
JACOBI MATRICES ON TREES GENERATED BY ANGELESCO SYSTEMS: ASYMPTOTICS
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ALEXANDER I. APTEKAREV, SERGEY A. DENISOV, AND MAXIM L. YATTSELEV

Abstract. We continue studying the connection between Jacobi matrices defined on a tree and multiple orthogonal
polynomials (MOPs) that was discovered in [8]. In this paper, we consider Angelesco systems formed by two analytic
weights and obtain asymptotics of the recurrence coefficients and strong asymptotics of MOPs along all directions
(including the marginal ones). These results are then applied to show that the essential spectrum of the related Jacobi
matrix is the union of intervals of orthogonality.
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1. Introduction

It is well-known [1] that the spectral theory of one-sided self-adjoint Jacobi matrices can be naturally studied
in the context of orthogonal polynomials on the real line and, conversely, many results in the latter topic find
an operator-theoretic interpretation. In [8], we discovered that a wide class of multiple orthogonal polynomials
(MOPs), e.g., celebrated Angelesco systems, is connected to self-adjoint Jacobi matrices defined on rooted
Cayley trees. The present paper makes a further step in this direction. We perform a case study of Angelesco
systems with two measures of orthogonality given by analytic weights. Our analysis of the related matrix
Riemann-Hilbert problem provides the asymptotics of the recurrence coefficients and strong asymptotics of
MOPs for all large indices. One application of this precise asymptotic analysis is a characterization of the
essential spectrum of the associated Jacobi matrix.

We start this introduction by recalling some definitions and main relations connecting Jacobi matrices
on trees and MOPs and then state the main results of the paper. In what follows, we let N :“ t1, 2, . . .u
and Zě0 :“ t0, 1, 2, . . .u. We write |®𝑛| :“ 𝑛1 ` ¨ ¨ ¨ ` 𝑛𝑑 for ®𝑛 “ p𝑛1, . . . , 𝑛𝑑q P Z𝑑

ě0, and let ®𝑒1 “

p1, 0, . . . , 0q, . . . , ®𝑒𝑑 “ p0, . . . , 0, 1q, ®1 “ p1, . . . , 1q “ ®𝑒1 ` ¨ ¨ ¨ ` ®𝑒𝑑 . Given an operator A in the Banach
space, the symbols 𝜎pAq and 𝜎esspAq will denote its spectrum and essential spectrum, respectively [41]. In a
metric space, 𝐵𝑟 p𝑋q denotes the closed ball with center at 𝑋 and radius 𝑟 . For a complex number 𝑧, <𝑧 and =𝑧
are its real and imaginary parts, respectively. For a function 𝑓 p𝑧q, holomorphic in C`, the upper half-plane, its
boundary values on R are denoted by 𝑓`p𝑥q.

1.1. Jacobi matrices on trees. Denote by T an infinite p𝑑` 1q-homogeneous rooted tree (rooted Cayley tree)
and by V the set of its vertices with𝑂 being the root. On the latticeN𝑑 , consider an infinite path t®𝑛p1q, ®𝑛p2q, . . .u

that starts at ®1 (i.e., ®𝑛p1q “ ®1) and satisfies ®𝑛p 𝑗`1q “ ®𝑛p 𝑗q ` ®𝑒𝑘 𝑗 , 𝑘 𝑗 P t1, . . . , 𝑑u for every 𝑗 “ 0, 1, . . .. Clearly,
these are paths for which, as we move from ®1 to infinity, the multi-index of each next vertex is increasing by 1
at exactly one position. Each such path can be mapped to non-selfintersecting path in T that starts at 𝑂 (see
Figure 1 for 𝑑 “ 2) and this map is one-to-one. This construction defines a projection Π : V Ñ N𝑑 as follows:
given 𝑋 P V we consider a path from 𝑂 to 𝑋 , map it to a path on N𝑑 and let Πp𝑋q be the endpoint of the
mapped path. Every vertex 𝑌 P V, 𝑌 ‰ 𝑂, has the unique parent, which we denote by 𝑌p𝑝q. This allows us to
define the following index function:

(1.1) 𝚤 : V Ñ t1, . . . , 𝑑u, 𝑌 ÞÑ 𝚤𝑌 such that Πp𝑌q “ Πp𝑌p𝑝qq ` ®𝑒𝚤𝑌 ,

and therefore to distinguish the “children” of each vertex 𝑌 P V by denoting 𝑍 “ 𝑌p𝑐ℎq,𝚤𝑍 when 𝑌 “ 𝑍p𝑝q, see
Figure 1 (for 𝑑 “ 2).

p1, 1q „ 𝑂 “ 𝑌p𝑝q

p2, 1q p1, 2q „ 𝑌 “ 𝑂p𝑐ℎq,2

p3, 1q p2, 2q p2, 2q „ 𝑌p𝑐ℎq,1 p1, 3q „ 𝑌p𝑐ℎq,2

Figure 1. Three generations of T (for 𝑑 “ 2).

Let P :“ t𝑎 ®𝑛,𝑖 , 𝑏 ®𝑛,𝑖u®𝑛PZ𝑑
ě0 , 𝑖Pt1,...,𝑑u be a collection of real parameters satisfying conditions

(1.2)

$

&

%

0 ă 𝑎 ®𝑛,𝑖 for all ®𝑛 P N𝑑 , 𝑖 P t1, . . . , 𝑑u,

sup
®𝑛PN𝑑 ,𝑖Pt1,...,𝑑u

𝑎 ®𝑛,𝑖 ă 8 , sup
®𝑛PZ𝑑

ě0 ,𝑖Pt1...,𝑑u

|𝑏 ®𝑛,𝑖| ă 8.
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For a function 𝑓 on V, we denote by 𝑓𝑌 its value at a vertex 𝑌 P V. Given P satisfying (1.2) and ®𝜅 P R𝑑 with
|®𝜅| “ 1, we define the corresponding Jacobi operator J®𝜅 by

(1.3)

$

&

%

pJ®𝜅 𝑓 q𝑌 :“ 𝑎
1{2
Πp𝑌p𝑝qq,𝚤𝑌

𝑓𝑌p𝑝q
` 𝑏Πp𝑌p𝑝qq,𝚤𝑌 𝑓𝑌 `

ř𝑑
𝑖“1 𝑎

1{2
Πp𝑌 q,𝑖

𝑓𝑌p𝑐ℎq,𝑖
, 𝑌 ‰ 𝑂,

pJ®𝜅 𝑓 q𝑂 :“
ř𝑑
𝑖“1 𝜅𝑖𝑏®1´®𝑒𝑖 ,𝑖 𝑓𝑂 `

ř𝑑
𝑖“1 𝑎

1{2
®1,𝑖
𝑓𝑂p𝑐ℎq,𝑖

, 𝑌 “ 𝑂.

Thus defined operator J®𝜅 is bounded and self-adjoint on ℓ2pVq.
The spectral theory of Jacobi matrices on trees enjoyed considerable progress in the last decade, see, e.g.,

[3, 14, 19, 22, 23, 25, 30, 31, 32, 33]. In this paper, we study Jacobi matrices on trees that are generated by
multiple orthogonality conditions. For this class of Jacobi matrices, one can study subtle questions of spectral
analysis, such as the spatial asymptotics of Green’s function, by employing the powerful asymptotical methods
developed in the context of multiple orthogonal polynomials (see, e.g, formulas (4.30) and (4.31) in [8]). In the
current work, we focus on characterizing the so-called R-limits and on detecting the essential spectrum in the
case, when the multiple orthogonal polynomials are given by the Angelesco system with analytic weights.

1.2. Multiple orthogonal polynomials and recurrence relations. In [8], we investigated properties of the
operator J®𝜅 in the case when the coefficients P are the recurrence coefficients for MOPs. We now recall some
basic facts about multiple orthogonal polynomials.

Let ®𝜇 :“ p𝜇1, . . . , 𝜇𝑑q, 𝑑 P N, be a vector of positive finite Borel measures defined on R and ®𝑛 be a given
a multi-index in Z𝑑

ě0, |®𝑛| ě 1. Type I MOPs
 

𝐴
p 𝑗q

®𝑛
(𝑑

𝑗“1 are not identically zero polynomial coefficients of the
linear form

𝑄 ®𝑛p𝑥q :“
𝑑
ÿ

𝑗“1
𝐴

p 𝑗q

®𝑛 p𝑥qd𝜇 𝑗p𝑥q, deg 𝐴p𝑖q

®𝑛 ă 𝑛𝑖 , 𝑖 P t1, . . . , 𝑑u,

defined by the conditions

(1.4)
ż

𝑥𝑙𝑄 ®𝑛p𝑥q “ 0, 𝑙 ă |®𝑛| ´ 1, 𝐴
p𝑖q

®1´®𝑒𝑖
” 0.

Type II MOPs 𝑃®𝑛p𝑥q, deg
`

𝑃®𝑛
˘

ď |®𝑛|, are not identically zero and defined by

(1.5)
ż

𝑃®𝑛p𝑥q𝑥𝑙d𝜇𝑖p𝑥q “ 0, 𝑙 ă 𝑛𝑖 , 𝑖 P t1, . . . , 𝑑u.

The polynomials of both types always exist, but their uniqueness is not guaranteed. If degp𝑃®𝑛q “ |®𝑛| for every
non-identically zero polynomial 𝑃®𝑛p𝑥q satisfying (1.5), then the multi-index ®𝑛 is called normal. In this case
𝑃®𝑛p𝑥q is unique up to a multiplicative factor and we normalize it to be monic, i.e., 𝑃®𝑛p𝑥q “ 𝑥|®𝑛| ` ¨ ¨ ¨. It turns
out that ®𝑛 is normal if and only if the linear form 𝑄 ®𝑛p𝑥q is defined uniquely up to multiplication by a constant.
In this case, we will normalize it by

(1.6)
ż

𝑥|®𝑛|´1𝑄 ®𝑛p𝑥q “ 1 .

We will say that a vector ®𝜇 is called perfect if all the multi-indices ®𝑛 P Z𝑑
ě0 are normal.

When ®𝜇 is perfect, it is known [43] that the polynomials 𝑃®𝑛p𝑥q and the forms 𝑄 ®𝑛p𝑥q satisfy the following
nearest-neighbor recurrence relations (NNRRs):

(1.7)

#

𝑧𝑃®𝑛p𝑧q “ 𝑃®𝑛`®𝑒 𝑗 p𝑧q ` 𝑏 ®𝑛, 𝑗𝑃®𝑛p𝑧q `
ř𝑑
𝑖“1 𝑎 ®𝑛,𝑖𝑃®𝑛´®𝑒𝑖 p𝑧q,

𝑧𝑄 ®𝑛p𝑧q “ 𝑄 ®𝑛´®𝑒 𝑗 p𝑧q ` 𝑏 ®𝑛´®𝑒 𝑗 , 𝑗𝑄 ®𝑛p𝑧q `
ř𝑑
𝑖“1 𝑎 ®𝑛,𝑖𝑄 ®𝑛`®𝑒𝑖 p𝑧q,

for each 𝑗 P t1, . . . , 𝑑u.

For the coefficients t𝑎 ®𝑛,𝑖 , 𝑏 ®𝑛,𝑖u, we have representations [8]:

(1.8) 𝑎 ®𝑛, 𝑗 “

ş

𝑃®𝑛p𝑥q 𝑥𝑛 𝑗d𝜇 𝑗p𝑥q
ş

𝑃®𝑛´®𝑒 𝑗 p𝑥q 𝑥𝑛 𝑗´1d𝜇 𝑗p𝑥q
, 𝑏 ®𝑛´®𝑒 𝑗 , 𝑗 “

ż

𝑥|®𝑛|𝑄 ®𝑛p𝑥q ´

ż

𝑥|®𝑛|´1𝑄 ®𝑛´®𝑒 𝑗 p𝑥q .

If 𝑑 ą 1, unlike in one-dimensional case, we can not prescribe t𝑎 ®𝑛, 𝑗u and t𝑏 ®𝑛, 𝑗u arbitrarily. In fact, these
coefficients satisfy the so-called “consistency conditions” which is a system of nonlinear difference equations.
This discrete integrable system and the associated Lax pair were studied in [9, 43].
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1.3. Angelesco systems and ray limits of NNRR coefficients. We recall that ®𝜇 is an Angelesco system of
measures if

(1.9) supp 𝜇 𝑗 “ Δ 𝑗 :“ r𝛼 𝑗 , 𝛽 𝑗s : Δ𝑖 X Δ 𝑗 “ ∅, 𝑖 ‰ 𝑗 , 𝑖, 𝑗 P t1, . . . , 𝑑u,

i.e., the supports of measures form a system of 𝑑 closed segments separated by 𝑑 ´ 1 nonempty open intervals.
We can always assume without loss of generality that 𝛽 𝑗 ă 𝛼 𝑗`1, 𝑗 P t1, . . . , 𝑑 ´ 1u.

Angelesco systems form an important subclass of the perfect systems. They were studied by Angelesco
already in 1919, [4]. It is not difficult to see [8] that the corresponding NNRR coefficients satisfy conditions
(1.2) and thus define the Jacobi matrix J®𝜅 by (1.3).

The asymptotic behavior of these coefficients t𝑎 ®𝑛, 𝑗 , 𝑏 ®𝑛, 𝑗u for the ray sequences regime, namely when

(1.10) N®𝑐 “ t®𝑛u : 𝑛𝑖 “ 𝑐𝑖|®𝑛| ` 𝑜
`

®𝑛
˘

, 𝑖 P t1, . . . , 𝑑u, | ®𝑐 | :“
𝑑
ÿ

𝑖“1
𝑐𝑖 “ 1 ,

was studied in [8] for ®𝑐 “ p𝑐1, . . . , 𝑐𝑑q P p0, 1q𝑑 (hereafter, limN®𝑐 stands for the limit as |®𝑛| Ñ 8, ®𝑛 P N®𝑐).
The following theorem was proved.

Theorem 1.1 ([8]). Let ®𝜇 be an Angelesco system (1.9) such that for each 𝑖 P t1, . . . , 𝑑u the measure 𝜇𝑖 is
absolutely continuous with respect to the Lebesgue measure onΔ𝑖 and the density 𝜇1

𝑖
p𝑥q :“ d𝜇𝑖p𝑥q{d𝑥 extends to

a holomorphic and non-vanishing function in some neighborhood ofΔ𝑖 . Then the ray limits (1.10) of coefficients
 

𝑎 ®𝑛,𝑖 , 𝑏 ®𝑛,𝑖
(

from (1.7) exist for any ®𝑐 P p0, 1q𝑑:

(1.11) lim
N®𝑐
𝑎 ®𝑛,𝑖 “ 𝐴®𝑐,𝑖 and lim

N®𝑐
𝑏 ®𝑛,𝑖 “ 𝐵 ®𝑐,𝑖 , 𝑖 P t1, . . . , 𝑑u.

