξ̂

√
1 + x̂2

)
(1 + r21)

dξ̂ . log(1/λ)

x̂
(39)

For B
(2)
2 , we have similarly

B
(2)
2 =

4λx̂√
x̂2 + 1

∫ 1/λ

0

x̂

√
ξ̂2 + 1 + ξ̂

√
x̂2 + 1√

ξ̂2 + 1

· ξ̂r1

(x̂+ ξ̂)2 + r21(x̂− ξ̂)2
dξ̂ (40)

(1). If x̂ ∈ [0, 1], we get

r1 . x̂+ ξ̂

and therefore

0 <

∫ 1

0

x̂

√
ξ̂2 + 1 + ξ̂

√
x̂2 + 1√

ξ̂2 + 1

· ξ̂r1

(x̂+ ξ̂)2 + r21(x̂− ξ̂)2
dξ̂ . 1

For the other interval, we use r1 = 1 +O(ξ̂−1) to get∫ 1/λ

1

x̂

√
ξ̂2 + 1 + ξ̂

√
x̂2 + 1√

ξ̂2 + 1

· ξ̂r1

(x̂+ ξ̂)2 + r21(x̂− ξ̂)2
dξ̂ =

x̂+
√
x̂2 + 1

2
log(1/λ) +O(1)

(2). If x̂ ∈ [1, 1/λ], then the asymptotics of r1 yields

∫ 1/λ

0

x̂

√
ξ̂2 + 1 + ξ̂

√
x̂2 + 1√

ξ̂2 + 1

· ξ̂r1

(x̂+ ξ̂)2 + r21(x̂− ξ̂)2
dξ̂ ∼ x̂

∫ 1/λ

0

ξ̂

x̂2 + ξ̂2
dξ̂ ∼ x̂ log+ x (41)
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Now, the formulas (38) and (40) imply that B
(2)
2 ≥ 0 and B

(1)
2 ≤ 0. However, B2 =

B
(2)
2 +B

(1)
2 ≥ 0. Indeed, this follows from (38), (40), and an estimate

x̂

√
ξ̂2 + 1 + ξ̂

√
1 + x̂2

(x̂+ ξ̂)2 + r21(x̂− ξ̂)2
≥ 1

(x̂

√
ξ̂2 + 1 + ξ̂

√
1 + x̂2)(1 + r21)

Thus, we have

0 ≤ B2 ≤ B
(2)
2 . x log+ λ, 0 < x < λ

and
0 ≤ B2 ≤ B

(2)
2 . x log+ x, λ < x < 1

Moreover, (39) and (41) provide a lower bound

B2 ≥ λ(C1x̂ log
+ x− C2x̂

−1 log+ λ), x > λ

and therefore
B2 ≥ C3x log

+ x (42)

for x̂ > C4 where C4 is sufficiently large absolute constant.

Consider the sum of the first two terms in (20). We have∫ 1

0

K1(x, τ, yλ)dτ −
x√

λ2 + x2

∫ 1

0

y′λ(τ)K2(x, τ, yλ)dτ

= 4 log(1/λ)(
√
x2 + λ2 − x) +O(λ), 0 < x < λ (43)

and
= 4 log(1/x)(

√
x2 + λ2 − x) +O(x), λ < x < δ (44)

Add B2 to this expression and divide by x
√
x2 + λ2 log+(x2 + λ2). On the interval x ∈

(0, C4λ), we use (43) and B2 ≥ 0 to get A2 ∼ x−1. For x ∈ (C4λ, δ), we apply (44) and (42)
to produce that same bound. If x ∈ [δ, 1], we have convergence to A2(x, 0) which is positive.

�
Similar to lemma 5.2, we have

Lemma 5.4. Suppose ∥g(x)− x∥L̇ip[0,1] ≤ δ ≪ 1. Then,∣∣∣∣∣∣∣∣
∫ 1

0

(√
λ2 + g2(τ)

)′
K2(x, τ,

√
λ2 + g2(τ))dτ

x log+(x2 + λ2)

∣∣∣∣∣∣∣∣ . 1

uniformly in x ∈ (0, 1], λ ∈ (0, 1], and g.

This result can be proved directly or by comparison to the case when g = x if the stability
estimates (see (68) below) are used.

3. The kernel M(x, ξ, λ) and the corresponding operator

In this subsection, we will show that M(x, ξ, λ) → M(x, ξ, 0) in a suitable sense when
λ→ 0. Recall that Mλ is the integral operator with the kernel M(x, ξ, λ). We have
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Lemma 5.5. Fix any δ > 0. Then,

lim
λ→0

sup
x>δ

∫ 1

0

|M(x, ξ, λ)−M(x, ξ, 0)|dξ = 0

and therefore

lim
λ→0

∥ωc
δ(x)(Mλ −M0)∥L∞[0,1],L∞[0,1] = 0

Proof. We start with

lim
λ→0

sup
x>δ

∫ 1

0

|D2(x, ξ, λ)−D2(x, ξ, 0)|dξ = 0

By (26), ∫ 1

0

|D2(x, ξ, λ)−D2(x, ξ, 0)|dξ < C(δ)

∫ 1

0

(
1− ξ√

ξ2 + λ2

)
log

∣∣∣∣x+ ξ

x− ξ

∣∣∣∣ dξ
and the last expression tends to zero uniformly in x ∈ [δ, 1] when λ→ 0.

To handle D1, we only need to show that

lim
λ→0

sup
x∈[δ,1],ξ∈[0,1]

∣∣∣∣∫ 1

ξ

D1(x, τ, λ)dτ −
∫ 1

ξ

D1(x, τ, 0)dτ

∣∣∣∣ = 0 (45)

To this end, we first simplify the expression for D1(x, τ, λ) using the formulas (21) and (23).

D1(x, ξ, λ) = D
(1)
1 +D

(2)
1 +D

(3)
1 (46)

where (below x = λx̂ and ξ = λξ̂)

D
(1)
1 (x, ξ, λ) =

1

x
√
x2 + λ2 log+(x2 + λ2)

· 4ξ̂x̂r1

(1 + r21)(ξ̂
√
1 + x̂2 + x̂

√
1 + ξ̂2)(1 + ξ̂2)

D
(2)
1 (x, ξ, λ) =

1

x
√
x2 + λ2 log+(x2 + λ2)

·

 x̂
√
1 + ξ̂2 + ξ̂

√
1 + x̂2

1 + ξ̂2

·

(
4x̂ξ̂r1

(x̂+ ξ̂)2 + (x̂− ξ̂)2r21

)

D
(3)
1 (x, ξ, λ) = − 1

x log+(x2 + λ2)
· λ2

(λ2 + ξ2)3/2
log

(
x+ ξ

x− ξ

)2

Since D
(3)
1 (x, ξ, 0) = 0, we first show that

sup
x>δ

∫ 1

0

|D(3)
1 (x, ξ, λ)|dξ → 0, λ→ 0

To see that, first split the integral∫ 1

0

λ2

(λ2 + ξ2)3/2
log

(
x+ ξ

x− ξ

)2

dξ =

∫ δ/2

0

λ2

(λ2 + ξ2)3/2
log

(
x+ ξ

x− ξ

)2

dξ

+

∫ 1

δ/2

λ2

(λ2 + ξ2)3/2
log

(
x+ ξ

x− ξ

)2

dξ
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The second integral goes to zero as λ→ 0 uniformly in x > δ. The first one is bounded by

C

∫ δ/2

0

ξλ2

(λ2 + ξ2)3/2
dξ . λ

All constants involved are δ dependent.

Similarly, D
(1)
1 (x, ξ, 0) = 0 and we have

sup
x>δ

∫ 1

0

D
(1)
1 (x, ξ, λ)dξ . λ+ λ

∫ ∞

1

x̂ξ̂dξ̂

(x̂ξ̂)(1 + ξ̂2)
. λ

For D
(2)
1 (x, ξ, 0), we have

D
(2)
1 (x, ξ, 0) =

1

x2 log+(x2)
· 4x2

x2 + ξ2

To show that

lim
λ→0

sup
x>δ,ξ>0

∫ 1

ξ

|D(2)
2 (x, τ, λ)−D

(2)
2 (x, τ, 0)|dτ = 0

it is sufficient to prove

lim
λ→0

sup
x>δ

λ

∫ 1/λ

0

∣∣∣∣∣∣
 x̂
√
1 + ξ̂2 + ξ̂

√
1 + x̂2

1 + ξ̂2

 ·

(
4x̂ξ̂r1

(x̂+ ξ̂)2 + (x̂− ξ̂)2r21

)
− 4x̂2

x̂2 + ξ̂2

∣∣∣∣∣∣ dξ̂ = 0

The integral over any interval [0, T ] is uniformly bounded. For large x̂ and ξ̂, we substitute

r1 = 1 +O

(
1

x̂ξ̂

)
,

√
1 + ξ̂2 = ξ̂ +O(ξ̂−1),

√
1 + x̂2 = x̂+O(x̂−1)

Collecting the errors produced by this substitution, we estimate this expression by

λ

∫ 1/λ

1

x̂2

x̂2 + ξ̂2
(ξ̂−2 + x̂−2)dξ̂ . λ

�
The next step is to estimate

∥ωδ(x)Mλ∥L∞[0,1],L∞[0,1]

where δ and λ are small.

Lemma 5.6. We have
lim

δ→0,λ→0
∥ωδ(x)Mλ∥L∞[0,1],L∞[0,1] = 0 (47)

Proof. We only need to show that

lim
δ→0,λ→0

sup
x∈[0,δ]

∫ 1

0

∣∣∣∣D2(x, ξ, λ) +

∫ 1

ξ

D1(x, τ, λ)dτ

∣∣∣∣ dξ = 0 (48)

It is instructive to first do that calculation for λ = 0. In this case,

1

x log+ x

∫ 1

0

∣∣∣∣(2 log ∣∣∣∣x+ ξ

x− ξ

∣∣∣∣− ∫ 1

ξ

4x

x2 + τ 2
dτ

)∣∣∣∣ dξ
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=
2

log+ x

∫ 1/x

0

∣∣∣∣∣
(
log

∣∣∣∣1 + ξ

1− ξ

∣∣∣∣− ∫ 1/x

ξ

2

1 + τ 2
dτ

)∣∣∣∣∣ dξ
We have ∫ 1/x

ξ

2

1 + τ 2
dτ =

∫ ∞

ξ

2

1 + τ 2
dτ +O(x) =

2

ξ
+O(ξ−2 + x), ξ ≫ 1

and

log

∣∣∣∣1 + ξ

1− ξ

∣∣∣∣ = 2

ξ
+O(ξ−2)

This entails the necessary cancelation and a bound

1

x log+ x

∫ 1

0

∣∣∣∣(2 log ∣∣∣∣x+ ξ

x− ξ

∣∣∣∣− ∫ 1

ξ

4x

x2 + τ 2
dτ

)∣∣∣∣ dξ . 1

log+ x

The logarithm in the denominator will give convergence to zero when x→ 0.