This result and expressions for 𝐴®𝑐,𝑖 and 𝐵 ®𝑐,𝑖 were obtained from the strong asymptotics of the MOPs also
established in [8] (along the ray ®𝑐 “ p1{𝑑, . . . , 1{𝑑q the limits in (1.11) can be deduced from the results in [10]).
As it happens, the numbers 𝐴®𝑐,𝑖 and 𝐵 ®𝑐,𝑖 depend only on the vector ®𝑐 and the intervals tΔ𝑖u

𝑑
𝑖“1 (see (2.5) for

the case 𝑑 “ 2 where ®𝑐 “ p𝑐, 1 ´ 𝑐q and 𝐴®𝑐,𝑖 “ 𝐴𝑐,𝑖 , 𝐵 ®𝑐,𝑖 “ 𝐵𝑐,𝑖).

1.4. Results and structure of the paper. In this paper, we restrict ourselves to the case 𝑑 “ 2. Our main
technical achievement is an extension of the results in [8] on the strong asymptotics of the Angelesco MOPs to
the full range of ®𝑐 : ®𝑐 P r0, 1s2. As a corollary of this extension, we get the following result.

Theorem 1.2. Let ®𝜇 be as in Theorem 1.1 with 𝑑 “ 2. Then the ray limits

(1.12) lim
N𝑐

𝑎 ®𝑛,𝑖 “ 𝐴𝑐,𝑖 and lim
N𝑐

𝑏 ®𝑛,𝑖 “ 𝐵𝑐,𝑖

exist for any 𝑐 P r0, 1s and 𝑖 P t1, 2u, where N𝑐 :“ Np𝑐,1´𝑐q is any sequence satisfying (1.10).

Theorem 1.2 can be used to characterize the essential spectrum of the Jacobi operator J®𝜅 , defined in (1.3),
generated by an Angelesco system.

Definition. Let P :“ tp𝑎 ®𝑛,𝑖 , p𝑏 ®𝑛,𝑖u®𝑛PZ2
ě0 , 𝑖“1,2 be a set of real numbers that satisfy (1.2) for 𝑑 “ 2 and the

constants t𝐴𝑐,1, 𝐴𝑐,2, 𝐵𝑐,1, 𝐵𝑐,2u𝑐Pr0,1s be limits from (1.12) (notice that P does not have to be a set of the
recurrence coefficients of any Angelesco system, but the limits t𝐴𝑐,1, 𝐴𝑐,2, 𝐵𝑐,1, 𝐵𝑐,2u𝑐Pr0,1s are generated by
some Δ1 and Δ2). We say that P P P𝐴𝑛𝑔pΔ1,Δ2q if P satisfies

(1.13) lim
N𝑐

p𝑎 ®𝑛,𝑖 “ 𝐴𝑐,𝑖 and lim
N𝑐

p𝑏 ®𝑛,𝑖 “ 𝐵𝑐,𝑖

for any 𝑐 P r0, 1s and 𝑖 P t1, 2u, where, again, N𝑐 :“ Np𝑐,1´𝑐q is any sequence satisfying (1.10).

By Theorem 1.2, the class P𝐴𝑛𝑔pΔ1,Δ2q is not empty since the recurrence coefficients of any Angelesco
system with analytic weights supported on Δ1 and Δ2 belong in P𝐴𝑛𝑔pΔ1,Δ2q. Consider Jacobi matrix J®𝜅
defined in (1.3) with coefficients in P𝐴𝑛𝑔pΔ1,Δ2q. The following result gives characterization of its essential
spectrum.

Theorem 1.3. Let J®𝜅 be the Jacobi operator defined by (1.3) and corresponding to a collection of parameters
P P P𝐴𝑛𝑔pΔ1,Δ2q, then𝜎esspJ®𝜅q “ Δ1YΔ2. In particular, the essential spectrum of the Jacobi matrix generated
by an Angelesco system with analytic weights supported on Δ1 and Δ2 is Δ1 Y Δ2.

We prove this theorem in Section 2. The necessary definitions and statements of the main results on strong
asymptotics of MOPs are adduced in Section 3. Auxiliary results and their proofs are relegated to Sections 4
and 5. Proofs of the main results can be found in Sections 6 and 7.
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2. Expressions for the ray limits and proof of Theorem 1.3

2.1. Expressions for the ray limits. In this subsection we give formulas for the limits in (1.12).
Let Δ1 “ r𝛼1, 𝛽1s and Δ2 “ r𝛼2, 𝛽2s be two intervals on the real line such that 𝛽1 ă 𝛼2. Denote by 𝜔1 and

𝜔2 the arcsine distributions on Δ1 and Δ2, respectively. It is known [40] that

𝐸p𝜔𝑖 , 𝜔𝑖q ď 𝐸p𝜈, 𝜈q, 𝐸p𝜇, 𝜈q :“ ´

ż

log |𝑥 ´ 𝑦|d𝜇p𝑥qd𝜈p𝑦q,

for any probability Borel 𝜈 measure on Δ𝑖 . The logarithmic potentials of these measures satisfy

ℓ𝑖 ´𝑉𝜔𝑖 ” 0 on Δ𝑖 ,

for some constants ℓ1 and ℓ2, where 𝑉 𝜈p𝑧q :“ ´
ş

log |𝑧 ´ 𝑥|d𝜈p𝑥q. Now, given 𝑐 P p0, 1q, define

(2.1) 𝑀𝑐 :“
 

p𝜈1, 𝜈2q : suppp𝜈𝑖q Ď Δ𝑖 , }𝜈1} “ 𝑐, }𝜈2} “ 1 ´ 𝑐
(

.

It is known [26] that there exists the unique pair of measures p𝜔𝑐,1, 𝜔𝑐,2q P 𝑀𝑐 such that

(2.2) 𝐼p𝜔𝑐,1, 𝜔𝑐,2q ď 𝐼p𝜈1, 𝜈2q, 𝐼p𝜈1, 𝜈2q :“ 2𝐸p𝜈1, 𝜈1q ` 2𝐸p𝜈2, 𝜈2q ` 𝐸p𝜈1, 𝜈2q ` 𝐸p𝜈2, 𝜈1q,

for all pairs p𝜈1, 𝜈2q P 𝑀𝑐 . Moreover, suppp𝜔𝑐,1q “ r𝛼1, 𝛽𝑐,1s “: Δ𝑐,1 and suppp𝜔𝑐,2q “ r𝛼𝑐,2, 𝛽2s “: Δ𝑐,2.
Similarly to the case of a single interval, there exist constants ℓ𝑐,𝑖 , 𝑖 P t1, 2u, such that

(2.3)

#

ℓ𝑐,1 ´𝑉2𝜔𝑐,1`𝜔𝑐,2 ” 0 on suppp𝜔𝑐,1q,

ℓ𝑐,2 ´𝑉𝜔𝑐,1`2𝜔𝑐,2 ” 0 on suppp𝜔𝑐,2q.

The dependence of the intervals Δ𝑐,𝑖 on the parameter 𝑐 is described in greater detail in Section 4.
Let 𝕽𝑐 , 𝑐 P p0, 1q, be a 3-sheeted Riemann surface realized as follows: cut a copy of C along Δ𝑐,1 Y Δ𝑐,2,

which henceforth is denoted by 𝕽p0q
𝑐 , the second copy of C is cut along Δ𝑐,1 and is denoted by 𝕽p1q

𝑐 , while the
third copy is cut along Δ𝑐,2 and is denoted by 𝕽p2q

𝑐 . These copies are then glued to each other crosswise along
the corresponding cuts, see Figure 2. It can be easily verified that thus constructed Riemann surface has genus

𝛼1 𝛽1 𝛼2 𝛽2
𝕽p0q
𝑐

𝕽p1q
𝑐

𝕽p2q
𝑐

Figure 2. Surface 𝕽𝑐 when 𝛽𝑐,1 “ 𝛽1 and 𝛼𝑐,2 “ 𝛼2.

0. We denote by 𝜋 the natural projection from 𝕽𝑐 to C and employ the notation 𝒛 for a generic point on 𝕽𝑐 with
𝜋p𝒛q “ 𝑧 as well as 𝑧p𝑖q for a point on 𝕽p𝑖q

𝑐 with 𝜋p𝑧p𝑖qq “ 𝑧. We call a linear combination
ř

𝑛𝑖 𝒛𝑖 , 𝑛𝑖 P Z, a
divisor. The degree of

ř

𝑛𝑖 𝒛𝑖 is defined as
ř

𝑛𝑖 . We say that
ř

𝑛𝑖 𝒛𝑖 is a zero/pole divisor of a rational function
on 𝕽𝑐 if this function has a zero at 𝒛𝑖 of multiplicity 𝑛𝑖 when 𝑛𝑖 ą 0, a pole at 𝒛𝑖 of order ´𝑛𝑖 when 𝑛𝑖 ă 0, and
has no other zeros of poles. Zero/pole divisors necessarily have degree zero. Since 𝕽𝑐 has genus zero, one can
arbitrarily prescribe zero/pole divisors of rational functions on 𝕽𝑐 as long as the degree of the divisor is zero.
A rational function with a given divisor is unique up to multiplication by a constant.

Proposition 2.1. Let 𝕽𝑐 , 𝑐 P p0, 1q, be as above and 𝜒𝑐p𝒛q be the conformal map of 𝕽𝑐 onto C such that

(2.4) 𝜒𝑐
`

𝑧p0q
˘

“ 𝑧 ` O
`

𝑧´1˘ as 𝑧 Ñ 8.

Further, let the numbers 𝐴𝑐,1, 𝐴𝑐,2, 𝐵𝑐,1, 𝐵𝑐,2 be defined by

(2.5) 𝜒𝑐
`

𝑧p𝑖q
˘

“: 𝐵𝑐,𝑖 ` 𝐴𝑐,𝑖𝑧
´1 ` O

`

𝑧´2˘ as 𝑧 Ñ 8, 𝑖 P t1, 2u.
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Finally, let 𝑤𝑖p𝑧q :“
a

p𝑧 ´ 𝛼𝑖qp𝑧 ´ 𝛽𝑖q be the branch holomorphic outside of Δ𝑖 and normalized so that
𝑤𝑖p𝑧q{𝑧 Ñ 1 as 𝑧 Ñ 8, in which case

(2.6) 𝜑𝑖p𝑧q :“
1
2

ˆ

𝑧 ´
𝛽𝑖 ` 𝛼𝑖

2
` 𝑤𝑖p𝑧q

˙

is the conformal map of CzΔ𝑖 onto the complement of the disk 𝐵p𝛽𝑖´𝛼𝑖q{4p0q satisfying 𝜑𝑖p𝑧q “ 𝑧 ` Op1q as
𝑧 Ñ 8. Then it holds that

(2.7) lim
𝑐Ñ0

$

’

’

’

’

&

’

’

’

’

%

𝐴𝑐,2 “
“

p𝛽2 ´ 𝛼2q{4
‰2

“: 𝐴0,2,

𝐵𝑐,2 “ p𝛽2 ` 𝛼2q{2 “: 𝐵0,2,

𝐴𝑐,1 “ 0 “: 𝐴0,1,

𝐵𝑐,1 “ 𝐵0,2 ` 𝜑2p𝛼1q “: 𝐵0,1,

and analogous limits hold when 𝑐 Ñ 1. Moreover, all the constants 𝐴𝑐,1, 𝐴𝑐,2, 𝐵𝑐,1, 𝐵𝑐,2 are continuous
functions of the parameter 𝑐 P r0, 1s.

Let us stress that the numbers 𝐴𝑐,𝑖 and 𝐵𝑐,𝑖 defined in (2.5) are precisely the ones appearing in (1.12). Even
though the expression for 𝐵0,1 might seem strange, it has a meaning from the point of view of spectral theory
of Jacobi matrices, see (A.8).

We prove Proposition 2.1 in Section 5. It is worth noting that the constants 𝐴𝑐,1 and 𝐴𝑐,2 are always positive
(except for 𝐴0,1 and 𝐴1,2, of course). Indeed, denote by 𝜶1, 𝜷𝑐,1,𝜶𝑐,2, 𝜷2 the ramification points of 𝕽𝑐 with
natural projections 𝛼1, 𝛽𝑐,1, 𝛼𝑐,2, 𝛽2, respectively. Then the symmetries of 𝕽𝑐 and 𝜒𝑐p𝒛q yield that 𝜒𝑐p𝒛q is real
and changes from ´8 to 8 when 𝒛 moves along the cycle

8p0q Ñ 𝜶1 Ñ 8p1q Ñ 𝜷𝑐,1 Ñ 𝜶𝑐,2 Ñ 8p2q Ñ 𝜷2 Ñ 8p0q

whose natural projection is the extended real line. Thus, 𝜒𝑐p𝒛q is increasing when it moves past 8p1q and 8p2q,
which yields the claim (this argument also shows that 𝐵𝑐,1 ă 𝐵𝑐,2).