Now, we will need to prove analogous inequalities uniformly in small λ. The expression∫ 1

0

∣∣∣∣D2(x, ξ, λ) +

∫ 1

ξ

D1(x, τ, λ)dτ

∣∣∣∣ dξ
will be handled term by term.

We start by proving

lim
δ→0,λ→0

sup
x∈[0,δ]

∫ 1

0

∫ 1

ξ

|D(3)
1 (x, τ, λ)|dτdξ = 0 (49)

The integral is bounded by

1

x̂ log+(λ2x̂2 + λ2)

∫ 1/λ

0

∫ 1/λ

ξ̂

1

1 + τ̂ 3
log

∣∣∣∣ x̂+ τ̂

x̂− τ̂

∣∣∣∣ dτ̂dξ̂
=

1

x̂ log+(λ2x̂2 + λ2)

∫ 1/λ

0

τ̂

1 + τ̂ 3
log

∣∣∣∣ x̂+ τ̂

x̂− τ̂

∣∣∣∣ dτ̂
For the integral, an estimate holds∫ 1/λ

0

τ̂

1 + τ̂ 3
log

∣∣∣∣ x̂+ τ̂

x̂− τ̂

∣∣∣∣ dτ̂ . x̂+

∫ 1/x

1/x̂

x̂−1u−2 log

∣∣∣∣1 + u

1− u

∣∣∣∣ du
The last integral is bounded by Cx̂ for x̂ < 1. For x̂ > 1, it is estimated by C

log+ x̂

x̂
. Since

lim
λ→0

sup
x̂∈(0,1)

x̂

x̂ log+(λ2x̂2 + λ2)
. lim

λ→0

1

log+ λ
= 0

and

lim
λ→0

sup
x̂>1

log+ x̂

x̂2 log+(λ2x̂2 + λ2)
. lim

λ→0

1

log+ λ
= 0

we get (49).
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Consider the other terms∫ 1

0

∣∣∣∣D2(x, ξ, λ) +

∫ 1

ξ

(
D

(1)
1 (x, τ, λ) +D

(2)
1 (x, τ, λ)

)
dτ

∣∣∣∣ dξ
. 1

x̂
√
x̂2 + 1 log+(λ2x̂2 + λ2)

∫ 1/λ

0

∣∣∣∣∣∣
√
x̂2 + 1√
ξ̂2 + 1

ξ̂ log

(
x̂+ ξ̂

x̂− ξ̂

)2

−

−
∫ 1/λ

ξ̂

(
4τ̂ x̂r1

(1 + r21)(1 + τ̂ 2)(τ̂
√
1 + x̂2 + x̂

√
1 + τ̂ 2)

+
x̂
√
1 + τ̂ 2 + τ̂

√
1 + x̂2

1 + τ̂ 2
· 4x̂τ̂ r1
(x̂+ τ̂)2 + (x̂− τ̂)2r21

)
dτ̂

∣∣∣∣∣ dξ̂
)

We consider two cases.
(1). Take x̂ ∈ (0, 1]. First, let ξ̂ ∈ (0, 1). We get∫ 1

0

∣∣∣∣∣∣
√
x̂2 + 1√
ξ̂2 + 1

ξ̂ log

(
x̂+ ξ̂

x̂− ξ̂

)2

−
∫ 1/λ

ξ̂

(
4τ̂ x̂r1

(1 + r21)(1 + τ̂ 2)(τ̂
√
1 + x̂2 + x̂

√
1 + τ̂ 2)

+
x̂
√
1 + τ̂ 2 + τ̂

√
1 + x̂2

1 + τ̂ 2
· 4x̂τ̂ r1
(x̂+ τ̂)2 + (x̂− τ̂)2r21

)
dτ̂

∣∣∣∣∣ dξ̂
. x̂+ x̂

∫ 1

0

dξ̂

∫ 1/λ

ξ̂

(
τ̂

(1 + τ̂ 2)(τ̂ + x̂+ τ̂ x̂)
+

τ̂(τ̂ + x̂+ τ̂ x̂)

(1 + τ̂ 2)(x̂2 + τ̂ 2)

)
dτ̂ . x̂

Thus, this gives O((log+ λ)−1) contribution when divided by x̂
√
x̂2 + 1 log+(λ2x̂2 + λ2). If

ξ̂ > 1, we can use the asymptotical formulas r1 = 1 + O(ξ̂−1) and

√
ξ̂2 + 1 = ξ̂ + O(ξ̂−1) to

get ∫ 1/λ

1

∣∣∣∣∣∣
√
x̂2 + 1√
ξ̂2 + 1

ξ̂ log

(
x̂+ ξ̂

x̂− ξ̂

)2

−
∫ 1/λ

ξ̂

(
4τ̂ x̂r1

(1 + r21)(1 + τ̂ 2)(τ̂
√
1 + x̂2 + x̂

√
1 + τ̂ 2)

+
x̂
√
1 + τ̂ 2 + τ̂

√
1 + x̂2

1 + τ̂ 2
· 4x̂τ̂ r1
(x̂+ τ̂)2 + (x̂− τ̂)2r21

)
dτ̂

∣∣∣∣∣ dξ̂
=

∫ 1/λ

1

∣∣∣∣∣4x̂
√
x̂2 + 1

ξ̂
(1 +O(ξ̂−2 + x̂ξ̂−1))−

−
∫ 1/λ

ξ̂

(
2x̂

x̂+
√
x̂2 + 1

+ 2x̂(x̂+
√
1 + x̂2)

)
τ̂−2 + x̂O(τ̂−3)dτ̂

∣∣∣∣∣ dξ̂ . x̂

Indeed,
2x̂

x̂+
√
x̂2 + 1

+ 2x̂(x̂+
√
1 + x̂2) = 4x̂

√
1 + x̂2

and we have cancelation of the main terms.
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Summing up these estimates, we get∫ 1

0

∣∣∣∣D2(x, ξ, λ) +

∫ 1

ξ

(
D

(1)
1 (x, τ, λ) +D

(2)
1 (x, τ, λ)

)
dτ

∣∣∣∣ dξ . 1

log+ λ
, x ∈ (0, λ) (50)

(2). Consider the case when x̂ > 1. First, take ξ̂ ∈ (0, 1). We get

∫ 1

0

∣∣∣∣∣∣
√
x̂2 + 1√
ξ̂2 + 1

ξ̂ log

(
x̂+ ξ̂

x̂− ξ̂

)2

dξ̂

∣∣∣∣∣∣ . 1

and ∫ 1

0

∫ 1/λ

ξ̂

(
2τ̂ x̂r1

(1 + r21)(1 + τ̂ 2)(τ̂
√
1 + x̂2 + x̂

√
1 + τ̂ 2)

+
x̂
√
1 + τ̂ 2 + τ̂

√
1 + x̂2

1 + τ̂ 2
· 4x̂τ̂ r1
(x̂+ τ̂)2 + (x̂− τ̂)2r21

)
dτ̂ dξ̂ . 1 + x̂

Thus, this gives the contribution bounded by

sup
x̂>1

1

x̂ log+(λ2x̂2 + λ2)
. 1

log+ λ

For the interval ξ̂ ∈ (1, λ−1), we again use asymptotics for r1,
√
x̂2 + 1, and

√
ξ̂2 + 1:∫ 1/λ

1

∣∣∣∣∣∣√x̂2 + 1(1 +O(ξ̂−2)) log

(
x̂+ ξ̂

x̂− ξ̂

)2

−

−
∫ 1/λ

ξ̂

2x̂

τ̂

(
1

τ̂
√
1 + x̂2 + x̂τ̂

+
τ̂
√
1 + x̂2 + x̂τ̂

x̂2 + τ̂ 2

)
(1 +O(τ̂−1x̂−1 + τ̂−2))dτ̂

∣∣∣∣∣ dξ̂
The errors produce the term bounded by C(log+ x̂ + x̂) and the change of variables in the
integrals gives∫ 1/x

1/x̂

∣∣∣∣∣x̂√1 + x̂2 log

(
1 + u

1− u

)2

−
∫ 1/x

u

2x̂τ−1

(
1

τ(
√
x̂2 + 1 + x̂)

+
τ(
√
x̂2 + 1 + x̂)

τ 2 + 1

)
dτ

∣∣∣∣∣ du
First, notice that

x̂

∫ 1/x

1/x̂

∣∣∣∣∣
∫ ∞

1/x

2τ−1

(
1

τ(
√
x̂2 + 1 + x̂)

+
τ(
√
x̂2 + 1 + x̂)

τ 2 + 1

)
dτ

∣∣∣∣∣ du . x̂2

Then,∫ 1

1/x̂

∣∣∣∣∣x̂√1 + x̂2 log

(
1 + u

1− u

)2

− x̂

∫ ∞

u

2τ−1

(
1

τ(
√
x̂2 + 1 + x̂)

+
τ(
√
x̂2 + 1 + x̂)

τ 2 + 1

)
dτ

∣∣∣∣∣ du .

. x̂2 + log+ x̂
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and
1/x∫
1

∣∣∣∣∣∣x̂√1 + x̂2 log

(
1 + u

1− u

)2

−
∞∫
u

2x̂

τ

(
1

τ(
√
x̂2 + 1 + x̂)

+
τ(
√
x̂2 + 1 + x̂)

τ 2 + 1

)
dτ

∣∣∣∣∣∣ du . x̂2

after the cancelation of the main terms in the asymptotics. Collecting these bounds, we get∫ 1

0

∣∣∣∣D2(x, ξ, λ) +

∫ 1

ξ

(
D

(1)
1 (x, τ, λ) +D

(2)
1 (x, τ, λ)

)
dτ

∣∣∣∣ dξ ≤ x̂√
x̂2 + 1 log+(x2 + λ2)

which (together with (49) and (50)) gives (48) and finishes the proof. �
We immediately get the following

Corollary 5.1.
lim
λ→0

∥Mλ −M0∥L∞[0,1],L∞[0,1] = 0

Proof. It is sufficient to apply lemma 5.5 and lemma 5.6. �

5.3. Inverting Lλ. Divide the equation

Lλu = g

by A1(x, λ) to rewrite it as

u′ + pu+

∫ 1

0

M2(x, ξ, λ)u
′(ξ)dξ = g1

where

p(x, λ) =
A2(x, λ)

A1(x, λ

and

M2(x, ξ, λ) =
M(x, ξ, λ)

A1(x, λ)
, g1 =

g(x)

A1(x, λ)

Due to (28) and (29), this is a minor change as far as inversion of Lλ is concerned.
The equation

u′ + pu = F, u(0) = 0

has the solution

u =

∫ x

0

exp

(
−
∫ x

ξ

p(t)dt

)
F (ξ)dξ

and therefore

u′ = F − p

∫ x

0

exp

(
−
∫ x

ξ

p(t)dt

)
F (ξ)dξ

This is the same as

u′(x) = g2(x)−
∫ 1

0

M2(x, ξ, λ)u
′(ξ)dξ (51)

+p(x)

∫ x

0

exp

(
−
∫ x

t

p(τ)dτ

)∫ 1

0

M2(t, ξ, λ)u
′(ξ)dξdt
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and

g2(x) = g1(x)− p(x)

∫ x

0

exp

(
−
∫ x

ξ

p(t)dt

)
g1(ξ)dξ

We can rewrite

u′ +Oλu
′ = Bλg, u′ = (I +Oλ)

−1Bλg (52)

provided that I +Oλ is invertible. The expressions for Oλ and Bλ are as follows

Bλg = g2 =
g(x)

A1(x, λ)
− A2(x, λ)

A1(x, λ)

∫ x

0

exp

(
−
∫ x

ξ

A2(t, λ)

A1(t, λ)
dt

)
g(ξ)

A1(ξ, λ)
dξ

and

Oλf =
1

A1(x, λ)
(Mλf)(x)− (53)

−A2(x, λ)

A1(x, λ)

∫ x

0

exp

(
−
∫ x

ξ

A2(t, λ)

A1(t, λ)
dt

)
(Mλf)(ξ)

A1(ξ, λ)
dξ

Lemma 5.7. We have

∥Bλ∥L∞[0,1],L∞[0,1] . 1 (54)

uniformly in λ ∈ (0, λ0).

Proof. Since both A1 and A2 are positive, we have

|Bλg(x)| ≤ C

(
∥g∥L∞[0,1] +

1

x

∫ x

0

|g(ξ)|dξ
)

uniformly in λ ∈ (0, λ0) and x ∈ (0, 1] as follows from the analysis of A1 and A2. This gives
(54). �

Consider Oλ. We have

Lemma 5.8.

∥Oλ −O0∥L∞[0,1],L∞[0,1] → 0, λ→ 0

Proof. For the first term,∥∥∥∥ 1

A1(x, λ)
Mλf − 1

A1(x, 0)
M0f

∥∥∥∥
L∞[0,1]

= o(1)∥f∥L∞[0,1],

and o(1) → 0 when λ → 0, uniformly in f . Indeed, this follows from the corollary 5.1 and
the properties of A1(x, λ).

The second term can be written as

ωδ(x) ·
A2(x, λ)

A1(x, λ)

∫ x

0

exp

(
−
∫ x

ξ

A2(t, λ)

A1(t, λ)
dt

)
(Mλf)(ξ)

A1(ξ, λ)
dξ

+ωc
δ(x) ·

A2(x, λ)

A1(x, λ)

∫ x

0

exp

(
−
∫ x

ξ

A2(t, λ)

A1(t, λ)
dt

)
(Mλf)(ξ)

A1(ξ, λ)
dξ

where δ > 0. If we denote the first/second expressions by S1(2), then

|S1| .
1

x

∫ x

0

χξ<δ

∣∣∣∣(Mλf)(ξ)

A1(ξ, λ)

∣∣∣∣ dξ
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and
lim

δ→0,λ→0
∥S1∥L∞[0,1],L∞[0,1] = 0

The last equality follows from (47).
For S2, one can write similarly

S2 = ωc
δ(x) ·

A2(x, λ)

A1(x, λ)

∫ x

0

χξ<δ · exp
(
−
∫ x

ξ

A2(t, λ)

A1(t, λ)
dt

)
(Mλf)(ξ)

A1(ξ, λ)
dξ

+ωc
δ(x) ·

A2(x, λ)

A1(x, λ)

∫ x

0

χξ>δ · exp
(
−
∫ x

ξ

A2(t, λ)

A1(t, λ)
dt

)
(Mλf)(ξ)

A1(ξ, λ)
dξ

The first expression can be handled in the same way. For the second, we consider∥∥∥∥ωc
δ(x) ·

A2(x, λ)

A1(x, λ)

∫ x

0

χξ>δ · exp
(
−
∫ x

ξ

A2(t, λ)

A1(t, λ)
dt

)
(Mλf)(ξ)

A1(ξ, λ)
dξ

− ωc
δ(x) ·

A2(x, 0)

A1(x, 0)

∫ x

0

χξ>δ · exp
(
−
∫ x

ξ

A2(t, 0)

A1(t, 0)
dt

)
(M0f)(ξ)

A1(ξ, 0)
dξ

∥∥∥∥
L∞[0,1]

If δ > 0 is fixed, this expression is bounded by o(1)∥f∥L∞[0,1] as λ → 0 (with constant
depending on δ). That follows directly from the properties of A1(2) and Mλ. Combining the
obtained estimates we get the statement of the lemma. �

By the standard argument of the perturbation theory, this lemma implies that inversion
of I + Oλ can be reduced to showing that I + O0 is invertible. In the next section, we will
check that.

5.3.1. The operator O0 and its properties.

Theorem 5.1. The operator I +O0 is invertible in L∞[0, 1].

Proof. For the case λ = 0, the formulas are very simple. We recall that

K1(x, ξ, y0) = K2(x, ξ, y0) = log

(
x+ ξ

x− ξ

)2

Then, (28) and (34) imply that

A1(x, 0) =
1

log+ x2

∫ 1/x

0

log

(
1 + ξ

1− ξ

)2

dξ = 2 + o(1), x→ 0

and

A2(x, 0) =
2

x log+ x2
log(x−2 + 1) =

2

x
+ o(x), x→ 0

Thus,

p(x, 0) =
A2(x, 0)

A1(x, 0)
=

1

x
+ o(x), x→ 0

Then,

D2(x, ξ) = − 1

x log+ x2
log

(
x+ ξ

x− ξ

)2
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and

D1(x, ξ) =
4

(x2 + ξ2) log+ x2

Therefore,

M(x, ξ, 0) =
1

x log+ x2

(
− log

(
x+ ξ

x− ξ

)2

+

∫ 1

ξ

4x

x2 + τ 2
dτ

)
and

M2(x, ξ, 0) =
M(x, ξ, 0)

A1(x, 0)

where A1 ∼ 1 on all of [0, 1].

Lemma 5.9. The operator

G2f =

∫ 1

0

M2(x, ξ, 0)f(ξ)dξ

is compact in L∞[0, 1].

Proof. First, notice that

|G2f | .
∥f∥∞
log+ x

∫ 1/x

0

∣∣∣∣∣log
(
1 + ξ

1− ξ

)2

− 4

∫ 1/x

ξ

dτ

τ 2 + 1

∣∣∣∣∣ dξ . ∥f∥∞
log+ x

(55)

and thus G2 is bounded in L∞[0, 1].
The compactness now follows by the standard approximation argument. Let us write a

partition of unity 1 = ϕδ + ϕc
δ. Then, (55) yields ∥ϕδG2∥L∞[0,1],L∞[0,1] → 0 as δ → 0. Then,

for fixed δ > 0, ϕc
δG2 is compact since the kernel has a weak singularity on the diagonal

and is smooth away from it. Since the space of compact operators is closed in the operator
topology, we have the statement of the lemma. �

For O0, one gets

O0f =
1

A1(x, 0)
M0f − A2(x, 0)

A1(x, 0)

∫ x

0

exp

(
−
∫ x

ξ

A2(t, 0)

A1(t, 0)
dt

)
(M0f)(ξ)

A1(ξ, 0)
dξ (56)

= (G2f)(x)−
A2(x, 0)

A1(x, 0)

∫ x

0

exp

(
−
∫ x

ξ

A2(t, 0)

A1(t, 0)
dt

)
(G2f)(ξ)dξ

Since the operator G3 defined by

G3f =
A2(x, 0)

A1(x, 0)

∫ x

0

exp

(
−
∫ x

ξ

A2(t, 0)

A1(t, 0)
dt

)
f(ξ)dξ

is bounded in L∞[0, 1], we get the compactness for O0 in view of lemma 5.9. Therefore, the
Fredholm theory is applicable to I + O0. In particular, to prove invertibility of I + O0, we
only need to check that its kernel is trivial.

Consider the equation
(I +O0)f = 0

and suppose that f ∈ L∞[0, 1]. Recall (52). The equation

L0u = 0, u ∈ L̇ip[0, 1] (57)
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is equivalent to

(I +O0)u
′ = 0, u(x) =

∫ x

0

f(t)dt

Thus, we only need to check that L0 has zero kernel in L̇ip[0, 1].
The equation (57) is equivalent to∫ 1

0

(u′(x)− u′(ξ))K1(x, ξ, y0)dξ + 8

∫ 1

0

H ′(2x2 + 2ξ2)(ξu(x) + xu(ξ))dξ = 0, u ∈ L̇ip[0, 1]

where

K1(x, ξ, y0) = H(2(x+ ξ)2)−H(2(x− ξ)2) = log

(
x+ ξ

x− ξ

)2

since H(x) = log x in that case. Multiply the both sides by u and integrate over [0, 1]. For
the general H, we have

0.5

∫ 1

0

(u(1)− u(ξ))2
(
H(2(1 + ξ)2)−H(2(1− ξ)2)

)
dξ

−2

∫ 1

0

∫ 1

0

(u(x)− u(ξ))2
(
H ′(2(x+ ξ)2)(x+ ξ)−H ′(2(x− ξ)2)(x− ξ)

))
dxdξ

+8

∫ 1

0

u2(x)

∫ 1

0

ξH ′(2x2 + 2ξ2)dξdx+ 8

∫ 1

0

∫ 1

0

u(x)u(ξ)xH ′(2ξ2 + 2x2)dxdξ

= I1 + . . .+ I4

Let us study this expression term by term.

If u1(x) = u(1)− u(x), then

I1 =

∫ 1

0

u21(x) log

∣∣∣∣1 + x

1− x

∣∣∣∣ dx ≥ 0

This is actually true for generic H that are monotonically increasing.

Using the symmetrization of the integrals, we get the following expressions

I2 = −
∫ 1

0

∫ 1

0

(u(x)− u(ξ))2

x+ ξ
dxdξ = −2

∫ 1

0

u2(x) log

(
1 + x

x

)
dx

+2

∫ 1

0

∫ 1

0

u(x)u(ξ)

x+ ξ
dxdξ

I3 = 2

∫ 1

0

u2(x) log(1 + x−2)dx

I4 = 4

∫ 1

0

∫ 1

0

u(x)u(ξ)
x

x2 + ξ2
dxdξ = 2

∫ 1

0

∫ 1

0

u(x)u(ξ)
x+ ξ

x2 + ξ2
dxdξ

Notice now that the sum of the first term in I2 and I3 is

2

∫ 1

0

u2(x) log

(
x+ x−1

1 + x

)
dx ≥ 0

because x+ x−1 ≥ x+ 1 if x ∈ (0, 1].
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In the calculations that follow, the condition u(x) = O(x), x → 0 will ensure the conver-
gence of all integrals involved. Since the Hilbert matrix is nonnegative ([10], proof of the
theorem 5.3.1.), the integral

G(u) =

∫ 1

0

u(ξ)

x+ ξ
dξ

defines a positive definite operator in L2(0, 1). Thus,

G1(u) =

∫ 1

0

u(ξ)

x2 + ξ2
dξ

is positive definite as well, as the change of variables in the quadratic form shows. Also,

x+ ξ

x2 + ξ2
=

1

x+ ξ
+

2xξ

(x2 + ξ2)(x+ ξ)

So, we only need to establish that

G2u =

∫ 1

0

xξu(ξ)

(x2 + ξ2)(x+ ξ)
dξ

is positive definite. That, however, is the corollary of the Schur’s theorem for the Hadamard
product of the positive definite matrices ([10], p.319), written for the integral operators (e.g.,
by the Riemann sum approximation). Indeed, it is sufficient to notice that

xξ

x2 + ξ2

is a positive definite kernel (again, by the change of variables in the quadratic form). �
Summing up the results of this section, we obtain (14).