2.2. Proof of Theorem 1.3. Our proof will be based on a characterization of the essential support of a Jacobi
matrix on a tree obtained in [13, Theorem 4]. We need some preliminaries to formulate this result. Suppose T
is a 3-homogeneous rooted tree with root at 𝑂 (a binary tree), which means that 𝑂 has two neighbors and any
other vertex has three neighbors. Later in the text, we will use the notation 𝑍 „ 𝑌 to indicate that vertices 𝑍
and 𝑌 are neighbors and the symbol V will denote the set of all vertices of T . Given a real function 𝑉 defined
on V and a real positive function𝑊 defined on all edges, we make an assumption

(2.8) sup
𝑌PV

|𝑉𝑌 | ă 8, 0 ă 𝑊𝑍,𝑌 , sup
𝑍„𝑌 ,𝑌PV

𝑊𝑍,𝑌 ă 8 ,

to introduce J , a bounded self-adjoint Jacobi matrix

(2.9) pJ 𝑓 q𝑌 :“ 𝑉𝑌 𝑓𝑌 `
ÿ

𝑍„𝑌

𝑊
1{2
𝑍,𝑌

𝑓𝑍 , 𝑌 P V ,

defined on ℓ2pVq. One example one can think of is J®𝜅 introduced in (1.3). Consider a set of distinct vertices (a
path) t𝑌𝑛u, 𝑛 P N, in V such that 𝑌𝑛 „ 𝑌𝑛`1 for every 𝑛. Clearly, every such path on the tree escapes to infinity,
i.e., distp𝑂,𝑌𝑛q Ñ 8, 𝑛 Ñ 8. We want to define R-limit (or “right limit”) of J along this path. To do that,
suppose G is a 3-homogeneous tree (without a root), 𝑂1 is a fixed vertex on G, and J 1 is a bounded self-adjoint
operator on G. Recall that 𝐵𝑟 p𝑌q stands for the ball of radius 𝑟 centered at 𝑌 and denote the restriction operator
to this ball by 𝑃𝐵𝑟 p𝑌 q. Consider two finite matrices: 𝑃𝐵𝑟 p𝑌𝑛𝑗

qJ𝑃𝐵𝑟 p𝑌𝑛𝑗
q and 𝑃𝐵𝑟 p𝑂1qJ 1𝑃𝐵𝑟 p𝑂1q. If we identify

ℓ2p𝐵𝑟 p𝑂1qq and ℓ2p𝐵𝑟 p𝑌𝑛 𝑗
qq by following the structure of the tree (and there are many ways to do that), then

these matrices are defined on the same finite dimensional Euclidean space. If this identification can be done so
that all sections of J 1 appear as the limits, we call J 1 an R-limit or right limit:

Definition. We say that J 1 is an R-limit of J along t𝑌𝑛u if there is a subsequence t𝑛 𝑗u such that

𝑃𝐵𝑟 p𝑌𝑛𝑗
qJ𝑃𝐵𝑟 p𝑌𝑛𝑗

q Ñ 𝑃𝐵𝑟 p𝑂1qJ 1𝑃𝐵𝑟 p𝑂1q as 𝑗 Ñ 8

for every fixed 𝑟 P N. Matrix J 1 is called simply an R-limit of J if there exists a path along which J 1 is an
R-limit of J .

Remark. For the rigorous definition of R-limit on more general graphs, see [13].
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Theorem 2.1. ([13, Theorem 4]) We have

𝜎esspJ q “
ď

J1 is an R´ limit of J
𝜎pJ 1q .

Remark. [13, Theorem 4] was stated for the regular trees only, but the proof is valid for rooted trees as well.
Auxiliary operators Lp1q

𝑐 and Lp2q
𝑐 . Recall that T denotes the 3-homogeneous rooted tree with the root

denoted by 𝑂 and V stands for the set of all its vertices. There are two edges meeting at the root 𝑂. We label
one of them type 1 and the other one – type 2. Now, consider two vertices that are at distance 1 from 𝑂. Each
of them is coincident with exactly three edges. One of the edges for each vertex was labelled already, and we
label the remaining two as an edge type 1 and an edge of type 2. We continue inductively by considering all
edges that are at distance 2, 3, etc. from 𝑂 and calling one of the unlabelled edges type 1 and the other one
type 2. Now that all edges of T have types assigned to them, we continue by labeling the vertices. If a vertex 𝑌
meets two edges of type 1 and one edge of type 2, we call it a vertex of type 1; otherwise, if it is incident with
two edges of type 2 and one edge of type 1, we call it type 2. We do not need to assign any type to the root 𝑂.
At a vertex 𝑌 ‰ 𝑂 of type 𝜄𝑌 , see (1.1), we define both operators Lp1q

𝑐 and Lp2q
𝑐 by the same formula:

pLp𝑙q
𝑐 𝜓q𝑌 “

ÿ

𝑗Pt1,2u,𝑌 1„𝑌 , type of edge p𝑌 ,𝑌 1q“ 𝑗

b

𝐴𝑐, 𝑗𝜓𝑌 1 ` 𝐵𝑐, 𝜄𝑌𝜓𝑌 , 𝑙 P t1, 2u;(2.10)

and at the root 𝑂 we define the operators Lp1q
𝑐 and Lp2q

𝑐 differently from each other by

pLp𝑙q
𝑐 𝜓q𝑂 “

ÿ

𝑗Pt1,2u,𝑌 1„𝑂, type of edge p𝑂,𝑌 1q“ 𝑗

b

𝐴𝑐, 𝑗𝜓𝑌 1 ` 𝐵𝑐,𝑙𝜓𝑂 , 𝑙 P t1, 2u.

Notice that these operators represent Jacobi matrices on T when 𝑐 P p0, 1q. However, if 𝑐 P t0, 1u either 𝐴𝑐,1
or 𝐴𝑐,2 becomes zero and Lp1q

𝑐 ,Lp2q
𝑐 are no longer Jacobi matrices, strictly speaking.

Remark. The operators Lp1q
𝑐 and Lp2q

𝑐 already appeared in [8] as the strong limits of Jacobi matrices on finite
trees that correspond to t𝑃®𝑛u, the polynomials of the second type (see formula (3.3) and Subsection 4.5 in
[8]). We defined Lp1q

𝑐 and Lp2q
𝑐 by assigning the “types” to vertices of the tree and then defining the Jacobi

matrix accordingly. This is an example of more general construction that generates trees satisfying a finite cone
type condition. The Laplacian defined on trees with finite cone type and its perturbations were studied in, e.g.,
[31, 32, 33].

Lemma 2.1. If J has coefficients in P𝐴𝑛𝑔pΔ1,Δ2q, then the R-limits of J and the R-limits of Lp𝑙q
𝑐 , 𝑙 P t1, 2u,

are related by the following identity

(2.11)
ď

𝑐Pr0,1s

!

J 1 : J 1 is anR ´ limit of Lp𝑙q
𝑐

)

“ tJ2 : J2 is anR ´ limit of Ju .

Proof. This follows from the definition of the R-limit, construction of Lp1q
𝑐 and Lp2q

𝑐 , and from the assumption
(1.13). �

We further study auxiliary operators Lp1q
𝑐 and Lp2q

𝑐 in Appendix A.

Proof of Theorem 1.3. Assumptions (1.13) characterize the behavior of the coefficients at infinity. Thus, Weyl’s
theorem on the essential spectrum [41] implies that any two Jacobi matrices with parameters in P𝐴𝑛𝑔pΔ1,Δ2q

have the same essential spectra. Moreover, by the same Weyl’s theorem, this essential spectrum is independent
of the choice of parameter ®𝜅 in (1.3). Hence, it is enough to prove the theorem for the Jacobi matrix J®𝜅
generated by some Angelesco system with analytic weights and with ®𝜅 “ ®𝑒2. In [8, Section 4] we established
that Δ1 Y Δ2 Ď 𝜎pJ®𝑒2q. Thus, Δ1 Y Δ2 Ď 𝜎esspJ®𝑒2q as follows from the definition of the essential spectrum.

To prove the opposite inclusion, take any J for which the coefficients belong to P𝐴𝑛𝑔pΔ1,Δ2q. The application
of Theorem 2.1 and Theorem A.1 to Lp1q

𝑐 gives
ď

J1 is an R´ limit of Lp1q
𝑐

𝜎pJ 1q “ 𝜎esspLp1q
𝑐 q “ Δ𝑐,1 Y Δ𝑐,2,

which yields an inclusion

(2.12)
ď

𝑐Pr0,1s

ď

J1 is an R´ limit of Lp1q
𝑐

𝜎pJ 1q Ď
ď

𝑐Pr0,1s

´

Δ𝑐,1 Y Δ𝑐,2

¯

“ Δ1 Y Δ2 ,
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where the last equality follows from the properties of Δ𝑐,1 and Δ𝑐,2 (which we also discuss later in Proposition
4.1). Moreover, since

𝜎esspJ q “
ď

𝑐Pr0,1s

ď

J1 is an R´ limit of Lp1q
𝑐

𝜎pJ 1q

by Theorem 2.1 and (2.11), we get from (2.12) that 𝜎esspJ q Ď Δ1 Y Δ2, which proves the theorem. �

3. Multiple Orthogonal Polynomials for Angelesco Systems

In this section we state the results on asymptotic behavior of the forms𝑄 ®𝑛p𝑥q and polynomials 𝑃®𝑛p𝑥q defined
in (1.4) and (1.5), respectively, along ray sequences N𝑐 “ Np𝑐,1´𝑐q defined in (1.10) under the assumption that
the measures of orthogonality are as in Theorem 1.1. The study of strong asymptotics of multiple orthogonal
polynomials has a long history, see for example [29, 36, 6, 45]. Below, we follow the Riemann-Hilbert approach
used in [45], where the strong asymptotics of MOPs was derived for Angelesco systems with analytic weights
for non-marginal ray sequences. Here, we extend the results of [45] to marginal sequences, which is a non-trivial
problem requiring new ideas.

As before, we assume that the intervals Δ1 “ r𝛼1, 𝛽1s and Δ2 “ r𝛼2, 𝛽2s are disjoint and 𝛽1 ă 𝛼2. In
accordance with the definition of the intervals Δ𝑐,1,Δ𝑐,2 after (2.2), we shall also set Δ0,1 :“ t𝛼1u,Δ0,2 :“ Δ2
and Δ1,1 :“ Δ1,Δ1,2 :“ t𝛽2u.

Throughout the paper, we use the following notation: given a system of Jordan arcs and curves Σ, we denote
by Σ˝ the subset of Σ consisting of points that possess a neighborhood that is separated by Σ into exactly two
connected components. In particular, Δ˝

𝑖
“ p𝛼𝑖 , 𝛽𝑖q, 𝑖 P t1, 2u.

3.1. Fully Marginal Ray Sequences. In this subsection we consider solely infinite ray sequences of the form

(3.1) N𝑖´1 “ t®𝑛 : there exists 𝐶 ą 0 such that 𝑛𝑖 ď 𝐶u , 𝑖 P t1, 2u.

To describe the asymptotics we need to introduce the so-called Szegő functions of the measures 𝜇1, 𝜇2. To
this end, let us set

(3.2) 𝜌𝑖p𝑥q :“ ´2𝜋i𝜇1
𝑖p𝑥q, 𝑥 P Δ𝑖 .

Observe that p𝜌𝑖𝑤𝑖`qp𝑥q ą 0 for 𝑥 P Δ˝
𝑖

:“ p𝛼𝑖 , 𝛽𝑖q, where 𝑤𝑖p𝑧q was introduced in Proposition 2.1. Put

(3.3) 𝑆𝜌𝑖 p𝑧q :“ exp
"

𝑤𝑖p𝑧q

2𝜋i

ż

Δ𝑖

logp𝜌𝑖𝑤𝑖`qp𝑥q

𝑧 ´ 𝑥

d𝑥
𝑤𝑖`p𝑥q

*

, 𝑖 P t1, 2u.

Then each 𝑆𝜌𝑖 p𝑧q is a holomorphic and non-vanishing function in CzΔ𝑖 that is uniquely (up to a sign) charac-
terized by the properties1

(3.4)

#

p𝑆𝜌𝑖`𝑆𝜌𝑖´qp𝑥qp𝜌𝑖𝑤𝑖`qp𝑥q ” 1, 𝑥 P Δ˝
𝑖
,

|𝑆𝜌𝑖 p𝑧q| „ |𝑧 ´ 𝑥˚|´1{4, 𝑧 Ñ 𝑥˚ P t𝛼𝑖 , 𝛽𝑖u.

Notice also that if 𝜌𝑖p𝑥q is replaced by 𝜌𝑖p𝑥q{𝑤𝑖`p𝑥q in (3.3), then 𝑆𝜌𝑖{𝑤𝑖`
p𝑧q retains all the described properties

except it is actually bounded around 𝛽𝑖 and 𝛼𝑖 . The following theorem holds.

Theorem 3.1. Under the conditions of Theorem 1.2, it holds that

𝑃®𝑛p𝑧q “ p1 ` 𝑜p1qq
`

𝑆𝜌2p𝑧q{𝑆𝜌2p8q
˘

𝑆𝑛1p𝑧;𝛼1qp𝑧 ´ 𝛼1q𝑛1𝜑
𝑛2
2 p𝑧q

uniformly on bounded subsets of CzpΔ0,1 Y Δ2q along any N0 satisfying (3.1), where 𝜑2p𝑧q was introduced in
(2.6) and

(3.5) 𝑆p𝑧; 𝑥0q :“
ˆ

𝜑2p𝑧q ´ 𝜑2p𝑥0q

𝜑2p𝑥0q𝜑2p𝑧q ´ 𝐴0,2

𝜑2p𝑥0q𝜑2p𝑧q

𝑧 ´ 𝑥0

˙1{2
, 𝑧 P CzΔ2,

𝑥0 P p´8,8qzΔ2 and the root is chosen so that 𝑆p8; 𝑥0q “ 1. An analogous asymptotic formula holds along
N1 satisfying (3.1).

Since 𝜑2`p𝑥q𝜑2´p𝑥q ” 𝐴0,2 for 𝑥 P Δ2, an explicit computation shows that

𝑆p𝑥; 𝑥0q`𝑆p𝑥; 𝑥0q´ “ |𝑆p𝑥; 𝑥0q˘|2 ” ´𝜑2p𝑥0qp𝑥 ´ 𝑥0q´1, 𝑥 P Δ˝
2 .

1𝐴p𝑧q „ 𝐵p𝑧q as 𝑧 Ñ 𝑧0 means that the ratio 𝐴p𝑧q{𝐵p𝑧q is uniformly bounded away from zero and infinity as 𝑧 Ñ 𝑧0.
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As 𝑆p𝑧; 𝑥0q is non-vanishing and holomorphic in CzΔ2 as well as bounded around 𝛼2, 𝛽2 a standard argument
shows that

𝑆p𝑧; 𝑥0q “ 𝑆𝜚p𝑧q{𝑆𝜚p8q, 𝑆´1
𝜚 p8q “

b

´𝜑2p𝑥0q, 𝜚p𝑥q :“ p𝑥 ´ 𝑥0q{𝑤2`p𝑥q,

where 𝑆𝜚p8q ą 0 when 𝑥0 ă 𝛼2 while 𝑆𝜚p8q P iRwhen 𝑥0 ą 𝛽2 with the choice of the square root depending
on the determination of logp𝑥 ´ 𝑥0q used. We prove Theorem 3.1 in Section 6.