6. ∥ψ0∥L̇ip[0,1] is small.

In this section, we will prove (17), the smallness of initial data for the contraction mapping.

Lemma 6.1. We have
∥ψ0∥L̇ip[0,1] = o(1), λ→ 0 (58)

Proof. As it follows from the previous section, we only need to show

∥F (x, λ)∥L∞[0,1] = o(1), λ→ 0 (59)

Recall the definition of F ,

F (x, λ) =
1

x
√
λ2 + x2 log+(x2 + λ2)

(
x

∫ 1

0

K1(x, τ, yλ)dτ −
√
λ2 + x2

∫ 1

0

y′λ(τ)K2(x, τ, yλ)dτ

)
For any given δ > 0, we clearly have

lim
λ→0

∥ωc
δ · F (x, λ)∥L∞[0,1] = 0

For x < δ, we can use the asymptotics established above (e.g., (30), (32), and (37)). This
gives

∥ωδ · F (x, λ)∥L∞[0,1] .
1

log+(δ2 + λ2)
These two estimates finish the proof of the lemma. �
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7. The Frechet differentiability.

In this section, we study Q(u) given by

Q(u) = F (f, λ)− F (x, λ)−DfF (x, λ)u, f = x+ u

and prove (15) and (16). We assume in this section that λ ∈ (0, 1). Notice first that Q(0) = 0
and therefore (15) follows from (16). Let us prove (16).

We write

Q(u2) = F (x+ u2, λ)− F (x, λ)−DfF (x, λ)(x+ u2)

Q(u1) = F (x+ u1, λ)− F (x, λ)−DfF (x, λ)(x+ u1)

Subtract and write

|Q(u2)−Q(u1)| ≤ |F (x+ u2, λ)− F (x+ u1, λ)−DfF (x+ u1, λ)(u2 − u1)|

+|
(
DfF (x+ u1, λ)−DfF (x, λ)

)
(u2 − u1)|

for every point x ∈ (0, 1]. Thus, we only have to prove two bounds:

∥F (x+ u2, λ)− F (x+ u1, λ)−DfF (x+ u1, λ)(u2 − u1)∥L∞[0,1] = o(1)∥u2 − u1∥L̇ip[0,1] (60)

and

∥DfF (x+ u, λ)−DfF (x, λ)∥L̇ip[0,1],L∞[0,1] = o(1), ∥u∥L̇ip[0,1] ≤ δ, δ → 0 (61)

7.1. The proof of (60). We start with proving (60).

Denote ρ(x) = x+ u1(x). By our assumptions we have

∥ρ′(x)− 1∥L∞[0,1] ≤ δ ≪ 1, ρ(0) = 0

Therefore,

ρ(x) = x

(
1 +

∫ 1

0

(ρ′(xt)− 1)dt

)
= x(1 +O(δ))

Remark. We will use the following property many times in the arguments below. Given
arbitrary M > 0, the scaled function ρM(x̂) =Mρ(M−1x̂) satisfies:

ρM(0) = 0, ∥ρ′M(x̂)− 1∥L∞[0,M ] ≤ δ

Moreover, if ∥h− g∥L̇ip[0,1] ≤ ϵ, then ∥hM − gM∥L̇ip[0,M ] ≤ ϵ after scaling.

Take t ∈ R with |t| < t0 = ∥u2 − u1∥L̇ip[0,1] and f : ∥f∥L̇ip[0,1] ≤ 1. Consider ft(x) =

ρ(x) + tf(x). We only need to show that

∥F (ft, λ)− F (f0, λ)− tDfF (f0, λ)f∥L∞[0,1] = to(1), t→ 0 (62)

uniformly in f and ρ.
Fix arbitrary x ∈ (0, 1] and apply the mean-value formula to F (ft, λ)− F (f0, λ),

F (ft, λ)− F (f0, λ) = t
P1 + . . .+ P6

x
√
x2 + λ2 log+(x2 + λ2)
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where t1(x) ∈ [0, t]. Introducing Yλ,t(x) =
√
λ2 + f2

t (x), we get

P1 = f(ρ′ + t1f
′)

∫ 1

0

K1(x, τ, Yλ,t1)dτ

P2 = (ρ+ t1f)f
′
∫ 1

0

K1(x, τ, Yλ,t1)dτ

P3 = 2(ρ+ t1f)(ρ
′ + t1f

′) (X1 + . . .+X4)

where

X1 =

∫ 1

0

Yλ,t1(x) + Yλ,t1(τ)

(x+ τ)2 + (Yλ,t1(x) + Yλ,t1(τ))
2

(
ft1(x)f(x)

Yλ,t1(x)
+
ft1(τ)f(τ)

Yλ,t1(τ)

)
dτ

X2 =

∫ 1

0

Yλ,t1(x) + Yλ,t1(τ)

(x− τ)2 + (Yλ,t1(x) + Yλ,t1(τ))
2

(
ft1(x)f(x)

Yλ,t1(x)
+
ft1(τ)f(τ)

Yλ,t1(τ)

)
dτ

X3 = −
∫ 1

0

Yλ,t1(x)− Yλ,t1(τ)

(x− τ)2 + (Yλ,t1(x)− Yλ,t1(τ))
2

(
ft1(x)f(x)

Yλ,t1(x)
− ft1(τ)f(τ)

Yλ,t1(τ)

)
dτ

X4 = −
∫ 1

0

Yλ,t1(x)− Yλ,t1(τ)

(x+ τ)2 + (Yλ,t1(x)− Yλ,t1(τ))
2

(
ft1(x)f(x)

Yλ,t1(x)
− ft1(τ)f(τ)

Yλ,t1(τ)

)
dτ

and

P4 = − ft1f

Yλ,t1

∫ 1

0

Y ′
λ,t1

(τ)K2(x, τ, Yλ,t1)dτ

P5 = −Yλ,t1
∫ 1

0

(
ft1f

Yλ,t1

)′

K2(x, τ, Yλ,t1)dτ

P6 = −2Yλ,t1(L1 + . . .+ L4)

Similarly, for {Lj} we have

L1 =

∫ 1

0

Y ′
λ,t1

(τ)
Yλ,t1(x) + Yλ,t1(τ)

(x+ τ)2 + (Yλ,t1(x) + Yλ,t1(τ))
2

(
ft1(x)f(x)

Yλ,t1(x)
+
ft1(τ)f(τ)

Yλ,t1(τ)

)
dτ

L2 = −
∫ 1

0

Y ′
λ,t1

(τ)
Yλ,t1(x) + Yλ,t1(τ)

(x− τ)2 + (Yλ,t1(x) + Yλ,t1(τ))
2

(
ft1(x)f(x)

Yλ,t1(x)
+
ft1(τ)f(τ)

Yλ,t1(τ)

)
dτ

L3 = −
∫ 1

0

Y ′
λ,t1

(τ)
Yλ,t1(x)− Yλ,t1(τ)

(x− τ)2 + (Yλ,t1(x)− Yλ,t1(τ))
2

(
ft1(x)f(x)

Yλ,t1(x)
− ft1(τ)f(τ)

Yλ,t1(τ)

)
dτ

L4 =

∫ 1

0

Y ′
λ,t1

(τ)
Yλ,t1(x)− Yλ,t1(τ)

(x+ τ)2 + (Yλ,t1(x)− Yλ,t1(τ))
2

(
ft1(x)f(x)

Yλ,t1(x)
− ft1(τ)f(τ)

Yλ,t1(τ)

)
dτ

We need to show that∥∥∥∥(P1 + . . .+ P6)− (P 0
1 + . . .+ P 0

6 )

x
√
λ2 + x2 log+(x2 + λ2)

∥∥∥∥
L∞[0,1]

= o(1)

as t→ 0 uniformly in f and ρ. Here P 0
j are the similar expressions taken with t1 = 0.
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(1). We start with P1 − P 0
1 .

1

x
√
x2 + λ2 log+(x2 + λ2)

∣∣∣∣f(ρ′ + t1f
′)

∫ 1

0

K1(x, τ, Yλ,t1)dτ − fρ′
∫ 1

0

K1(x, τ, Yλ,0)dτ

∣∣∣∣
≤ t√

x2 + λ2 log+(x2 + λ2)

∫ 1

0

K1(x, τ, Yλ,t1)dτ (63)

+
1√

x2 + λ2 log+(x2 + λ2)

∣∣∣∣∫ 1

0

K1(x, τ, Yλ,t1)dτ −
∫ 1

0

K1(x, τ, Yλ,0)dτ

∣∣∣∣
To handle the first term, we use the lemma 5.2. The lemma 7.1 below takes care of the
second term.

Lemma 7.1. We have∥∥∥∥∥
∫ 1

0
K1(x, τ, Yλ,t1)dτ −

∫ 1

0
K1(x, τ, Yλ,0)dτ√

x2 + λ2 log+(x2 + λ2)

∥∥∥∥∥
L∞[0,1]

= o(1), t→ 0

uniformly in λ, f , and ρ.

Proof. By the mean-value formula we have∫ 1

0

K1(x, τ, Yλ,t1)dτ −
∫ 1

0

K1(x, τ, Yλ,0)dτ = t1(x)(X̂1 + . . .+ X̂4)

where the expressions X̂j are different from Xj defined above only by t1 replaced with t2.
The bound ∥∥∥∥∥ X̂1 + . . .+ X̂4√

x2 + λ2 log+(x2 + λ2)

∥∥∥∥∥
L∞[0,1]

. 1

follows from the theorem 7.1 below. �
(2). The term P2 − P 0

2 can be handled in exactly the same way.

(3). The term P3 − P 0
3 is more complicated.

Arguing similarly to P1, we only need to prove the following theorem.

Theorem 7.1. ∥∥∥∥(X1 + . . .+X4)− (X0
1 + . . .+X0

4 )√
x2 + λ2 log+(x2 + λ2)

∥∥∥∥
L∞[0,1]

= o(1), t→ 0

and ∥∥∥∥ X0
1 + . . .+X0

4√
x2 + λ2 log+(x2 + λ2)

∥∥∥∥
L∞[0,1]

. 1

uniformly in λ, f , and ρ.