3.2. Szegő Functions. Let us set 𝚫𝑐,𝑖 :“ 𝜋´1pΔ𝑐,𝑖q, 𝑖 P t1, 2u, and orient it so that 𝕽p0q
𝑐 remains on the left

when the cycle is traversed in the positive direction. Put

(3.6) 𝑤𝑐,𝑖p𝑧q :“
b

p𝑧 ´ 𝛼𝑐,𝑖qp𝑧 ´ 𝛽𝑐,𝑖q “ 𝑧 ` Op1q, 𝑧 Ñ 8,

to be the branch holomorphic outside of Δ𝑐,𝑖 . In what follows, it will be convenient to introduce the following
notation

𝐹p𝑘qp𝑧q :“ 𝐹
`

𝑧p𝑘q
˘

, 𝑘 P t0, 1, 2u,

for a function 𝐹p𝒛q defined on 𝕽𝑐zp𝚫𝑐,1 Y 𝚫𝑐,2q. Then the following proposition holds.

Proposition 3.1. Given 𝑐 P p0, 1q and functions 𝜌1p𝑥q, 𝜌2p𝑥q as in (3.2) and Theorem 1.1, there exists a function
𝑆𝑐p𝒛q non-vanishing and holomorphic in 𝕽𝑐zp𝚫𝑐,1 Y 𝚫𝑐,2q such that

(3.7)

$

’

’

&

’

’

%

𝑆
p𝑖q

𝑐˘p𝑥q “ 𝑆
p0q

𝑐¯p𝑥qp𝜌𝑖𝑤𝑐,𝑖`qp𝑥q, 𝑥 P Δ𝑐,𝑖 ,
`

𝑆
p0q
𝑐 𝑆

p1q
𝑐 𝑆

p2q
𝑐

˘

p𝑧q ” 1, 𝑧 P C,
ˇ

ˇ𝑆
p0q
𝑐 p𝑧q

ˇ

ˇ „ |𝑧 ´ 𝑥0|´1{4 as 𝑧 Ñ 𝑥0 P
 

𝛼1, 𝛽𝑐,1, 𝛼𝑐,2, 𝛽2
(

.

Properties (3.7) determine 𝑆𝑐p𝒛q uniquely up to a multiplication by a cubic root of unity. Moreover, if
𝑐 Ñ 𝑐‹ P p0, 1q, then

(3.8) 𝑆
p𝑘q
𝑐 p𝑧q “

“

1 ` 𝑜p1q
‰

𝑆
p𝑘q
𝑐‹

p𝑧q,

locally uniformly in CzΔ𝑐‹ ,𝑘 when 𝑘 P t1, 2u, and in CzpΔ𝑐‹ ,1 YΔ𝑐‹ ,2q when 𝑘 “ 0. Furthermore, it holds that

(3.9)
𝑆

p𝑘q
𝑐 p𝑧q

𝑆
p𝑘q
𝑐 p8q

“
`

1 ` 𝑜p1q
˘

$

’

&

’

%

𝑆𝜌2p𝑧q{𝑆𝜌2p8q, 𝑘 “ 0,
1, 𝑘 “ 1,

𝑆𝜌2p8q{𝑆𝜌2p𝑧q, 𝑘 “ 2,

as 𝑐 Ñ 0, where 𝑜p1q holds locally uniformly in CzΔ0,1 when 𝑘 P t0, 1u and uniformly in C when 𝑘 “ 2 (that
is, including the traces on Δ2), while it also holds that

(3.10) lim
𝑐Ñ0

𝑆
p0q
𝑐 p8q𝑐1{3 “ 𝑉𝑆𝜌2p8q, lim

𝑐Ñ0
𝑆

p1q
𝑐 p8q𝑐´2{3 “ 𝑉´2, and lim

𝑐Ñ0
𝑆

p2q
𝑐 p8q𝑐1{3 “ 𝑉{𝑆𝜌2p8q,

where 𝑉 :“
`

2𝜋𝜇1
1p𝛼1q|𝑤2p𝛼1q|𝑆𝜌2p𝛼1q

˘´1{3. Limits analogous to (3.9) and (3.10) also hold as 𝑐 Ñ 1.

The construction leading to Proposition 3.1 is not new. As soon as strong asymptotics of MOPs became a
question of interest, it was well understood that classical Szegő functions need to be replaced by solutions to a
boundary value problem (3.7). The original approach reformulated (3.7) as a certain extremal problem, see [6].
Another approach using discontinuous Cauchy kernels on the corresponding Riemann surface was developed
in [11]. The latter construction is exactly the one we adopt in Section 5 to prove Proposition 3.1. Even though
out of necessity, but unlike previous works, we do examine here what happens to the Szegő functions 𝑆𝑐p𝒛q
when one of the intervals Δ𝑐,1, Δ𝑐,2 is collapsing.

3.3. Non-Fully Marginal and Non-Marginal Ray Sequences. In this section we assume that sequences N𝑐 ,
𝑐 P r0, 1s, satisfy

(3.11) 𝜀 ®𝑛 :“ 1{ mint𝑛1, 𝑛2u Ñ 0 𝑎𝑠 |®𝑛| Ñ 8, ®𝑛 P N𝑐 .
We start by introducing an analog of the functions 𝜑1p𝑧q, 𝜑2p𝑧q in the non-fully marginal and non-marginal

cases. Given a multi-index ®𝑛, let

(3.12) 𝑐 ®𝑛 :“ 𝑛1{|®𝑛|.

To alleviate the notation, in what follows we shall use the subindex ®𝑛 instead of 𝑐 ®𝑛 for quantities depending on
𝑐 ®𝑛 such that 𝕽®𝑛 “ 𝕽𝑐 ®𝑛 , 𝑆 ®𝑛p𝒛q “ 𝑆𝑐 ®𝑛p𝒛q, etc. We shall denote by Φ®𝑛p𝒛q a rational function on 𝕽®𝑛 which is



10 A.I. APTEKAREV, S. DENISOV, AND M. YATTSELEV

non-zero and finite everywhere except at the points on top of infinity, has a pole of order |®𝑛| at 8p0q, a zero of
multiplicity 𝑛𝑖 at 8p𝑖q for each 𝑖 P t1, 2u, and satisfies

(3.13)
`

Φ
p0q

®𝑛 Φ
p1q

®𝑛 Φ
p2q

®𝑛
˘

p𝑧q ” 1, 𝑧 P C.

Equality in (3.13) is a simple matter of a normalization since the logarithm of the absolute value of the left-hand
side of (3.13) extends to a harmonic function on C which has a well defined limit at infinity and therefore is a
constant.

Theorem 3.2. Under the conditions of Theorem 1.2, let 𝑃®𝑛p𝑧q be the polynomials satisfying (1.5). Given
𝑐 P r0, 1s, let N𝑐 “ t®𝑛u be a sequence for which (3.11) holds. Then ®𝑛 P N𝑐 we have that

$

&

%

𝑃®𝑛p𝑧q “ p1 ` 𝑜p1qq𝛾®𝑛
`

𝑆 ®𝑛Φ®𝑛
˘p0q

p𝑧q,

𝑃®𝑛p𝑥q “ p1 ` 𝑜p1qq𝛾®𝑛
`

𝑆 ®𝑛Φ®𝑛
˘p0q

`
p𝑥q ` p1 ` 𝑜p1qq𝛾®𝑛

`

𝑆 ®𝑛Φ®𝑛
˘p0q

´
p𝑥q,

where the relations holds uniformly on closed subsets of CzpΔ𝑐,1 Y Δ𝑐,2q and compact subsets Δ˝
𝑐,1 Y Δ˝

𝑐,2,
respectively, and 𝛾®𝑛 is the constant such that

lim
𝑧Ñ8

𝛾®𝑛𝑧
|®𝑛|
`

𝑆 ®𝑛Φ®𝑛
˘p0q

p𝑧q “ 1.

When 𝑐 ‰ 𝑐˚, 𝑐˚˚, see Proposition 4.1 further below, the error rate 𝑜p1q can be replaced by O𝑐p𝜀 ®𝑛q, where the
dependence of O𝑐p𝜀 ®𝑛q on 𝑐 is uniform for 𝑐 on compact subsets r0, 1szt𝑐˚, 𝑐˚˚u.

In the above theorem the functions 𝑆p0q

®𝑛 p𝑧q could be replaced by their limits as discussed in Proposition 3.1.
However, we can do this only at the expense of the error rate O𝑐p𝜀 ®𝑛q.

To describe asymptotic behavior of the forms 𝑄 ®𝑛p𝑥q, we need to introduce one additional function. Let
Π®𝑛p𝒛q be a rational function on 𝕽®𝑛 with the zero/pole divisor and the normalization given by

2
`

8p1q ` 8p2q
˘

´ 𝜶1 ´ 𝜷®𝑛,1 ´ 𝜶 ®𝑛,2 ´ 𝜷2 and Π
p0q

®𝑛 p8q “ 1,

where 𝜶1, 𝜷®𝑛,1,𝜶 ®𝑛,2, 𝜷2 are the ramification points of 𝕽®𝑛. Then the following theorem holds.

Theorem 3.3. Under the conditions of Theorem 1.2, let 𝐴p𝑖q

®𝑛 p𝑧q be the polynomials defined in (1.4), 𝑖 P t1, 2u.
Given 𝑐 P r0, 1s, let N𝑐 “ t®𝑛u be a sequence for which (3.11) holds. Then for ®𝑛 P N𝑐 we have that

𝐴
p𝑖q

®𝑛 p𝑧q “ ´p1 ` 𝑜p1qq
pΠ

p𝑖q

®𝑛 𝑤 ®𝑛,𝑖qp𝑧q

𝛾®𝑛p𝑆 ®𝑛Φ®𝑛qp𝑖qp𝑧q
,

uniformly on closed subsets of CzΔ𝑐,𝑖 for 𝑖 P t1, 2u when 𝑐 P p0, 1q, 𝑖 “ 2 when 𝑐 “ 0, and 𝑖 “ 1 when 𝑐 “ 1,
while

𝐴
p𝑖q

®𝑛 p𝑧q “ 𝑜p1q

´

𝜏®𝑛
`

𝑤 ®𝑛,𝑖Φ
p𝑖q

®𝑛
˘

p𝑧q

¯´1
,

uniformly on closed subsets of CzΔ0,1 for 𝑖 “ 1 when 𝑐 “ 0 and of CzΔ1,2 for 𝑖 “ 2 when 𝑐 “ 1, where
𝜏®𝑛 :“ 𝛾®𝑛𝑆

p0q

®𝑛 p8q, i.e., it is a constant such that lim𝑧Ñ8 𝜏®𝑛|𝑧||®𝑛|Φ
p0q

®𝑛 p𝑧q “ 1. Moreover,

𝐴
p𝑖q

®𝑛 p𝑥q “ ´p1 ` 𝑜p1qq
pΠ

p𝑖q

®𝑛 𝑤 ®𝑛,𝑖q`p𝑥q

𝛾®𝑛p𝑆 ®𝑛Φ®𝑛q
p𝑖q

` p𝑥q
´ p1 ` 𝑜p1qq

pΠ
p𝑖q

®𝑛 𝑤 ®𝑛,𝑖q´p𝑥q

𝛾®𝑛p𝑆 ®𝑛Φ®𝑛q
p𝑖q

´ p𝑥q
,

uniformly on compact subsets of Δ˝
𝑐,𝑖

, 𝑖 P t1, 2u. As in the case of Theorem 3.2, the error rate can be improved
to O𝑐p𝜀 ®𝑛q when 𝑐 P r0, 1szt𝑐˚, 𝑐˚˚u with dependence on 𝑐 being locally uniform.

Let
`

p𝜇1, p𝜇2
˘

be a vector of Markov functions of the measures 𝜇𝑖 , that is,

p𝜇𝑖p𝑧q :“
ż

d𝜇𝑖p𝑥q

𝑧 ´ 𝑥
“

1
2𝜋i

ż

Δ𝑖

𝜌𝑖p𝑥q

𝑥 ´ 𝑧
d𝑥, 𝑧 P CzΔ𝑖 , 𝑖 P t1, 2u.

Observe also that pp𝜇𝑖` ´ p𝜇𝑖´qp𝑥q “ 𝜌𝑖p𝑥q, 𝑥 P Δ˝
𝑖
, by Sokhotski-Plemelj formulae. Then one can deduce from

orthogonality relations (1.5) that there exist polynomials 𝑃p𝑖q

®𝑛 p𝑧q such that

𝑅
p𝑖q

®𝑛 p𝑧q :“
`

𝑃®𝑛 p𝜇𝑖 ´ 𝑃
p𝑖q

®𝑛
˘

p𝑧q “ O
`

𝑧´p𝑛𝑖`1q
˘

as 𝑧 Ñ 8,
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𝑖 P t1, 2u. The vector of rational functions
`

𝑃
p1q

®𝑛 {𝑃®𝑛, 𝑃
p2q

®𝑛 {𝑃®𝑛
˘

is called the Hermite-Padé approximant for
`

p𝜇1, p𝜇2
˘

corresponding to the multi-index ®𝑛. It further can be shown that

(3.14) 𝑅
p𝑖q

®𝑛 p𝑧q “
1

2𝜋i

ż

p𝑃®𝑛𝜌𝑖qp𝑥q

𝑥 ´ 𝑧
d𝑥, 𝑧 P CzΔ𝑖 , 𝑖 P t1, 2u.

It also follows from (1.4) that there exists polynomial 𝐴®𝑛p𝑥q such that

(3.15) O
`

𝑧´|®𝑛|
˘

“

2
ÿ

𝑖“1

`

𝐴
p𝑖q

®𝑛 p𝜇𝑖
˘

p𝑧q ´ 𝐴®𝑛p𝑧q “: 𝐿 ®𝑛p𝑧q “

ż

𝑄 ®𝑛p𝑥q

𝑧 ´ 𝑥
,

where the asymptotic formula is valid for 𝑧 Ñ 8. Then the following result holds.

Theorem 3.4. Under the conditions of Theorems 3.2–3.2, it holds for ®𝑛 P N𝑐 that

𝑅
p𝑖q

®𝑛 p𝑧q “ p1 ` 𝑜p1qq𝛾®𝑛
`

𝑆 ®𝑛Φ®𝑛
˘p𝑖q

p𝑧q𝑤´1
®𝑛,𝑖p𝑧q,

uniformly on closed subsets of CzΔ𝑐,𝑖 , that is, including the traces on Δ𝑖zΔ𝑐,𝑖 for 𝑖 P t1, 2u when 𝑐 P p0, 1q, for
𝑖 “ 2 when 𝑐 “ 0, and for 𝑖 “ 1 when 𝑐 “ 1, while

𝑅
p𝑖q

®𝑛 p𝑧q “ 𝑜p1q𝜏®𝑛Φ
p𝑖q

®𝑛 p𝑧q𝑤´1
®𝑛,𝑖p𝑧q

uniformly on closed subsets of CzΔ0,1 for 𝑖 “ 1 when 𝑐 “ 0 and of CzΔ1,2 for 𝑖 “ 2 when 𝑐 “ 1. Moreover,

𝐿 ®𝑛p𝑧q “ p1 ` 𝑜p1qq
Π

p0q

®𝑛 p𝑧q

𝛾®𝑛p𝑆 ®𝑛Φ®𝑛qp0qp𝑧q
,

uniformly on closed subsets of CzpΔ𝑐,1 Y Δ𝑐,2q. As in Theorems 3.2 and 3.3 the error rate can be improved to
O𝑐p𝜀 ®𝑛q when 𝑐 P r0, 1szt𝑐˚, 𝑐˚˚u with dependence on 𝑐 being locally uniform.

Theorems 3.2–3.4 are proven in Chapter 7.

4. On the Supports of the Equilibrium measures

In this section we discuss further properties of the vector equilibrium problem (2.2)–(2.3) as well as prove
some auxiliary lemmas needed later.

With the notation introduced in the beginning of Section 2.1, the following proposition holds.

Proposition 4.1. There exist constants 0 ă 𝑐˚ ă 𝑐˚˚ ă 1 such that
$

’

&

’

%

𝛽𝑐,1 ă 𝛽1, 𝛼𝑐,2 “ 𝛼2, 0 ă 𝑐 ă 𝑐˚,

𝛽𝑐,1 “ 𝛽1, 𝛼𝑐,2 “ 𝛼2, 𝑐˚ ď 𝑐 ď 𝑐˚˚,

𝛽𝑐,1 “ 𝛽1, 𝛼𝑐,2 ą 𝛼2, 1 ą 𝑐 ą 𝑐˚˚.

Moreover, it holds that2

𝜔𝑐,𝑖
˚

Ñ 𝜔𝑐‹ ,𝑖 , 𝛼𝑐,2 Ñ 𝛼𝑐‹ ,2, 𝛽𝑐,1 Ñ 𝛽𝑐‹ ,1, ℓ𝑐,𝑖 Ñ ℓ𝑐‹ ,𝑖 , 𝑉𝜔𝑐,𝑖 Ñ 𝑉𝜔𝑐‹ ,𝑖 as 𝑐 Ñ 𝑐‹ P p0, 1q

for 𝑖 P t1, 2u, where the convergence of potentials is uniform on compact subsets of C. Furthermore,
#

𝜔𝑐,2
˚

Ñ 𝜔2, 𝛽𝑐,1 Ñ 𝛼1, ℓ𝑐,2 Ñ 2ℓ2, ℓ𝑐,1 Ñ 𝑉𝜔2p𝛼1q as 𝑐 Ñ 0,

𝜔𝑐,1
˚

Ñ 𝜔1, 𝛼𝑐,2 Ñ 𝛽2, ℓ𝑐,1 Ñ 2ℓ1, ℓ𝑐,2 Ñ 𝑉𝜔1p𝛽2q as 𝑐 Ñ 1,

and 𝑉𝜔𝑐,𝑖 Ñ 𝑉𝜔𝑖 uniformly on compact subsets of C as 𝑐 Ñ 2 ´ 𝑖, 𝑖 P t1, 2u.

Further, recall the surface 𝕽𝑐 constructed just before Proposition 2.1. Given a rational function 𝐹p𝒛q on 𝕽𝑐 ,
we denote its divisor of zeros and poles by p𝐹q and write

p𝐹q “ 𝑚1𝒛1 ` ¨ ¨ ¨ ` 𝑚𝑙 𝒛𝑙 ´ 𝑘1 𝒑1 ´ ¨ ¨ ¨ ´ 𝑘𝑡 𝒑𝑡

to mean that 𝐹p𝒛q has a zero of order 𝑚𝑖 at 𝒛𝑖 for each 𝑖 P t1, . . . , 𝑙u, a pole of order 𝑘𝑖 at 𝒑𝑖 for each
𝑖 P t1, . . . , 𝑡u, and otherwise it is non-vanishing and finite, where necessarily

ř𝑙
𝑖“1 𝑚𝑖 “

ř𝑡
𝑖“1 𝑘𝑖 .

2Given compactly supported measures 𝜈𝑛, 𝑛 P Zě0, 𝜈𝑛
˚
Ñ 𝜈0 as 𝑛 Ñ 8 means that

ş

𝑓 d𝜈𝑛 Ñ
ş

𝑓 d𝜈0 as 𝑛 Ñ 8 for any compactly
supported continuous function 𝑓 .
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It can be easily checked using Schwarz reflection principle, as it was done in [45, Proposition 2.1] for 𝑐
rational, that the function

(4.1) 𝐻𝑐p𝒛q :“

#

´𝑉𝜔𝑐,1`𝜔𝑐,2p𝑧q `
ℓ𝑐,1`ℓ𝑐,2

3 , 𝒛 P 𝕽p0q
𝑐 ,

𝑉𝜔𝑐,𝑖 p𝑧q ´ ℓ𝑐,𝑖 `
ℓ𝑐,1`ℓ𝑐,2

3 , 𝒛 P 𝕽p𝑖q
𝑐 , 𝑖 P t1, 2u,

is harmonic on 𝕽𝑐z
 

8p0q,8p1q,8p2q
(

. Therefore, the function ℎ𝑐p𝒛q :“ 2B𝑧𝐻𝑐p𝒛q, where 2B𝑧 :“ B𝑥 ´ iB𝑦 , is
rational on 𝕽𝑐 . In fact, it holds that

(4.2)

$

’

’

&

’

’

%

ℎ
p0q
𝑐 p𝑧q “

ż dp𝜔𝑐,1 ` 𝜔𝑐,2qp𝑥q

𝑧 ´ 𝑥
, 𝑧 P Cz

`

Δ𝑐,1 Y Δ𝑐,2
˘

,

ℎ
p𝑖q
𝑐 p𝑧q “

ż d𝜔𝑐,𝑖p𝑥q

𝑥 ´ 𝑧
, 𝑧 P CzΔ𝑐,𝑖 , 𝑖 P t1, 2u.

The importance of this function lies in the following: it was shown in [45, Propositions 2.1 and 2.3] that

(4.3) Φ®𝑛p𝒛q “ 𝐶®𝑛 exp
"

|®𝑛|

ż 𝒛

𝜷2

ℎ𝑐 ®𝑛p𝒙qd𝑥
*

and
1

|®𝑛|
log

ˇ

ˇΦ®𝑛p𝒛q
ˇ

ˇ “ 𝐻𝑐 ®𝑛p𝒛q

for 𝒛 P 𝕽®𝑛, where the constant 𝐶®𝑛 should be chosen so that (3.13) is satisfied.

Proposition 4.2. Let D𝑐 :“ 𝜶1 ` 𝜷𝑐,1 `𝜶𝑐,2 ` 𝜷2 be the divisor of the ramification points of 𝕽𝑐 . It holds that

(4.4) pℎ𝑐q “ 8p0q ` 8p1q ` 8p2q ` 𝒛𝑐 ´ D𝑐

for some 𝒛𝑐 P 𝕽p0q
𝑐 such that 𝑧𝑐 P r𝛽𝑐,1, 𝛼𝑐,2s. Moreover, 𝑧𝑐 is a continuous increasing function of 𝑐 and

#

𝑧𝑐 “ 𝛽𝑐,1, 𝑐 ď 𝑐˚,

𝑧𝑐 “ 𝛼𝑐,2, 𝑐 ě 𝑐˚˚.

This proposition has the following implication: point 𝑧𝑐 uniquely determines the vector equilibrium measure
p𝜔𝑐,1, 𝜔𝑐,2q. Indeed, choose 𝑧‹ P p𝛼1, 𝛽2q. Set 𝛽‹,1 “ mint𝛽1, 𝑧‹u and 𝛼‹,2 “ maxt𝛼2, 𝑧‹u. Construct
Riemann surface 𝕽‹ with respect to the cuts r𝛼1, 𝛽‹,1s and r𝛼‹,2, 𝛽2s as before. Let ℎ‹p𝒛q be a rational function
on 𝕽‹ with the zero/pole divisor

pℎ‹q “ 8p0q ` 8p1q ` 8p2q ` 𝒛‹ ´ 𝜶1 ´ 𝜷‹,1 ´ 𝜶‹,2 ´ 𝜷2,

where 𝜶1, 𝜷‹,1,𝜶‹,2, 𝜷2 are the ramification points of 𝕽‹ and 𝒛‹ P 𝕽p0q
‹ . Clearly, ℎ‹p𝑧p0qq ` ℎ‹p𝑧p1qq `

ℎ‹p𝑧p2qq ” 0 as this sum must be an entire function that vanishes at infinity. Normalize ℎ‹p𝒛q so that
ℎ‹p𝑧p0qq “ 1{𝑧 ` Op1{𝑧2q as 𝑧 Ñ 8. Set 𝑐‹ :“ ´ lim𝑧Ñ8 𝑧ℎ‹p𝑧p1qq. Then 𝕽‹ “ 𝕽𝑐‹

, 𝒛‹ “ 𝒛𝑐‹
, and

respectively ℎ‹p𝒛q “ ℎ𝑐‹
p𝒛q. It further follows from Privalov’s lemma [39, Section III.2] that

d𝜔𝑐‹ ,𝑖p𝑥q “

´

ℎ
p𝑖q

‹`p𝑥q ´ ℎ
p𝑖q

‹´p𝑥q

¯ d𝑥
2𝜋i

, 𝑖 P t1, 2u,

and thus, we have recovered the vector equilibrium measure from 𝑧‹.

Proof of Propositions 4.1 and 4.2. Besides relations (2.3), it also holds that the left hand sides of (2.3) are
strictly less than zero on Δ1zΔ𝑐,1 and Δ2zΔ𝑐,2, respectively, see [26]. In particular, we can write

𝑉
1
𝑐
𝜔𝑐,1p𝑥q `

1
2𝑐
𝑉𝜔𝑐,2p𝑥q ´

ℓ𝑐,1

2𝑐

#

” 0 on suppp𝜔𝑐,1q,

ě 0 on Δ1zsuppp𝜔𝑐,1q,

which, in view of [42, Theorem I.3.3], can be interpreted in the following way: the measure 1
𝑐
𝜔𝑐,1 is the

weighted logarithmic equilibrium distribution on Δ1 in the presence of the external field 1
2𝑐𝑉

𝜔𝑐,2p𝑥q. Hence,
its support maximizes the Mhaskar-Saff functional [42, Chapter IV]:

𝐹𝑐p𝐾q :“ log capp𝐾q ´
1
2𝑐

ż

𝑉𝜔𝑐,2d𝜔𝐾 ,

where 𝐾 Ď r𝛼1, 𝛽1s is compact, capp𝐾q is the logarithmic capacity of 𝐾 , and 𝜔𝐾 is the logarithmic equilibrium
distribution on 𝐾 (when 𝐾 is an interval, 𝜔𝐾 is the arcsine distribution on 𝐾). As mentioned before (2.3), the
maximizer of this functional is an interval containing 𝛼1 (this was proven in [26]). Therefore, it is enough to
consider compact sets 𝐾 only of the form r𝛼1, 𝛽s. Thus, the functional 𝐹p𝐾q reduces to the function

𝐹𝑐p𝛽q :“ log
𝛽 ´ 𝛼1

4
´

1
2𝑐

ż 𝛽

𝛼1

𝑉𝜔𝑐,2p𝑥q
d𝑥

𝜋
a

p𝛽 ´ 𝑥qp𝑥 ´ 𝛼1q
,
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where we used explicit expressions for the logarithmic capacity and the equilibrium measure of an interval. To
find the maximum of 𝐹𝑐p𝛽q on Δ1, let us compute its derivative. To this end, it can be readily checked that

1
ℎ

˜

ż 𝛽`ℎ

𝛼1

𝑓 p𝑥q
d𝑥

𝜋
a

p𝛽 ` ℎ ´ 𝑥qp𝑥 ´ 𝛼1q
´

ż 𝛽

𝛼1

𝑓 p𝑥q
d𝑥

𝜋
a

p𝛽 ´ 𝑥qp𝑥 ´ 𝛼1q

¸

“

ż 𝛽

𝛼1

1
ℎ

ˆ

𝑓

ˆ

𝑥 ` ℎ
𝑥 ´ 𝛼1
𝛽 ´ 𝛼1

˙

´ 𝑓 p𝑥q

˙

d𝑥
𝜋
a

p𝛽 ´ 𝑥qp𝑥 ´ 𝛼1q

for every differentiable function 𝑓 p𝑥q on Δ1. Observe also that 𝑉𝜔𝑐,2p𝑥q is harmonic off Δ2 and therefore
𝑓𝑐p𝑥q :“ 𝑉𝜔𝑐,2p𝑥q “ ´

ş

log |𝑥 ´ 𝑦|d𝜔𝑐,2p𝑦q is a smooth function on Δ1. Hence, by taking the limit as ℎ Ñ 0
in the above equality, we get

(4.5) 𝐹1
𝑐p𝛽q “

1
𝛽 ´ 𝛼1

´
1

4𝜋𝑐

ż 1

´1
𝑓 1
𝑐

ˆ

𝛽 ´ 𝛼1
2

𝑥 `
𝛽 ` 𝛼1

2

˙

c

1 ` 𝑥

1 ´ 𝑥
d𝑥.

It is also obvious that 𝑓 1
𝑐p𝑥q “

ş

p𝑦´ 𝑥q´1d𝜔𝑐,2p𝑦q, which is an increasing positive function on Δ1. Thus, 𝐹1
𝑐p𝛽q

is a decreasing function of 𝛽 and therefore has at most one zero. Moreover, it holds that

(4.6)
1 ´ 𝑐

𝛽2 ´ 𝛼1
ă 𝑓 1

𝑐p𝑥q ă
1 ´ 𝑐

𝛼2 ´ 𝛽1
, 𝑥 P Δ1.