Proof. Let us introduce x = λx̂ and τ = λτ̂ . Notice that

Yλ,t(λx̂) = λ
√
1 + (λ−1ft(λx̂))2

Let us focus of X1+X3 first. We are going to prove the following general result. Once we do
that, it suffices to apply it to the scaled X1 +X3 by taking y1(x) = f(x) and y2(x) = ft1(x).

36



Lemma 7.2. Suppose y1, y2, ỹ2 ∈ L̇ip[0, λ−1] and

∥y′1∥L∞[0,1/λ] ≤ 1, ∥y′2 − ỹ′2∥L∞[0,1/λ] ≤ ϵ, ∥y′2 − 1∥L∞[0,1/λ] ≪ 1

If one defines

H =
1√

x̂2 + 1 log+(λ2(x̂2 + 1))

∫ 1/λ

0

((
y1(x̂)y2(x̂)√
1 + y22(x̂)

+
y1(τ̂)y2(τ̂)√
1 + y22(τ̂)

)

×
√

1 + y22(x̂) +
√

1 + y22(τ̂)

(x̂+ τ̂)2 + (
√

1 + y22(x̂) +
√

1 + y22(τ̂))
2

−

(
y1(x̂)y2(x̂)√
1 + y22(x̂)

− y1(τ̂)y2(τ̂)√
1 + y22(τ̂)

)
×

√
1 + y22(x̂)−

√
1 + y22(τ̂)

(x̂− τ̂)2 + (
√
1 + y22(x̂)−

√
1 + y22(τ̂))

2

)
dτ̂

and

H̃ =
1√

x̂2 + 1 log+(λ2(x̂2 + 1))

∫ 1/λ

0

((
y1(x̂)ỹ2(x̂)√
1 + ỹ22(x̂)

+
y1(τ̂)ỹ2(τ̂)√
1 + ỹ22(τ̂)

)

×
√

1 + ỹ22(x̂) +
√

1 + ỹ22(τ̂)

(x̂+ τ̂)2 + (
√

1 + ỹ22(x̂) +
√

1 + ỹ22(τ̂))
2

−

(
y1(x̂)ỹ2(x̂)√
1 + ỹ22(x̂)

− y1(τ̂)ỹ2(τ̂)√
1 + ỹ22(τ̂)

)
×

√
1 + ỹ22(x̂)−

√
1 + ỹ22(τ̂)

(x̂− τ̂)2 + (
√
1 + ỹ22(x̂)−

√
1 + ỹ22(τ̂))

2

)
dτ̂

then
∥H − H̃∥L∞[0,1/λ] = o(1), ϵ→ 0

and
∥H∥L∞[0,1/λ] . 1

uniformly in λ ∈ (0, 1), y1, y2, and ỹ2.

Proof. We will study H in detail and, in particular, its stability in y2. That will give the
necessary bounds. Notice first that∣∣∣∣∣ y2(x̂)√

y22(x̂) + 1
− ỹ2(x̂)√

ỹ22(x̂) + 1

∣∣∣∣∣ .
{

ϵx̂, x̂ < 1
ϵx̂−2, x̂ > 1

(64)

The second term in the formula for H has the singularity of the type (x̂− τ̂)2 in the denom-
inator. However, this is compensated by the zero in the numerator and

sup
x̂

∣∣∣∣∣
∫
|τ̂−x̂|<1

(
y1(x̂)y2(x̂)√
1 + y22(x̂)

− y1(τ̂)y2(τ̂)√
1 + y22(τ̂)

) √
1 + y22(x̂)−

√
1 + y22(τ̂)

(x̂− τ̂)2 + (
√

1 + y22(x̂)−
√
1 + y22(τ̂))

2

−

(
y1(x̂)ỹ2(x̂)√
1 + ỹ22(x̂)

− y1(τ̂)ỹ2(τ̂)√
1 + ỹ22(τ̂)

) √
1 + ỹ22(x̂)−

√
1 + ỹ22(τ̂)

(x̂− τ̂)2 + (
√
1 + ỹ2(x̂)−

√
1 + ỹ22(τ̂))

2
dτ̂

∣∣∣∣∣ = o(1)

when ϵ→ 0 as follows from the lemma 9.1 in Appendix. Indeed,∣∣∣∣∣
(
y1(x̂)y2(x̂)√
1 + y22(x̂)

− y1(x̂)ỹ2(x̂)√
1 + ỹ22(x̂)

)′∣∣∣∣∣ .
{
ϵx̂, x̂ < 1
ϵ, x̂ > 1
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∣∣∣∣(√1 + y22(x̂)−
√

1 + ỹ22(x̂)

)′∣∣∣∣ . { ϵx̂, x̂ < 1
ϵ, x̂ > 1

and ∣∣∣∣∣
(
y1(x̂)y2(x̂)√
1 + y22(x̂)

)′∣∣∣∣∣ . x̂

x̂+ 1
,

∣∣∣∣(√1 + y22(x̂)

)′∣∣∣∣ . x̂

x̂+ 1

Notice also that, in the expression for H, the integral over every finite interval gives the
bounded contribution after division by

√
x̂2 + 1 log+(λ2(x̂2 + 1)). We also have its stability

in y2. Therefore, we can focus on τ̂ : |x̂− τ̂ | > 1 only. We consider two cases: x̂ ∈ (0, 1] and
x̂ ∈ [1, λ−1].

(1). Let x̂ ∈ (0, 1]. Clearly, we can assume that τ̂ ≫ 1. Let

H =
B1 +B2√

x̂2 + 1 log+(λ2(x̂2 + 1))

where

B1 =
y1(x̂)y2(x̂)√
1 + y22(x̂)

∫ 1/λ

0

( √
1 + y22(x̂) +

√
1 + y22(τ̂)

(x̂+ τ̂)2 + (
√
1 + y22(x̂) +

√
1 + y22(τ̂))

2
−

√
1 + y22(x̂)−

√
1 + y22(τ̂)

(x̂− τ̂)2 + (
√

1 + y22(x̂)−
√

1 + y22(τ̂))
2

)
dτ̂

and

B2 =

∫ 1/λ

0

y1(τ̂)y2(τ̂)√
1 + y22(τ̂)

( √
1 + y22(x̂) +

√
1 + y22(τ̂)

(x̂+ τ̂)2 + (
√
1 + y22(x̂) +

√
1 + y22(τ̂))

2
+

√
1 + y22(x̂)−

√
1 + y22(τ̂)

(x̂− τ̂)2 + (
√

1 + y22(x̂)−
√

1 + y22(τ̂))
2

)
dτ̂

We only need to handle integration over τ̂ ∈ [2, 1/λ].
Consider B2 first. The integrand has asymptotics

y1(τ̂)

(
2
√
1 + y22(x̂)(τ̂

2 + y22(τ̂))
−1 − 4y2(τ̂)

x̂τ̂ +
√
1 + y22(τ̂)

√
1 + y22(x̂)

(τ̂ 2 + y22(τ̂))
2

)
(1 +O(τ̂−1))

Thus, we immediately have a bound

|B2| . log+ λ

Comparing the integral with the one where y2 is replaced by ỹ2 gives us the necessary stability
estimate ∣∣∣∣∣

∫ 1/λ

1

y1(τ̂)

τ̂ 2 + y22(τ̂)
dτ̂ −

∫ 1/λ

1

y1(τ̂)

τ̂ 2 + ỹ22(τ̂)
dτ̂

∣∣∣∣∣ = O(ϵ) log+ λ (65)

and the same estimates are valid for other integrals involved. For the remainder O(τ̂−1), the
corresponding function is bounded by Cτ̂−2 and this decay is integrable giving a uniformly
small number when integrated over [T, 1/λ] with large T . For the integral over any finite
interval τ̂ ∈ [0, T ], the stability easily follows. Thus, we first take T large and then send
ϵ→ 0. This will ensure the stability in y2.
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For B1, the estimates are very similar. The estimate (64) gives the stability for the first
factor

y1(x̂)y2(x̂)√
1 + y22(x̂)

and the asymptotics of the integrand is
2y2(τ̂)

τ̂ 2 + y22(τ̂)
+O(τ̂−2). Thus, we can use an estimate

similar to (65).

(2). Consider the case x̂ > 1 now and assume that |x̂− τ̂ | > 1 in the integration.
For τ̂ > 1 and x̂ > 1, we can write√

1 + y22(x̂) = y2(x̂)(1 +O(x̂−2))√
1 + y22(x̂) +

√
1 + y22(τ̂) = (y2(x̂) + y2(τ̂))R

−1
1 (66)√

1 + y22(x̂)−
√
1 + y22(τ̂) = (y2(x̂)− y2(τ̂))R1

and

R1 = 1 +O

(
1

x̂τ̂

)
Let us control how the integral will change if we replace

√
1 + y22(x̂) by y2(x̂) and

√
1 + y22(x̂)+√

1 + y22(τ̂) by y2(x̂) + y2(τ̂). The errors produced in B2, for example, are at most

C1 + C2

∫ λ−1

1

(
1

τ̂
+

1

x̂

)
1

|x̂− τ̂ |+ 1
dτ̂ . 1 +

log x̂+ log+ λ

x̂

The estimate for B1 is the same. Now, notice that

sup
x̂>T,λ∈(0,1)

log x̂+ log+ λ+ x̂

x̂2 log+(λ2(x̂2 + 1))
. 1√

T
→ 0, T → ∞

Since on every finite interval of integration τ̂ ∈ [0, T ] we have stability in y2, we only need
to handle∫

τ̂∈[0,λ−1]

∣∣∣∣(y1(x̂) + y1(τ̂))(y2(x̂) + y2(τ̂))

(x̂+ τ̂)2 + (y2(x̂) + y2(τ̂))2
− (y1(x̂)− y1(τ̂))(y2(x̂)− y2(τ̂))

(x̂− τ̂)2 + (y2(x̂)− y2(τ̂))2

∣∣∣∣ dτ̂
Let us change the variable τ̂ = x̂α and introduce two functions:

f(α, x̂) = x̂−1y1(αx̂), g(α, x̂) = x̂−1y2(αx̂) (67)

As before, we have f(0, x̂) = g(0, x̂) = 0,

|∂αf(α, x̂)| = |y′1(αx̂)| ≤ 1, |f(α, x̂)| ≤ α

and

|∂αg(α, x̂)− 1| = |y′2(αx̂)− 1| . 1,

Moreover, if g̃ is the scaling of ỹ2, then

∥g′ − g̃′∥L∞[0,1/λ] ≤ ϵ
39



These estimates are uniform in x̂. The integral takes the form

x̂

∫ 1/x

0

∣∣∣∣(f(1) + f(α))(g(1) + g(α))

(1 + α)2 + (g(1) + g(α))2
− (f(1)− f(α))(g(1)− g(α))

(1− α)2 + (g(1)− g(α))2

∣∣∣∣ dα
We can rewrite

(f(1)− f(α))(g(1)− g(α))

(1− α)2 + (g(1)− g(α))2
=

f(1)− f(α)

1− α
· g(1)− g(α)

1− α

1 +

(
g(1)− g(α)

1− α

)2

and the lemma 9.1 proves stability for the interval |α− 1| < 1. Then, the stability in g can
be easily seen for every interval α ∈ [0, T ] given fixed T as the corresponding error is o(1)x̂
when ϵ→ 0 and

o(1) sup
x̂>1

x̂√
x̂2 + 1 log+(λ2(x̂2 + 1))

= o(1)

For large α, we get the asymptotics

(f(1) + f(α))(g(1) + g(α))

(1 + α)2 + (g(1) + g(α))2
− (f(1)− f(α))(g(1)− g(α))

(1− α)2 + (g(1)− g(α))2
=

−4f(α)g(α)(α+ g(1)g(α))

(α2 + g2(α))2
+

2(f(1)g(α) + g(1)f(α)

α2 + g2(α)
+O(α−2)

The error O(α−2) is integrable and the comparison of the leading terms to the analogous
expressions with g replaced by g̃ gives the error at most

o(1)

∫ 1/x

1

dα

α
= o(1) log+ x

This leads to the error of the size

o(1)
x̂ log+ x√

x̂2 + 1 log+(x2 + λ2)
= o(1), ϵ→ 0

uniformly in λ and x > λ. �
Now, we need to handle the other combination: X2 + X4. The analysis here is nearly

identical and is based on the following lemma.