Hence, 𝐹1
𝑐p𝛽1q ă 0 for all 𝑐 small. As lim

𝛽Ñ𝛼
`

1
𝐹1
𝑐p𝛽q “ `8, we get that 𝛽𝑐,1 P p𝛼1, 𝛽1q for all 𝑐 small. Using

𝐹1
𝑐p𝛽𝑐,1q “ 0 and the above estimates, we get from (4.5) that

(4.7)
4𝑐

1 ´ 𝑐
p𝛼2 ´ 𝛽1q ă 𝛽𝑐,1 ´ 𝛼1 ă

4𝑐
1 ´ 𝑐

p𝛽2 ´ 𝛼1q

for all small 𝑐. This, in particular, implies that 𝛽𝑐,1 Ñ 𝛼1 as 𝑐 Ñ 0. An analogous argument shows that 𝛼𝑐,2
approaches 𝛽2 when 𝑐 Ñ 1. It further follows from (4.6) that 𝑓 1

𝑐p𝑥q uniformly converges to zero on Δ1 as 𝑐 Ñ 1.
Thus, 𝐹1

𝑐p𝛽q ą 0 for all 𝛽 P Δ1 and all 𝑐 close to 1. That is, Δ𝑐,1 “ Δ1 in this case. Similarly, we also get that
Δ𝑐,2 “ Δ2 for all 𝑐 small.

Let us now describe what happens to the components of the vector equilibrium measure and their potentials
as 𝑐 Ñ 0. Clearly, 𝑉𝜔𝑐,1p𝑧q Ñ 0 uniformly on compact subsets of CzΔ0,1 in this case. To show that 𝜔𝑐,2

˚
Ñ 𝜔2

as 𝑐 Ñ 0, notice that

}𝜎}ℓ2 “

ż

𝑉𝜔2d𝜎 “

ż

𝑉𝜎d𝜔2

#

ě infΔ2 𝑉
𝜎 ,

ď supΔ2
𝑉𝜎 ,

for any Borel measure 𝜎 supported on Δ2 since 𝜔2 is a probability measure. It follows from (2.3) that 𝑉𝜔𝑐,2p𝑥q

is continuous on Δ2 “ Δ𝑐,2. Therefore,
$

&

%

2ℓ2p1 ´ 𝑐q ě min
Δ2
𝑉2𝜔𝑐,2 “ 𝑉2𝜔𝑐,2p𝑥minq “ ℓ𝑐,2 ´𝑉𝜔𝑐,1p𝑥minq “ ℓ𝑐,2 ` 𝑜p1q,

2ℓ2p1 ´ 𝑐q ď max
Δ2

𝑉2𝜔𝑐,2 “ 𝑉2𝜔𝑐,2p𝑥maxq “ ℓ𝑐,2 ´𝑉𝜔𝑐,1p𝑥maxq “ ℓ𝑐,2 ` 𝑜p1q,

which implies that ℓ𝑐,2 “ 2ℓ2 ` 𝑜p1q as 𝑐 Ñ 0. Let 𝜔 be a weak˚ limit point of 𝜔𝑐,2 as 𝑐 Ñ 0. Then 𝜔 is a
probability measure and

𝑉𝜔p𝑥q ď lim inf
𝑐Ñ0

𝑉𝜔𝑐,2p𝑥q “ lim inf
𝑐Ñ0

`

ℓ𝑐,2 ´𝑉𝜔𝑐,1p𝑥q
˘

{2 “ ℓ2, 𝑥 P Δ2,

where the first inequality follows from the Principle of Descent [42, Theorem I.6.8]. Therefore, 𝐸p𝜔, 𝜔q ď

ℓ2 “ 𝐸p𝜔2, 𝜔2q, which implies that 𝜔 “ 𝜔2 by the uniqueness of the equilibrium measure. To deduce the
behavior of the constants ℓ𝑐,1 as 𝑐 Ñ 0, observe that

#

𝑉2𝜔𝑐,1`𝜔𝑐,2p𝑥q ď ℓ𝑐,1, 𝑥 P p´8, 𝛼1s,

𝑉2𝜔𝑐,1`𝜔𝑐,2p𝑥q ě ℓ𝑐,1, 𝑥 P r𝛽𝑐,1, 𝛽1s,

where the first claim can be easily obtained from (2.3) and the second one was already mentioned at the
beginning of the proof. Then

𝑉2𝜔𝑐,1`𝜔𝑐,2p𝛼1 ´ 𝜖q ď ℓ𝑐,1 ď 𝑉2𝜔𝑐,1`𝜔𝑐,2p𝛼1 ` 𝜖q

for any 𝜖 ą 0 since 𝛽𝑐,1 ă 𝛼1 ` 𝜖 for all 𝑐 small enough. Hence, we get that

𝑉𝜔2p𝛼1 ´ 𝜖q ď lim inf
𝑐Ñ0

ℓ𝑐,1 ď lim sup
𝑐Ñ0

ℓ𝑐,1 ď 𝑉𝜔2p𝛼1 ` 𝜖q.
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Since 𝑉𝜔2p𝑥q is continuous on the real line and 𝜖 is arbitrary, we get that ℓ𝑐,1 Ñ 𝑉𝜔2p𝛼1q as 𝑐 Ñ 0. The
respective claims for the limits as 𝑐 Ñ 1 can be shown in a similar fashion.

Let us point out one consequence of the fact that 𝜔𝑐,2
˚

Ñ 𝜔2 as 𝑐 Ñ 0 that will be useful to us later. It holds
that

𝑓 1
𝑐p𝑧q :“

ż d𝜔𝑐,2p𝑦q

𝑦 ´ 𝑧
Ñ

ż

d𝜔2p𝑦q

𝑦 ´ 𝑧
“

1
𝜋

ż 𝛽2

𝛼2

1
𝑦 ´ 𝑧

d𝑦
a

p𝑦 ´ 𝛼2qp𝛽2 ´ 𝑦q
“ ´

1
𝑤2p𝑧q

,

locally uniformly in CzΔ2, where, as before, 𝑤2p𝑧q :“
a

p𝑧 ´ 𝛼2qp𝑧 ´ 𝛽2q. Therefore, we can improve (4.7) to

(4.8)
4𝑐

𝛽𝑐,1 ´ 𝛼1
“

1
|𝑤2p𝛼1q|

` 𝑜p1q

as 𝑐 Ñ 0, where we again used (4.5).
The facts that 𝜔𝑐,𝑖

˚
Ñ 𝜔𝑐‹ ,𝑖 and ℓ𝑐,𝑖 Ñ ℓ𝑐‹ ,𝑖 as 𝑐 Ñ 𝑐‹ P p0, 1q, 𝑖 P t1, 2u, were shown in the proof of [45,

Proposition 2.1]. Let us now show that 𝛽𝑐,1 Ñ 𝛽𝑐‹ ,1 in this case (that is, that 𝛽𝑐,1 is a continuous function of
𝑐). Weak˚ convergence of measures necessitates that lim inf𝑐Ñ𝑐‹

𝛽𝑐,1 ě 𝛽𝑐‹ ,1. Assume to the contrary that
there exists a subsequence 𝑐𝑛 Ñ 𝑐‹ such that 𝛽𝑐‹ ,1 ă 𝛽˚ :“ lim inf𝑛Ñ8 𝛽𝑐𝑛 ,1. Then

lim inf
𝑛Ñ8

ℓ𝑐𝑛 ,1 “ lim inf
𝑛Ñ8

𝑉2𝜔𝑐𝑛,1`𝜔𝑐𝑛,2p𝑥q ě 𝑉2𝜔𝑐‹ ,1`𝜔𝑐‹ ,2p𝑥q ą ℓ𝑐‹ ,1

for 𝑥 P p𝛽𝑐‹ ,1, 𝛽˚q due to the Principle of Descent [42, Theorem I.6.8]. However, the above conclusion clearly
contradicts the claim ℓ𝑐,1 Ñ ℓ𝑐‹ ,1 as 𝑐 Ñ 𝑐‹. The convergence 𝛼𝑐,2 Ñ 𝛼𝑐‹ ,2 as 𝑐 Ñ 𝑐‹ can be shown
analogously (unfortunately, this convergence of the endpoints was asserted without justification in the proof
[45, Proposition 2.1]). Given the convergence of the endpoint, the uniform convergence of the potentials as
𝑐 Ñ 𝑐‹ P p0, 1q was established in the proof of [45, Proposition 2.1] using harmonicity of 𝐻𝑐p𝒛q. The same
arguments can be applied to show that𝑉𝜔𝑐,𝑖 Ñ 𝑉𝜔𝑖 uniformly on compact subsets of C as 𝑐 Ñ 2´ 𝑖, 𝑖 P t1, 2u.

Let us now establish the existence of the constants 0 ă 𝑐˚ ă 𝑐˚˚ ă 1 and the monotonicity properties of
𝛽𝑐,1 and 𝛼𝑐,2. Claim (4.4) was obtained in [45, Proposition 2.3]. There it was further shown that
(4.9) 𝛽𝑐,1 ă 𝛽1 ñ 𝑧𝑐 “ 𝛽𝑐,1 and 𝛼𝑐,2 ą 𝛼2 ñ 𝑧𝑐 “ 𝛼𝑐,2.

Assume now that 𝛽𝑐1 ,1 “ 𝛽𝑐2 ,1 ă 𝛽1. Then the functions ℎ𝑐1p𝒛q and ℎ𝑐2p𝒛q are defined on the same Riemann
surface. Their difference has at least four zeros (double zero at 8p0q and simple zeros at 8p1q and 8p2q) and
at most three poles 𝜶1,𝜶2, 𝜷2. This is possible only if the function is identically zero and therefore 𝑐1 “ 𝑐2

as ℎp1q
𝑐 p𝑧q “ 𝑐𝑧´1 ` Op𝑧´2q by (4.2). Since 𝛽𝑐,1 Ñ 𝛼1 as 𝑐 Ñ 0, this shows the existence of 𝑐˚ and proves

monotonicity of 𝛽𝑐,1 as a function of 𝑐 (it is a continuous and injective function of 𝑐). The existence of 𝑐˚˚ and
monotonicity of 𝛼𝑐,2 are proven analogously. It also follows from (4.9) that 𝑐˚ ď 𝑐˚˚. As it was shown in [45,
Proposition 2.3] that 𝑧𝑐˚ “ 𝛽𝑐˚ ,1p“ 𝛽1q and 𝑧𝑐˚˚ “ 𝛼𝑐˚˚ ,2p“ 𝛼2q, we in fact get that 𝑐˚ ă 𝑐˚˚.

It only remains to prove that 𝑧𝑐 is a continuous increasing function of 𝑐 on r𝑐˚, 𝑐˚˚s. To show monotonicity,
take 𝑐˚ ď 𝑐1 ă 𝑐2 ď 𝑐˚˚. It follows easily from (4.2) that each ℎ𝑐p𝑥p0qq is a decreasing function of 𝑥 P p𝛽1, 𝛼2q.
Thus, to prove that 𝑧𝑐1 ă 𝑧𝑐2 , it is enough to show that ℎp𝑥p0qq ą 0 in p𝛽1, 𝛼2q, where ℎp𝒛q :“ pℎ𝑐2 ´ ℎ𝑐1qp𝒛q.
Notice that ℎp𝑥p0qq “ ´ℎp𝑥p1qq ´ ℎp𝑥p2qq by (4.2) and therefore it is sufficient to argue that ℎp𝑥p1qq ă 0 on
p𝛽1,8q and ℎp𝑥p2qq ă 0 on p´8, 𝛼2q. These claims are obvious for all |𝑥| large enough since

ℎp𝑧p1qq “ ´
𝑐2 ´ 𝑐1
𝑧

` O
`

𝑧´2˘ and ℎp𝑧p2qq “
𝑐2 ´ 𝑐1
𝑧

` O
`

𝑧´2˘

as 𝑧 Ñ 8 according to (4.2). As explained after (4.9), ℎp𝒛q vanishes only at 8p0q, 8p1q, and 8p2q. Therefore,
ℎp𝑧p1qq and ℎp𝑧p2qq cannot change sign on p𝛽1,8q and p´8, 𝛼2q, respectively. Hence, these functions are
negative everywhere on the considered rays by continuity.

To show continuity of 𝑧𝑐 as a function of 𝑐 P r𝑐˚, 𝑐˚˚s, we shall once again use the fact that ℎ𝑐p𝑥p0qq is
a decreasing function on p𝛽1, 𝛼2q. When 𝑐 P p𝑐˚, 𝑐˚˚q, ℎ𝑐p𝑥p0qq is unbounded on both ends of p𝛽1, 𝛼2q and
therefore changes sign from ` to ´ when passing through 𝑧𝑐 (recall that ℎ𝑐p𝒛q has poles at 𝜷1 and 𝜶2 in this
case). When 𝑐 “ 𝑐˚, ℎ𝑐p𝑥p0qq is unbounded only at 𝛼2 and, since it is non-vanishing, is negative on r𝛽1, 𝛼2q.
Similarly, when 𝑐 “ 𝑐˚˚, it is unbounded at 𝛽1 only and therefore is positive on p𝛽1, 𝛼2s. In any case, 𝑧𝑐 is the
point where the potential 𝑉𝜔𝑐,1`𝜔𝑐,2p𝑥q achieves its minimum on r𝛽1, 𝛼2s. Thus, if 𝑧𝑐𝑛 Ñ 𝑧‹ as 𝑐𝑛 Ñ 𝑐‹ when
𝑛 Ñ 8, 𝑐𝑛, 𝑐‹ P p𝑐˚, 𝑐˚˚q, then

𝑉𝜔𝑐0 ,1`𝜔𝑐0 ,2p𝑧‹q ď lim inf
𝑛Ñ8

𝑉𝜔𝑐𝑛,1`𝜔𝑐𝑛,2p𝑧𝑐𝑛q ď lim inf
𝑛Ñ8

𝑉𝜔𝑐𝑛,1`𝜔𝑐𝑛,2p𝑧𝑐‹
q “ 𝑉𝜔𝑐‹ ,1`𝜔𝑐‹ ,2p𝑧𝑐‹

q,

where the first inequality follows from the weak˚ convergence of measures and the Principle of Descent [42,
Theorem I.6.8], the second one from the just discussed extremal property of 𝑧𝑐𝑛 , and the last equality holds due
to the weak˚ convergence of measures and the fact that 𝑧𝑐‹

does not belong to the supports of the measures in
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question. Since 𝑉𝜔𝑐‹ ,1`𝜔𝑐‹ ,2p𝑥q is smallest at 𝑧𝑐‹
, we get that 𝑧‹ “ 𝑧𝑐‹

. When 𝑐‹ “ 𝑐˚, essentially the same
argument works. One just needs to replace 𝑧𝑐‹

“ 𝛽1 with 𝛽1 ` 𝜖 for any 𝜖 ą 0. Since 𝑉𝜔𝑐‹ ,1`𝜔𝑐‹ ,2p𝑥q is
increasing on r𝛽1, 𝛼2s, this shows that 𝑧‹ ď 𝑧𝑐‹

` 𝜖 for any 𝜖 ą 0 and therefore 𝑧‹ “ 𝑧𝑐‹
. Clearly, an analogous

modification works when 𝑐‹ “ 𝑐˚˚. �

5. Proof of Propositions 2.1 and 3.1

On several occasions, we shall refer to the following consequences of Koebe’s 1{4-theorem, [38, Theo-
rem 1.3]. Given 𝑟 ą 0, let

𝑎p𝑧q “

8
ÿ

𝑘“0
𝑎𝑘p𝑧 ´ 𝑧0q𝑘 , 𝑏p𝑧q “

8
ÿ

𝑘“0
𝑏𝑘 𝑧

´𝑘 , and 𝑑p𝑧q “

1
ÿ

𝑘“´8

𝑑𝑘 𝑧
𝑘

be univalent in 𝐷𝑎 “ t|𝑧 ´ 𝑧0| ă 𝑟u, 𝐷𝑏 “ t|𝑧| ą 1{𝑟u, and 𝐷𝑑 “ t|𝑧| ą 𝑟u, respectively. Then,
(5.1)

 

|𝑧 ´ 𝑎0| ă 𝑟𝑎1{4
(

Ď 𝑎p𝐷𝑎q,
 

|𝑧 ´ 𝑏0| ă 𝑟𝑏1{4
(

Ď 𝑏p𝐷𝑏q, and
 

|𝑧| ą 4𝑟𝑑1u Ď 𝑑p𝐷𝑑q,

where 𝑓 p𝐷q stands for image of a domain 𝐷 under the function 𝑓 p𝑧q.