Lemma 7.3. Suppose y1, y2, ỹ2 ∈ L̇ip[0, λ−1] and

∥y′1∥L∞[0,1/λ] ≤ 1, ∥y′2 − ỹ′2∥L∞[0,1/λ] ≤ ϵ, ∥y′2 − 1∥L∞[0,1/λ] ≪ 1

If one defines

H(1) =
1√

x̂2 + 1 log+(λ2(x̂2 + 1))

∫ 1/λ

0

((
y1(x̂)y2(x̂)√
1 + y22(x̂)

+
y1(τ̂)y2(τ̂)√
1 + y22(τ̂)

)

×
√

1 + y22(x̂) +
√

1 + y22(τ̂)

(x̂− τ̂)2 + (
√
1 + y22(x̂) +

√
1 + y22(τ̂))

2

−

(
y1(x̂)y2(x̂)√
1 + y22(x̂)

− y1(τ̂)y2(τ̂)√
1 + y22(τ̂)

)
×

√
1 + y22(x̂)−

√
1 + y22(τ̂)

(x̂+ τ̂)2 + (
√

1 + y22(x̂)−
√

1 + y22(τ̂))
2

)
dτ̂
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and

H̃(1) =
1√

x̂2 + 1 log+(λ2(x̂2 + 1))

∫ 1/λ

0

((
y1(x̂)ỹ2(x̂)√
1 + ỹ22(x̂)

+
y1(τ̂)ỹ2(τ̂)√
1 + ỹ22(τ̂)

)

×
√

1 + ỹ22(x̂) +
√

1 + ỹ22(τ̂)

(x̂− τ̂)2 + (
√
1 + ỹ22(x̂) +

√
1 + ỹ22(τ̂))

2

−

(
y1(x̂)ỹ2(x̂)√
1 + ỹ22(x̂)

− y1(τ̂)ỹ2(τ̂)√
1 + ỹ22(τ̂)

)
×

√
1 + ỹ22(x̂)−

√
1 + ỹ22(τ̂)

(x̂+ τ̂)2 + (
√

1 + ỹ22(x̂)−
√

1 + ỹ22(τ̂))
2

)
dτ̂

then, uniformly in y1, y2, ỹ2 and λ ∈ (0, 1), we have

∥H(1) − H̃(1)∥L∞[0,1/λ] = o(1), ϵ→ 0

and
∥H(1)∥L∞[0,1/λ] . 1

Proof. The proof of this lemma repeats the argument for the previous one word for word.
The only minor change is contained in how we handle the singularity in the denominator of
X4 when both x and τ go to zero. After the rescaling, we have an integral∣∣∣∣∣

∫ 1

0

(
y1(x̂)y2(x̂)√
1 + y22(x̂)

− y1(τ̂)y2(τ̂)√
1 + y22(τ̂)

) √
1 + y22(x̂)−

√
1 + y22(τ̂)

(x̂+ τ̂)2 + (
√
1 + y22(x̂)−

√
1 + y22(τ̂))

2
dτ̂

∣∣∣∣∣
.
∫ 1

0

|x̂− τ̂ |2

x̂2 + τ̂ 2
dτ̂ . 1

by the application of mean-value theorem. The stability of this expression in y2 follows from
the lemma 9.1. �

This finishes the proof of theorem 7.1. �

We continue now with the other terms: P4, P5 and P6.

(4). Consider the term P4 − P 0
4 .

To study the stability in t, it is more convenient to rescale by λ and consider y1(x̂) =
λ−1f(x̂λ) and y2(x̂) = λ−1ft(x̂λ). Then, the problem is reduced to proving the stability of

P4 =
1

x̂
√
1 + x̂2 log+(λ2(x̂2 + 1))

y1(x̂)y2(x̂)√
1 + y22(x̂)

∫ 1/λ

0

y2(τ̂)y
′
2(τ̂)√

1 + y22(τ̂)
K2(x̂, τ̂ ,

√
1 + y22(τ̂))dτ̂

in y2. As before, we will be taking ỹ2 with ∥y′2 − ỹ′2∥L∞[0,1/λ] ≤ ϵ and making a comparison.
By (64) and lemma 5.4, we have∣∣∣∣∣y1(x̂)

(
y2(x̂)√
1 + y22(x̂)

− ỹ2(x̂)√
1 + ỹ2(x̂)

)∫ 1/λ

0

y2(τ̂)y
′
2(τ̂)√

1 + y22(τ̂)
K2(x̂, τ̂ ,

√
1 + y22(τ̂))dτ̂

∣∣∣∣∣
≤ ϵx̂3 log(1/λ), x̂ ∈ (0, 1)

and
≤ ϵ log(1/x), x̂ > 1

Thus, after division, it gives an error at most ϵ.
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For the next term, (64) again gives∣∣∣∣∣ y1(x̂)y2(x̂)√
1 + y22(x̂)

∫ 1/λ

0

(
y2(τ̂)y

′
2(τ̂)√

1 + y22(τ̂)
− ỹ2(τ̂)ỹ

′
2(τ̂)√

1 + ỹ22(τ̂)

)
K2(x̂, τ̂ ,

√
1 + y22(τ̂))dτ̂

∣∣∣∣∣
. ϵx̂

∫ 1

0

τ̂ |K2(x̂, τ̂ ,
√
1 + y22(τ̂))|dτ̂ + ϵx̂

∫ 1/λ

1

|K2(x̂, τ̂ ,
√

1 + y22(τ̂))|dτ̂

. ϵx̂2 log(1/λ), x̂ < 1

and

. ϵx̂2 log(1/x), x̂ > 1

After division by x̂
√
x̂2 + 1 log+(λ2(x̂2 + 1)), it gives an error at most O(ϵ).

For the last term

y1(x̂)y2(x̂)√
1 + y22(x̂)

∫ 1/λ

0

y2(τ̂)y
′
2(τ̂)√

1 + y22(τ̂)

(
K2(x̂, τ̂ ,

√
1 + y22(τ̂))−K2(x̂, τ̂ ,

√
1 + ỹ22(τ))

)
dτ̂ (68)

we can apply the mean value theorem and the resulting derivative of the kernel can be
handled by the theorem 7.2 below. As the result, the expression above can be bounded by

. x̂2 log(1/λ)o(1), x̂ < 1

and

. x̂2 log(1/x)o(1), x̂ > 1

Upon division by

x̂
√
x̂2 + 1 log+(λ2(x̂2 + 1))

this is at most o(1).

(5). The term P5 − P 0
5 can be estimated similarly.

Indeed, after scaling we have the following expression√
1 + y22(x̂)

∫ 1/λ

0

(
y′1

y2√
1 + y22

+ y1y
′
2(1 + y22)

−1.5

)
K2(x̂, τ̂ ,

√
1 + y22(τ̂))dτ̂

and we can repeat the steps from the previous argument.

(6). We are left to handle P6 − P 0
6 .

This analysis is very similar to the one performed for P3. However, we give details for
completeness.

Theorem 7.2.∥∥∥∥Yλ,t(L1 + . . .+ L4)− Yλ,0(L
0
1 + . . .+ L0

4)

x
√
x2 + λ2 log+(x2 + λ2)

∥∥∥∥
L∞[0,1]

= o(1), t→ 0

uniformly in λ.
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Proof. Rescale by λ and rewrite the problem for y1 and y2, as before. Notice first that

|
√

1 + y22 −
√
1 + ỹ22| ≤ ϵx̂2, x̂ < 1

and

|
√
1 + y22 −

√
1 + ỹ22| ≤ ϵx̂, x̂ > 1

so we only need to show that∥∥∥∥(L1 + . . .+ L4)− (L0
1 + . . .+ L0

4)

x log+(x2 + λ2)

∥∥∥∥
L∞[0,1]

= o(1), t→ 0

and ∥∥∥∥ L0
1 + . . .+ L0

4

x log+(x2 + λ2)

∥∥∥∥
L∞[0,1]

. 1 (69)

We group (L1 + L2) − (L0
1 + L0

2) and (L3 + L4) − (L0
3 + L0

4) and start with the following
lemma which handles L3 + L4.

Lemma 7.4. Suppose y1, y2, ỹ2 ∈ L̇ip[0, λ−1] and

∥y′1∥L∞[0,1/λ] ≤ 1, ∥y′2 − ỹ′2∥L∞[0,1/λ] ≤ ϵ, ∥y′2 − 1∥L∞[0,1/λ] ≪ 1

If one defines

U =
1

x̂ log+(λ2(x̂2 + 1))

∫ 1/λ

0

∣∣∣∣∣ y2(τ̂)y′2(τ̂)√
1 + y22(τ̂)

[(
y1(x̂)y2(x̂)√
1 + y22(x̂)

− y1(τ̂)y2(τ̂)√
1 + y22(τ̂)

)
×( √

1 + y22(x̂)−
√

1 + y22(τ̂)

(x̂+ τ̂)2 + (
√

1 + y22(x̂)−
√
1 + y22(τ̂))

2
−

√
1 + y22(x̂)−

√
1 + y22(τ̂)

(x̂− τ̂)2 + (
√
1 + y22(x̂)−

√
1 + y22(τ̂))

2

)]

− ỹ2(τ̂)ỹ
′
2(τ̂)√

1 + ỹ22(τ̂)

[(
y1(x̂)ỹ2(x̂)√
1 + ỹ22(x̂)

− y1(τ̂)ỹ2(τ̂)√
1 + ỹ22(τ̂)

)
×( √

1 + ỹ22(x̂)−
√

1 + ỹ22(τ̂)

(x̂+ τ̂)2 + (
√

1 + ỹ22(x̂)−
√
1 + ỹ22(τ̂))

2
−

√
1 + ỹ22(x̂)−

√
1 + ỹ22(τ̂)

(x̂− τ̂)2 + (
√

1 + ỹ22(x̂)−
√
1 + ỹ22(τ̂))

2

)]∣∣∣∣∣ dτ̂
then, uniformly in y1, y2, ỹ2 and λ ∈ (0, 1), we have

∥U∥L∞[0,1/λ] = o(1), ϵ→ 0

Notice that in this lemma we take an absolute value inside the integration as that will
make an argument more transparent.

Proof. We first prove that∥∥∥∥∥ 1

x̂ log+(λ2(x̂2 + 1))

∫ 1/λ

0

∣∣∣∣∣
(
y2(τ̂)y

′
2(τ̂)√

1 + y22(τ̂)
− ỹ2(τ̂)ỹ

′
2(τ̂)√

1 + ỹ22(τ̂)

)
×(

y1(x̂)y2(x̂)√
1 + y22(x̂)

− y1(τ̂)y2(τ̂)√
1 + y22(τ̂)

)
×

( √
1 + y22(x̂)−

√
1 + y22(τ̂)

(x̂+ τ̂)2 + (
√

1 + y22(x̂)−
√
1 + y22(τ̂))

2
(70)

−
√

1 + y22(x̂)−
√
1 + y22(τ̂)

(x̂− τ̂)2 + (
√
1 + y22(x̂)−

√
1 + y22(τ̂))

2

)∣∣∣∣∣ dτ̂
∥∥∥∥∥
L∞[0,λ−1]

= o(1)
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as ϵ→ 0, uniformly in parameters. Let us observe that∣∣∣∣∣ y2(τ̂)y′2(τ̂)√
1 + y22(τ̂)

− ỹ2(τ̂)ỹ
′
2(τ̂)√

1 + ỹ22(τ̂)

∣∣∣∣∣ . ϵτ̂ , τ̂ < 1

and ∣∣∣∣∣ y2(τ̂)y′2(τ̂)√
1 + y22(τ̂)

− ỹ2(τ̂)ỹ
′
2(τ̂)√

1 + ỹ22(τ̂)

∣∣∣∣∣ . ϵ, τ̂ > 1

Therefore, to show (70) it is sufficient to use an estimate (72) proved below, and the following
inequality

1

x̂ log+(λ2(x̂2 + 1))

∫ 1/λ

0

∣∣∣∣ τ̂√
τ̂ 2 + 1

×(
y1(x̂)y2(x̂)√
1 + y22(x̂)

− y1(τ̂)y2(τ̂)√
1 + y22(τ̂)

)
×

( √
1 + y22(x̂)−

√
1 + y22(τ̂)

(x̂+ τ̂)2 + (
√

1 + y22(x̂)−
√
1 + y22(τ̂))

2
(71)

−
√
1 + y22(x̂)−

√
1 + y22(τ̂)

(x̂− τ̂)2 + (
√
1 + y22(x̂)−

√
1 + y22(τ̂))

2

)∣∣∣∣∣ dτ̂ . 1

The latter can be achieved in a standard way by following, e.g, the estimates in the proof of
(72).

Now, consider

U (1) =
1

x̂ log+(λ2(x̂2 + 1))

∫ 1/λ

0

τ̂√
1 + τ̂ 2

|F (x̂, τ̂)− F0(x̂, τ̂)|dτ̂

where

F =

(
y1(x̂)y2(x̂)√
1 + y22(x̂)

− y1(τ̂)y2(τ̂)√
1 + y22(τ̂)

)( √
1 + y22(x̂)−

√
1 + y22(τ̂)

(x̂+ τ̂)2 + (
√
1 + y22(x̂)−

√
1 + y22(τ̂))

2

−
√

1 + y22(x̂)−
√
1 + y22(τ̂)

(x̂− τ̂)2 + (
√
1 + y22(x̂)−

√
1 + y22(τ̂))

2

)
and

F0 =

(
y1(x̂)ỹ2(x̂)√
1 + ỹ22(x̂)

− y1(τ̂)ỹ2(τ̂)√
1 + ỹ22(τ̂)

)( √
1 + ỹ22(x̂)−

√
1 + ỹ22(τ̂)

(x̂+ τ̂)2 + (
√

1 + ỹ22(x̂)−
√

1 + ỹ22(τ̂))
2

−
√

1 + ỹ22(x̂)−
√
1 + ỹ22(τ̂)

(x̂− τ̂)2 + (
√
1 + ỹ22(x̂)−

√
1 + ỹ22(τ̂))

2

)
We are going to prove that

∥U (1)∥L∞[0,1/λ] = o(1), ϵ→ 0 (72)

Consider the case x̂ ∈ [0, 1]. The regime x̂ → 0 is what makes the difference when
compared to the same analysis for P3. Take F and rewrite it as follows

F = −4x̂τ̂

(
y1(x̂)y2(x̂)√
1 + y22(x̂)

− y1(τ̂)y2(τ̂)√
1 + y22(τ̂)

)
×

√
1 + y22(x̂)−

√
1 + y22(τ̂)

(x̂+ τ̂)2 + (
√

1 + y22(x̂)−
√

1 + y22(τ̂))
2
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× 1

(x̂− τ̂)2 + (
√

1 + y22(x̂)−
√

1 + y22(τ̂))
2

The lemma 9.1 yields ∫ T

σ

|F − F0|dτ̂ = x̂o(1), ϵ→ 0

for every fixed T > σ > 0. For the integration over [0, σ], we get∫ σ

0

(|F |+ |F0|)dτ̂ . x̂

∫ σ

0

(x̂+ τ̂)τ̂

x̂2 + τ̂ 2
dτ̂ . x̂σ

This gives ∫ T

0

|F − F0|dτ̂ = x̂o(1), ϵ→ 0

Now, for x̂ ∈ [0, 1], the asymptotics for large τ̂ are

F = −4x̂τ̂ y1(τ̂)y2(τ̂)

(τ̂ 2 + y22(τ̂))
2
+O(τ̂−2), F0 = −4x̂τ̂ y1(τ̂)ỹ2(τ̂)

(τ̂ 2 + ỹ22(τ̂))
2
+O(τ̂−2)

and therefore

sup
x̂∈[0,1]

∫ 1/λ

T

|F − F0|dτ̂ = o(1)x̂ log+ λ+ CT−1

That shows U (1) is small uniformly in λ and x̂ ∈ [0, 1] as long as ϵ → 0. Similarly, we can
handle an interval x̂ ∈ [0, T ] with arbitrary large fixed T . In case of x̂ > T , we can treat the
interval |τ̂ − x̂| < 1 using lemma 9.1 as before. Outside this interval, we again use (66) to
get (compare with (67)) ∫ 1/λ

1

|F − F0|dτ̂ .

x̂

∫ 1/x

0

u|f(1)− f(u)|
∣∣∣∣ g(1)− g(u)

((1 + u)2 + (g(1)− g(u))2)((1− u)2 + (g(1)− g(u))2)

− g̃(1)− g̃(u)

((1 + u)2 + (g̃(1)− g̃(u))2)((1− u)2 + (g̃(1)− g̃(u))2)

∣∣∣∣ du+ log+ λ

Computing the asymptotics at infinity, we obtain that the last quantity is

o(1)x̂ log+ x, ϵ→ 0

Then,

sup
x̂>T

o(1)x̂ log+ x+ log+ λ

x̂ log+(λ2(x̂2 + 1))
= o(1) + T−1/2

as long as T < λ−1/2. This bound proves that U (1) is small.
�

The combination L1 + L2 is handled similarly. We need the following lemma for that.
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Lemma 7.5. Suppose y1, y2, ỹ2 ∈ L̇ip[0, λ−1] and

∥y′1∥L∞[0,1/λ] ≤ 1, ∥y′2 − ỹ′2∥L∞[0,1/λ] ≤ ϵ, ∥y′2 − 1∥L∞[0,1/λ] ≪ 1

If one defines

V =
1

x̂ log+(λ2(x̂2 + 1))

∫ 1/λ

0

∣∣∣∣∣ y2(τ̂)y′2(τ̂)√
1 + y22(τ̂)

[(
y1(x̂)y2(x̂)√
1 + y22(x̂)

+
y1(τ̂)y2(τ̂)√
1 + y22(τ̂)

)
×

( √
1 + y22(x̂) +

√
1 + y22(τ̂)

(x̂+ τ̂)2 + (
√
1 + y22(x̂) +

√
1 + y22(τ̂))

2
−

√
1 + y22(x̂) +

√
1 + y22(τ̂)

(x̂− τ̂)2 + (
√
1 + y22(x̂) +

√
1 + y22(τ̂))

2

)]

− ỹ2(τ̂)ỹ
′
2(τ̂)√

1 + ỹ22(τ̂)

[(
y1(x̂)ỹ2(x̂)√
1 + ỹ22(x̂)

+
y1(τ̂)ỹ2(τ̂)√
1 + ỹ22(τ̂)

)
×

( √
1 + ỹ22(x̂) +

√
1 + ỹ22(τ̂)

(x̂+ τ̂)2 + (
√
1 + ỹ22(x̂) +

√
1 + ỹ22(τ̂))

2
−

√
1 + ỹ22(x̂) +

√
1 + ỹ22(τ̂)

(x̂− τ̂)2 + (
√

1 + ỹ22(x̂) +
√

1 + ỹ22(τ̂))
2

)]∣∣∣∣∣ dτ̂
then, uniformly in y1, y2, ỹ2 and λ ∈ (0, 1), we have

∥V ∥L∞[0,1/λ] = o(1), ϵ→ 0

Proof. The proof of this lemma is nearly identical. It is actually easier as the singularities
in the denominator are absent. �

The bound (69) follows easily from the arguments given in the proofs of lemmas 7.4 and
7.5. The proof of the theorem 7.2 is now finished. �

7.2. The bound (61). The estimate (61) was in fact already proved in the previous sub-
section. Indeed, recall (18). The derivative of F involves six terms: I1 + . . .+ I6.

For instance, I2 gives the following operator(
1

x
√
x2 + λ2 log+(x2 + λ2)

f

∫ 1

0

K1(x, τ,
√
λ2 + f2)dτ

)
v′

from L̇ip[0, 1] to L∞[0, 1]. Take f = x + u where ∥u∥L̇ip[0,1] ≤ ϵ. Then, one needs to show
that

sup
λ∈(0,1],∥v∥L̇ip[0,1]≤1,∥u∥L̇ip[0,1]≤ϵ

∥∥∥∥ 1

x
√
x2 + λ2 log+(x2 + λ2)

(
f

∫ 1

0

K1(x, τ,
√
λ2 + f 2)dτ

−x
∫ 1

0

K1(x, τ,
√
λ2 + x2)dτ

)
v′
∥∥∥∥
L∞[0,1]

= o(1), ϵ→ 0

The proof of that, however, repeats the one for (63) where ρ = x. All other terms corre-
sponding to {Ij}j ̸=2 can be handled similarly and that gives (61).