5.1. Proof of Proposition 2.1. Recall that 𝜒𝑐p𝒛q is univalent on 𝕽𝑐 and 𝜒p0q
𝑐 p𝑧q “ 𝑧 ` Op𝑧´1q as 𝑧 Ñ 8, see

(2.4). Hence, it follows from (5.1) that there exists a finite constant 𝑅 independent of 𝑐 such that t|𝑧| ą 𝑅u Ă

𝜒𝑐
`

𝕽p0q
𝑐

˘

for all 𝑐 P p0, 1q. In particular, it holds that |𝜒𝑐p𝒙q| ď 𝑅, 𝒙 P 𝚫𝑐,1, as well as |𝐵𝑐,𝑖| ď 𝑅, 𝑖 P t1, 2u,
see (2.5), for all 𝑐 P p0, 1q. For all 𝑐 ď 𝑐˚˚ (in which case Δ𝑐,2 “ Δ2), define

𝜑p𝒛q :“
1
2

#

𝑧 ´ p𝛽2 ` 𝛼2q{2 ` 𝑤2p𝑧q, 𝑧 P 𝕽p0q
𝑐 z𝚫𝑐,1,

𝑧 ´ p𝛽2 ` 𝛼2q{2 ´ 𝑤2p𝑧q, 𝑧 P 𝕽p2q
𝑐 .

This is a meromorphic function in
`

𝕽p0q
𝑐 Y 𝕽p2q

𝑐

˘

z𝚫𝑐,1 with a simple pole at 8p0q, a simple zero at 8p2q, and
otherwise non-vanishing and finite. It is normalized so that 𝜑p𝑧p0qq “ 𝑧 ` Op1q as 𝑧 Ñ 8. Observe that 𝜑p𝒛q

continuously extends to the closed set 𝕽p0q
𝑐 Y 𝕽p2q

𝑐 . It can be readily checked that the image of 𝕽p0q
𝑐 Y 𝕽p2q

𝑐

under 𝜑p𝒛q is equal to C and 𝜑p𝒛q is one-to-one everywhere except on 𝚫𝑐,1 that is mapped into an interval

𝜑p𝚫𝑐,1q “: 𝐼𝑐,1 “
“

𝜑p𝜶1q, 𝜑p𝜷𝑐,1q
‰

Ñ
 

𝜑p𝜶1q
(

as 𝑐 Ñ 0.

Notice also that 𝜑p0qp𝑧q “ 𝜑2p𝑧q for 𝑧 P CzΔ2, see (2.6).
Define 𝑓𝑐p𝑧q :“

`

𝜒𝑐
`

𝜑´1p𝑧q
˘

´ 𝐵𝑐,2
˘

{𝑧. Then 𝑓𝑐p𝑧q is a holomorphic function in Cz𝐼𝑐,1 (there is no pole at
the origin as 𝜑´1p0q “ 8p2q and 𝜒𝑐p𝒛q ´ 𝐵𝑐,2 vanishes there) with bounded traces on 𝐼𝑐,1 that assumes value
1 at infinity. Hence, it follows from Cauchy’s integral formula that

𝑓𝑐p𝑧q “ 1 `

ż

𝐼𝑐,1

p 𝑓𝑐` ´ 𝑓𝑐´qp𝑥q

𝑥 ´ 𝑧

d𝑥
2𝜋i

, 𝑧 P Cz𝐼𝑐,1.

Since the traces 𝑓𝑐˘p𝑧q are bounded above in absolute value on 𝐼𝑐,1 independently of 𝑐 and |𝐼𝑐,1| Ñ 0 as 𝑐 Ñ 0,
we see that 𝑓𝑐p𝑧q Ñ 1 as 𝑐 Ñ 0 locally uniformly in Czt𝜑p𝜶1qu. Hence, it holds that

𝜒𝑐p𝒛q “ 𝐵𝑐,2 `
`

1 ` 𝑜p1q
˘

𝜑p𝒛q

locally uniformly on
`

𝕽p0q
𝑐 Y 𝕽p2q

𝑐

˘

z𝚫𝑐,1. Since the image of
`

𝕽p0q
𝑐 Y 𝕽p2q

𝑐

˘

z𝚫𝑐,1 under 𝜑p𝒛q is Cz𝐼𝑐,1 and
|𝐼𝑐,1| Ñ 0 as 𝑐 Ñ 0, for any 𝜖 ą 0 there exists 𝛿 ą 0 such that the image of

`

𝕽p0q
𝑐 z𝜋´1pt|𝑧´𝛼1| ă 𝜖uq

˘

Y𝕽p2q
𝑐

under 𝜒𝑐p𝒛q contains Czt|𝑧 ´ 𝐵𝑐,2 ´ 𝜑p𝜶1q| ă 𝛿u. Due to univalency of 𝜒𝑐p𝒛q on 𝕽𝑐 , this means that the
image of

`

𝕽p0q
𝑐 X 𝜋´1pt|𝑧 ´ 𝛼1| ă 𝜖uq

˘

Y 𝕽p1q
𝑐 is contained in t|𝑧 ´ 𝐵𝑐,2 ´ 𝜑p𝜶1q| ă 𝛿u. Altogether, we get

that

(5.2) 𝜒𝑐p𝒛q “ 𝐵𝑐,2 `
`

1 ` 𝑜p1q
˘

#

𝜑p𝒛q, 𝒛 P 𝕽p0q
𝑐 Y 𝕽p2q

𝑐 ,

𝜑p𝜶1q, 𝒛 P 𝕽p1q
𝑐 ,

where 𝑜p1q holds uniformly on the entire surface 𝕽𝑐 . Since

𝜑p0qp𝑧q “ 𝑧 ´
𝛽2 ` 𝛼2

2
` O

ˆ

1
𝑧

˙

and 𝜑p2qp𝑧q “
p𝛽2 ´ 𝛼2q2

16
1
𝑧

` O
ˆ

1
𝑧2

˙

,

the desired limits (2.7) easily follow.
Continuity of 𝐴𝑐,1, 𝐴𝑐,2, 𝐵𝑐,1, 𝐵𝑐,2 as functions of 𝑐 comes from the continuous dependence of 𝛼𝑐,2 and 𝛽𝑐,1

on 𝑐, see Proposition 4.2, and therefore the continuous dependence 𝜒𝑐p𝒛q on 𝑐.
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5.2. Auxiliary Estimates, I. In the forthcoming analysis, the following functions will play an important role:

(5.3) Υ𝑐,𝑖p𝒛q :“ 𝐴𝑐,𝑖
`

𝜒𝑐p𝒛q ´ 𝐵𝑐,𝑖
˘´1

, 𝑖 P t1, 2u.

It follows from the properties of 𝜒𝑐p𝒛q, see (2.4) and (2.5), that Υ𝑐,𝑖p𝒛q is a conformal map of 𝕽𝑐 onto C that
maps 8p𝑖q into 8 and 8p0q into 0. Moreover, it holds that

(5.4) Υ
p1q

𝑐,1p𝑧q “ 𝑧 ` Op1q and Υ
p0q

𝑐,1p𝑧q “ 𝐴𝑐,1𝑧
´1 ` O

`

𝑧´2˘ as 𝑧 Ñ 8.

It was explained in [45, Section 7], see [45, Equation (7.2)], that
(5.5) Υ𝑐,𝑖p𝒛q Ñ Υ𝑐‹ ,𝑖p𝒛q as 𝑐 Ñ 𝑐‹ P p0, 1q,

uniformly on 𝕽𝑐‹
z𝔘 for each 𝑖 P t1, 2u, where 𝔘 is any open set the containing ramification points of 𝕽𝑐‹

(if
𝔘𝑐 Ă 𝕽𝑐 is an open set such that 𝜋

`

𝕽p𝑘q
𝑐‹

z𝔘
˘

“ 𝜋
`

𝕽p𝑘q
𝑐 z𝔘𝑐

˘

for each 𝑘 P t0, 1, 2u, then the bordered Riemann
surfaces 𝕽𝑐‹

z𝔘 and 𝕽𝑐z𝔘𝑐 are identical for all 𝑐 sufficiently close to 𝑐‹ and we can think of Υ𝑐,𝑖p𝒛q as a
function on 𝕽𝑐‹

z𝔘). On the other hand, when 𝑐 Ñ 0, the following is true.
Lemma 5.1. It holds that

(5.6) Υ𝑐,2p𝒛q “ p1 ` 𝑜p1qq

#

𝜓p𝒛q, 𝑧 P 𝕽p0q
𝑐 Y 𝕽p2q

𝑐 ,

𝜓p𝜶1q, 𝒛 P 𝕽p1q
𝑐 ,

as 𝑐 Ñ 0, where 𝑜p1q holds uniformly on the entire surface 𝕽𝑐 and

𝜓p𝒛q :“
𝐴0,2

𝜑p𝒛q
“

1
2

#

𝑧 ´ p𝛽2 ` 𝛼2q{2 ´ 𝑤2p𝑧q, 𝑧 P 𝕽p0q
𝑐 z𝚫𝑐,1,

𝑧 ´ p𝛽2 ` 𝛼2q{2 ` 𝑤2p𝑧q, 𝑧 P 𝕽p2q
𝑐 ,

that is 𝜓p2qp𝑧q maps 𝕽p2q
𝑐 conformally onto t|𝑧| ą p𝛽2 ´ 𝛼2q{4u and 𝜓p0qp𝑧q𝜓p2qp𝑧q ” 𝐴0,2. Moreover, it holds

that3
(5.7)

ˇ

ˇΥ
p0q

𝑐,1p𝑧q
ˇ

ˇ „ 𝑐|𝜙´1
𝑐 p𝑧q|,

ˇ

ˇΥ
p1q

𝑐,1p𝑧q
ˇ

ˇ „ 𝑐|𝜙𝑐p𝑧q|, and
ˇ

ˇΥ
p2q

𝑐,1p𝑧q
ˇ

ˇ „ 𝑐2

on C (including the traces on Δ𝑐,1 Y Δ2, Δ𝑐,1, and Δ2, respectively) as 𝑐 Ñ 0, where

(5.8) 𝜙𝑐p𝑧q :“
2

𝛽𝑐,1 ´ 𝛼1

ˆ

𝑧 ´
𝛽𝑐,1 ` 𝛼1

2
` 𝑤𝑐,1p𝑧q

˙

is the conformal map of CzΔ𝑐,1 onto t|𝑧| ą 1u that fixes the point at infinity and has positive derivative there.
In addition, it holds that Υp1q

𝑐,1p𝑧q “ 𝑧 ´ 𝛼1 ` Op𝑐q uniformly in C as 𝑐 Ñ 0.
Proof. Formula (5.6) follows immediately from (5.2), the very definition (5.3), and the first limit in (2.7). It
also is immediate from (5.3) and (5.2) that

(5.9)
ˇ

ˇΥ
p2q

𝑐,1p𝑧q
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

𝐴𝑐,1

p1 ` 𝑜p1qq𝜑p𝜶1q ` p1 ` 𝑜p1qq𝜑p2qp𝑧q

ˇ

ˇ

ˇ

ˇ

„ 𝐴𝑐,1

in C (including the traces on Δ2) as 𝑐 Ñ 0 since |𝜑p2qp𝑧q| ď p𝛽2 ´ 𝛼2q{4 ă |𝜑p𝜶1q|, see (2.6). It can be readily
verified that the symmetric functions of the branches of a rational function on 𝕽𝑐 must be rational functions on
C. Since Υ

p1q

𝑐,1p𝑧q has a simple pole at infinity, Υp0q

𝑐,1p𝑧q has a simple zero there, and Υ
p𝑘q

𝑐,1p𝑧q, 𝑘 P t0, 1, 2u, are
otherwise non-vanishing and finite, the product of three branches of Υ𝑐,1p𝒛q must be a constant. Thus, similarly
to (5.9), it holds that

(5.10)
ˇ

ˇΥ
p0q

𝑐,1p𝑧qΥ
p1q

𝑐,1p𝑧qΥ
p2q

𝑐,1p𝑧q
ˇ

ˇ “
𝐴2
𝑐,1

𝐵𝑐,2 ´ 𝐵𝑐,1
“ ´

𝐴2
𝑐,1

p1 ` 𝑜p1qq𝜑p𝜶1q
„ 𝐴2

𝑐,1

in C as 𝑐 Ñ 0 (recall that 𝜑p𝜶1q ă 0). For each 𝒛 R 𝚫𝑐,1 Y 𝚫𝑐,2, let 𝒛 be the point on the same sheet of 𝕽𝑐 as 𝒛
with 𝜋p𝒛q “ 𝑧 and then extend this definition by continuity to 𝚫𝑐,1 Y𝚫𝑐,2. The function Υ𝑐,1p𝒛q is meromorphic
on 𝕽𝑐 and has the same zero/pole divisor and normalization as Υ𝑐,1p𝒛q. Therefore, Υ𝑐,1p𝒛q “ Υ𝑐,1p𝒛q. In
particular, Υp2q