46



8. The proof of the main theorem and regularity of solutions.

We start with proving theorem 2.1.

Proof. We can rewrite the equation (13) as

ψ = Oψ

and the items (a), (b), and (c) stated on the same page were all justified. In particular, we
can choose sufficiently small δ and λ0 such that for every λ ∈ (0, λ0) the operator O has the
unique fixed point in Bδ = {ψ : ∥ψ∥L̇ip[0,1] ≤ δ}. It follows from the construction (and (58)

in particular) that the solution

y(x, λ) =
√
λ2 + (x+ ψ(x, λ))2

converges to |x| as λ → 0. Moreover, one immediately has y(x, λ) ∈ Lip[−1, 1]. Since y
is positive, one can substitute it to the equation and get y ∈ C1[−1, 1]. This regularity,
however, will be significantly improved in the next theorem. �

Remark. The self-similar behavior around the origin predicted by (12) is an immediate
corollary of (58).

Let us prove now that the solution y(x, λ) is actually infinitely smooth.

Theorem 8.1. For every λ ∈ (0, λ0), we have y(x, λ) ∈ C∞(−1, 1).

Proof. The bound (11) implies that K1(x, ξ, y) > 0 and thus
∫ 1

−1
K(x, ξ, y)dξ > 0 as well.

We have

y′(x, λ) =

∫ 1

−1

y′(ξ, λ)K(x, ξ, y)dξ∫ 1

−1

K(x, ξ, y)dξ

(73)

and one might want to differentiate this expression consecutively hoping to use the standard
bootstrapping argument. Recall that

K(x, ξ, y) = log
(
(x+ ξ)2 + (y(x) + y(ξ))2

)
− log

(
(x− ξ)2 + (y(x)− y(ξ))2

)
and the first term presents no problem for bootstrapping as log is smooth on (0,∞) and (x+
ξ)2+(y(x)+y(ξ))2 is strictly positive. However, the second term log ((x− ξ)2 + (y(x)− y(ξ))2)
might be problematic. We will show now how to handle it. Notice that all potentially singular
integrals in (73) can be written as∫ 1

−1

g(ξ) log((x− ξ)2 + (y(x)− y(ξ)2)dξ (74)

where g is either equal to 1 or to y′(ξ). The logarithm can be represented as

log((x− ξ)2 + (y(x)− y(ξ)2) = 2 log |x− ξ|+ log

(
1 +

(
y(x)− y(ξ

x− ξ

)2
)

Suppose we fix λ so small that the contraction mapping works. We take Hδ(x) =
log(

√
δ2 + x2) instead of H(x) = log x and denote the corresponding kernel by Kδ. Then, in

a similar way, one can prove the existence of yδ(x, λ) and yδ(x, λ) → y(x, λ), δ → 0 uniformly
over [−1, 1]. Since Hδ ∈ C∞(−1, 1), we immediately get yδ(x, λ) ∈ C∞(−1, 1) so the lemmas
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from the Appendix are applicable. We want to obtain estimates on ∥yδ∥Cn[−a,a] that are
uniform in δ.

To this end, proceed by induction. Our inductive assumption is that ∥y(n)δ ∥L∞[−b,b] <
C(n, b) with every b : b < 1, uniformly in δ. The contraction mapping argument gives us
this condition for n = 1. Now, let us show how to use the lemmas from the Appendix to
cover n = 2. We set ϵ = 1/2.

Consider

y′δ(x)P (x) =

∫ 1

−1

y′δ(ξ)Kδ(x, ξ, yδ)dξ (75)

with

P (x) =

∫ 1

−1

Kδ(x, ξ, yδ)dξ

Then,

∆x1,x2(y
′
δP ) = (∆x1,x2y

′
δ)P (x1) + (∆x1,x2P )y

′
δ(x2)

and so

(∆x1,x2y
′
δ)P (x1) = −(∆x1,x2P )y

′
δ(x2) + ∆x1,x2

(∫ 1

−1

Kδ(x, ξ, yδ)dξ

)
The first step is to show that ∥y′δ∥C1/2[−b,b] is bounded uniformly in δ for every b < 1. To this
end, it is sufficient to estimate ∆x1,x2y

′
δ. Notice that P is positive and so poses no problem.

The factor y′δ is uniformly bounded by the inductive assumption. Consider

∆x1,x2P, ∆x1,x2

(∫ 1

−1

Kδ(x, ξ, yδ)dξ

)
(76)

and focus on the terms of the form (74). In P , the function∫ 1

−1

log |x− ξ|dξ

is smooth. For ∫ 1

−1

log

(
1 +

(
yδ(x)− yδ(ξ

x− ξ

)2
)
dξ

we apply lemma 9.3 and an interpolation bound

sup
x1,x2∈[−b,b]

∣∣∣∣ ∆x1,x2f

|x1 − x2|1/2

∣∣∣∣ .√∥f∥C1[−b,b]∥f∥C[−b,b]

to get

sup
x1,x2∈[−b,b]

∣∣∣∣ ∆x1,x2P

|x1 − x2|1/2

∣∣∣∣ . (∥yδ∥C1.5[−b,b]

)1/2
For the second function in (76), we argue similarly. The estimate (79) gives

sup
x1,x2∈[−b,b]

∣∣∣∣∣∣∣∣∣
∆x1,x2

∫ 1

−1

y′δ(ξ) log |x− ξ|dξ

|x1 − x2|1/2

∣∣∣∣∣∣∣∣∣ . 1
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by the inductive assumption. Therefore, we get

∥y′δ∥C1/2[−b,b] . 1 +
(
∥y′δ∥C1/2[−b,b]

)1/2
which implies the uniform bound on ∥y′δ∥C1/2[−b,b] for any b < 1.

Now, differentiate (75) to get

y′′δP + y′δP
′ =

(∫ 1

−1

y′δ(ξ)Kδ(x, ξ, yδ)dξ

)′

We have P ′ ∈ C[−b, b] by lemma 9.3. Then,(∫ 1

−1

y′δ(ξ)Kδ(x, ξ, yδ)dξ

)′

∈ C[−b, b]

with bounds uniform in δ as follows from lemma 9.3 and (78). That shows ∥yδ∥Cn[−b,b] is
bounded uniformly in δ for n = 2.

For a general n, we argue similarly. Differentiation (75) (n− 1) times gives

y
(n)
δ (x)P (x) + Ωn−1(x) = ∂(n−1)

x

∫ 1

−1

y′δ(ξ)Kδ(x, ξ, yδ)dξ

Using the inductive assumption, we first show that all norms ∥yδ∥Cn+0.5[−b,b] are bounded
uniformly in δ. Then, we bootstrap that to Cn+1 norm.

Once the δ-independent bounds for ∥yδ∥C(n)[−a,a] are established, we can take δ → 0. That
gives y(x, λ) ∈ Cn[−a, a] for every n. Indeed, there is a sequence {yδj} → u in Cn[−a, a]
by Arzela-Ascoli and so u ∈ Cn[−a, a]. However this includes the uniform convergence so
y = u. Since n is arbitrary, we get the statement of the theorem. �

9. Appendix.

Lemma 9.1. If ∥f ′ − g′∥L∞[0,T ] ≤ δ, then∣∣∣∣f(x)− f(y)

x− y
− g(x)− g(y)

x− y

∣∣∣∣ ≤ δ

uniformly in x, y ∈ [0, T ].

Proof. Indeed, it follows from the following representation

Υf (x, y) =
f(x)− f(y)

x− y
=

∫ 1

0

f ′(y + (x− y)t)dt (77)

�
The next lemmas are needed to show that the solution y(x, λ) is infinitely smooth.

Lemma 9.2. Suppose f ∈ C∞(−1, 1) and 0 < a < b ≤ 1. Then, for every ϵ ∈ (0, 1),∥∥∥∥∫ 1

−1

f(ξ) log |x− ξ|dξ
∥∥∥∥
Cn[−a,a]

< C(n, a, b, ϵ)(∥f∥Cn−1+ϵ[−b,b] + ∥f∥L∞[−1,1]) (78)

and ∥∥∥∥∫ 1

−1

f(ξ) log |x− ξ|dξ
∥∥∥∥
Cn+ϵ[−a,a]

< C(n, a, b, ϵ)(∥f (n)∥L∞[−b,b] + ∥f∥L∞[−1,1]) (79)
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Proof. The convolution structure of the kernel implies that it is sufficient to prove the state-
ment for n = 1 only. This amounts to checking that∥∥∥∥∫ 1

−1

f(x)− f(ξ)

x− ξ
dξ

∥∥∥∥
C[−a,a]

. ∥f∥Cϵ[−b,b] + ∥f∥L∞[−1,1]

which is trivial. The estimate (79) can be obtained in a similar way. �

Lemma 9.3. Suppose f(x) ∈ C∞[−1, 1] and g(x) ∈ C[−1, 1]. Then∥∥∥∥∥
∫ 1

−1

g(ξ) log

(
1 +

(
f(x)− f(ξ)

x− ξ

)2
)
dξ

∥∥∥∥∥
C1[−1,1]

< Cϵ∥f∥C1+ϵ[−1,1]∥g∥C[−1,1]

with Cϵ independent of f .

Proof. We write (77) and differentiate to get∣∣∣∣∣
∫ 1

−1

g(ξ)
2Υf (x, ξ)

1 + Υ2
f (x, ξ)

(∫ 1

0

f ′′(ξ + (x− ξ)t)tdt

)
dξ

∣∣∣∣∣
. ∥g∥C[−1,1]

∫ 1

−1

∣∣∣∣∫ 1

0

∂t(f
′(ξ + (x− ξ)t)− f ′(ξ))

x− ξ
tdt

∣∣∣∣ dξ
. ∥g∥C[−1,1]

∫ 1

−1

∥f ′∥Cϵ[−1,1]|x− ξ|ϵ

|x− ξ|
dξ . ϵ−1∥f∥C1+ϵ[−1,1]∥g∥C[−1,1]

�

By consecutive differentiation, one gets

Lemma 9.4. Suppose f(x) ∈ C∞[−1, 1] and g(x) ∈ C[−1, 1]. Then∥∥∥∥∥
∫ 1

−1

g(ξ) log

(
1 +

(
f(x)− f(ξ)

x− ξ

)2
)
dξ

∥∥∥∥∥
Cn[−1,1]

<
(
Cn(ϵ)∥f∥Cn+ϵ[−1,1]+Fn(∥f∥Cn[−1,1])

)
∥g∥C[−1,1]

where Fn is a certain function of ∥f∥Cn[−1,1] only.

Proof. The proof is identical to the previous one. �

Remark. The lemmas 9.2 and 9.4 will hold true if we replace log x by log
√
x2 + δ2. The

resulting estimates will be δ independent.
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