𝑐,1p𝑥q is real on Δ𝑐,1 and the traces ofΥp𝑘q

𝑐,1p𝑧q on Δ𝑐,1, 𝑘 P t0, 1u, are conjugate-symmetric. Hence,
we get from (5.9) and (5.10) that

(5.11) 𝐴𝑐,1 „ 𝐴´1
𝑐,1

ˇ

ˇΥ
p2q

𝑐,1p𝑥qΥ
p1q

𝑐,1˘
p𝑥qΥ

p0q

𝑐,1˘
p𝑥q

ˇ

ˇ „
ˇ

ˇΥ
p1q

𝑐,1˘
p𝑥q

ˇ

ˇ

2
“
ˇ

ˇΥ
p0q

𝑐,1˘
p𝑥q

ˇ

ˇ

2
, 𝑥 P Δ𝑐,1,

3Given non-negative functions 𝐴𝑐p𝑧q and 𝐵𝑐p𝑧q, we write 𝐴𝑐p𝑧q À 𝐵𝑐p𝑧q (resp. 𝐴𝑐p𝑧q „ 𝐵𝑐p𝑧q) as 𝑐 Ñ 0 on 𝐾𝑐 for some family of
closed sets t𝐾𝑐u, if there exists 𝜖 ą 0 such that 𝐴𝑐p𝑧q ď 𝐶𝐵𝑐p𝑧q (resp. 𝐶´1𝐴𝑐p𝑧q ď 𝐵𝑐p𝑧q ď 𝐶𝐴𝑐p𝑧q) for all 𝑧 P 𝐾𝑐 and each
𝑐 P r0, 𝜖 s, where 𝐶 depends only on 𝜖 .
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as 𝑐 Ñ 0. Thus, (5.9), (5.11), and the maximum modulus principle applied to Υ
p0q

𝑐,1p𝑧q𝜙𝑐p𝑧q and Υ
p1q

𝑐,1p𝑧q{𝜙𝑐p𝑧q

yield (5.7) with 𝑐2 replaced by 𝐴𝑐,1. That is, we need to show that 𝐴𝑐,1 „ 𝑐2 as 𝑐 Ñ 0.
As is mentioned above, the sum Υ

p0q

𝑐,1p𝑧q ` Υ
p1q

𝑐,1p𝑧q ` Υ
p2q

𝑐,1p𝑧q is a rational function on C. Since it has only
one pole, which is simple and located at infinity, it is a monic (see (5.4)) polynomial of degree 1. In particular,
it holds that

(5.12) 𝛽𝑐,1 ´ 𝛼1 “ 2Υp0q

𝑐,1p𝛽𝑐,1q ` Υ
p2q

𝑐,1p𝛽𝑐,1q ´ 2Υp0q

𝑐,1p𝛼1q ´ Υ
p2q

𝑐,1p𝛼1q,

where we used the fact that Υp0q

𝑐,1p𝛾q “ Υ
p1q

𝑐,1p𝛾q “ Υ𝑐,1p𝜸q for 𝜸 P t𝜶1, 𝜷𝑐,1u. Thus, it follows from (4.7) and
(5.12) (lower bound) together with (5.9) and (5.11) (upper bound) that

𝑐 À 2
ˇ

ˇΥ
p0q

𝑐,1p𝛽𝑐,1q
ˇ

ˇ `
ˇ

ˇΥ
p2q

𝑐,1p𝛽𝑐,1q
ˇ

ˇ ` 2
ˇ

ˇΥ
p0q

𝑐,1p𝛼1q
ˇ

ˇ `
ˇ

ˇΥ
p2q

𝑐,1p𝛼1q
ˇ

ˇ À 𝐴
1{2
𝑐,1 ` 𝐴𝑐,1 À 𝐴

1{2
𝑐,1

as 𝑐 Ñ 0, where we also used the fact that 𝐴𝑐,1 Ñ 0 as 𝑐 Ñ 0 for the last inequality. On the other hand, it holds
that

Υ
p1q

𝑐,2p𝑧q “ ´
𝐴𝑐,2

𝐵𝑐,2 ´ 𝐵𝑐,1
`

𝐴𝑐,1𝐴𝑐,2

𝐵𝑐,2 ´ 𝐵𝑐,1

1
𝑧

` O
ˆ

1
𝑧2

˙

as 𝑧 Ñ 8 by the very definitions (5.3) and (2.4). Therefore, we can deduce from Cauchy’s integral formula that

(5.13)
𝐴𝑐,1𝐴𝑐,2

𝐵𝑐,2 ´ 𝐵𝑐,1
“

ˇ

ˇ

ˇ

ˇ

ˇ

1
2𝜋i

ż

Δ𝑐,1

´

Υ
p1q

𝑐,2`
p𝑥q ´ Υ

p1q

𝑐,2´
p𝑥q

¯

d𝑥

ˇ

ˇ

ˇ

ˇ

ˇ

ď
𝛽𝑐,1 ´ 𝛼1

𝜋
max
𝒙P𝚫𝑐,1

ˇ

ˇ

ˇ
Υ

p1q

𝑐,2p𝒙q ` 𝑍

ˇ

ˇ

ˇ

for any complex number 𝑍 . Now, if we show that

(5.14) max
𝒙P𝚫𝑐,1

ˇ

ˇ

ˇ

ˇ

Υ
p1q

𝑐,2p𝒙q `
𝐴𝑐,2

𝐵𝑐,2 ´ 𝐵𝑐,1

ˇ

ˇ

ˇ

ˇ

À 𝐴
1{2
𝑐,1

as 𝑐 Ñ 0, inequalities (4.7) and (5.13) together with limits (2.7) will allow us to conclude that 𝐴1{2
𝑐,1 À 𝑐 as

𝑐 Ñ 0, which will finish the proof of (5.7). To prove (5.14), observe that

Υ𝑐,2p𝒛q “
𝐴𝑐,2

𝜒𝑐p𝒛q ´ 𝐵𝑐,2
“

𝐴𝑐,2

𝐵𝑐,1 ´ 𝐵𝑐,2 ` 𝐴𝑐,1Υ
´1
𝑐,1p𝒛q

“
𝐴𝑐,2

𝐵𝑐,2 ´ 𝐵𝑐,1

Υ𝑐,1p𝒛q
𝐴𝑐,1

𝐵𝑐,2´𝐵𝑐,1
´ Υ𝑐,1p𝒛q

according to their very definition (5.3). Thus,

Υ𝑐,2p𝒛q `
𝐴𝑐,2

𝐵𝑐,2 ´ 𝐵𝑐,1
“

𝐴𝑐,2

𝐵𝑐,2 ´ 𝐵𝑐,1

𝐴𝑐,1

𝐴𝑐,1 ´ p𝐵𝑐,2 ´ 𝐵𝑐,1qΥ𝑐,1p𝒛q
.

The desired estimate (5.14) now follows from (5.11) and (2.7).
To prove the last claim of the lemma, observe that Υp1q

𝑐,1p𝑧q ´ p𝑧 ´ 𝛼1q is holomorphic in CzΔ𝑐,1 and
ˇ

ˇΥ
p1q

𝑐,1˘
p𝑥q ´ p𝑥 ´ 𝛼1q

ˇ

ˇ ď max
𝑥PΔ𝑐,1

ˇ

ˇΥ
p1q

𝑐,1˘
p𝑥q

ˇ

ˇ ` 𝛽𝑐,1 ´ 𝛼1 À 𝑐, 𝑥 P Δ𝑐,1,

as 𝑐 Ñ 0 by (4.7) and (5.11). The desired claim now follows from the maximum modulus principle. �

In our analysis, it will be convenient to apply Lemma 5.1 in the following form.

Lemma 5.2. For each 0 ă 𝛿 ď p𝛼2 ´ 𝛽1q{2 fixed, it holds that

(5.15)

$

&

%

𝑐´1
ˇ

ˇΥ
p0q

𝑐,1p𝑧q
ˇ

ˇ, 𝑐´1
ˇ

ˇΥ
p1q

𝑐,1p𝑧q
ˇ

ˇ, 𝑐´2
ˇ

ˇΥ
p2q

𝑐,1p𝑧q
ˇ

ˇ „ 1,

p1 ´ 𝑐q´2
ˇ

ˇΥ
p0q

𝑐,2p𝑧q
ˇ

ˇ, p1 ´ 𝑐q´2
ˇ

ˇΥ
p1q

𝑐,2p𝑧q
ˇ

ˇ,
ˇ

ˇΥ
p2q

𝑐,2p𝑧q
ˇ

ˇ „ 1,

on 𝐾𝑐, 𝛿,1 :“ t𝑧 : distp𝑧,Δ𝑐,1q ď 𝑐𝛿u for all 𝑐 P p0, 1q and that

(5.16)

$

&

%

𝑐´2
ˇ

ˇΥ
p0q

𝑐,1p𝑧q
ˇ

ˇ,
ˇ

ˇΥ
p1q

𝑐,1p𝑧q
ˇ

ˇ, 𝑐´2
ˇ

ˇΥ
p2q

𝑐,1p𝑧q
ˇ

ˇ „ 1,

p1 ´ 𝑐q´1
ˇ

ˇΥ
p0q

𝑐,2p𝑧q
ˇ

ˇ, p1 ´ 𝑐q´2
ˇ

ˇΥ
p1q

𝑐,2p𝑧q
ˇ

ˇ, p1 ´ 𝑐q´1
ˇ

ˇΥ
p2q

𝑐,2p𝑧q
ˇ

ˇ „ 1,

on 𝐾𝑐, 𝛿,2 :“ t𝑧 : distp𝑧,Δ𝑐,2q ď p1 ´ 𝑐q𝛿u for all 𝑐 P p0, 1q, where the constants of proportionality depend
only on 𝛿.
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Proof. We provide the proofs only for Υ𝑐,1p𝒛q, understanding that the arguments for Υ𝑐,2p𝒛q are essentially
identical. Recall that Υ𝑐,1p𝒛q is a conformal map of 𝕽𝑐 onto C that maps 8p0q into 0 and 8p1q into 8. Let
𝑟 :“ maxt|𝛼1|, |𝛽2|u. Then it follows from (5.1) and (5.4) that

 

|𝑧| ă 𝐴𝑐,1{4p𝑟 ` 𝛿q
(

Ă Υ
p0q

𝑐,1
`

t|𝑧| ą 𝑟 ` 𝛿u
˘

and
 

|𝑧| ą 4p𝑟 ` 𝛿q
(

Ă Υ
p1q

𝑐,1
`

t|𝑧| ą 𝑟 ` 𝛿u
˘

.

Thus, it holds that
𝐴𝑐,1

4p𝑟 ` 𝛿q
ď |Υ𝑐,1p𝒛q| ď 4p𝑟 ` 𝛿q for all 𝑧 P 𝐾𝑐, 𝛿,1 Y 𝐾𝑐, 𝛿,2.

Since 𝐴𝑐,1 Ñ pp𝛽1 ´ 𝛼1q{4q2 by the limit analogous to the one for 𝐴𝑐,2 in (2.7), this establishes the desired
bounds in (5.15) and (5.16) for all 𝑐 P r𝜖, 1q and any 𝜖 ą 0 fixed with the constants of proportionality dependent
on 𝜖 and 𝛿. On the other hand, the bounds for 𝑐 P p0, 𝜖s readily follow from (5.7) and (5.8) as

(5.17) 1 ď |𝜙𝑐p𝑧q| ď 4
𝑐𝛿 ` 𝛽𝑐,1 ´ 𝛼1

𝛽𝑐,1 ´ 𝛼1
ă 4 `

𝛿

𝛽2 ´ 𝛼1
and 𝑐|𝜙𝑐p𝑧q| „ |𝑧 ´ 𝛼1|

on 𝐾𝑐, 𝛿,1 and 𝐾𝑐, 𝛿,2, respectively, as 𝑐 Ñ 0 by elementary estimates and (4.7). The estimates of Υp𝑘q

𝑐,2p𝑧q can
be verified similarly. �

Let a function Π𝑐p𝒛q be defined on 𝕽𝑐 analogously to the way Π®𝑛p𝒛q was defined on 𝕽®𝑛 just before
Theorem 3.3. Further, let Π𝑐,𝑖p𝒛q, 𝑖 P t1, 2u, be rational functions on 𝕽𝑐 with the divisors and normalization
given by

(5.18) pΠ𝑐,𝑖q “ 8p0q ` 8p𝑖q ` 28p3´𝑖q ´ D𝑐 and Π
p𝑖q

𝑐,𝑖
p𝑧q “

1
𝑧

` O
ˆ

1
𝑧2

˙

,

where D𝑐 is the divisor of the ramification points of 𝕽𝑐 , see Proposition 4.2.

Lemma 5.3. It holds that

(5.19) p´1q3´𝑖p𝑤𝑐,1𝑤𝑐,2qp𝑧qΠ𝑐,3´𝑖p𝒛q “

$

’

’

’

’

&

’

’

’

’

%

´

Υ
p2q

𝑐,𝑖
´ Υ

p1q

𝑐,𝑖

¯

p𝑧q, 𝒛 P 𝕽p0q
𝑐 ,

´

Υ
p0q

𝑐,𝑖
´ Υ

p2q

𝑐,𝑖

¯

p𝑧q, 𝒛 P 𝕽p1q
𝑐 ,

´

Υ
p1q

𝑐,𝑖
´ Υ

p0q

𝑐,𝑖

¯

p𝑧q, 𝒛 P 𝕽p2q
𝑐 ,

for 𝑖 P t1, 2u and

(5.20) p𝑤𝑐,1𝑤𝑐,2qp𝑧qΠ𝑐p𝒛q “

$

’

’

’

’

&

’

’

’

’

%

´

Υ
p2q

𝑐,2Υ
p1q

𝑐,1 ´ Υ
p1q

𝑐,2Υ
p2q

𝑐,1

¯

p𝑧q, 𝒛 P 𝕽p0q
𝑐 ,

´

Υ
p0q

𝑐,2Υ
p2q

𝑐,1 ´ Υ
p2q

𝑐,2Υ
p0q

𝑐,1

¯

p𝑧q, 𝒛 P 𝕽p1q
𝑐 ,

´

Υ
p1q

𝑐,2Υ
p0q

𝑐,1 ´ Υ
p0q

𝑐,2Υ
p1q

𝑐,1

¯

p𝑧q, 𝒛 P 𝕽p2q
𝑐 .

Moreover, it holds that

(5.21) Π
p0q
𝑐 p𝑧q “ p1 ` 𝑜p1qq

𝜓p2qp𝑧q

𝑤2p𝑧q

𝑧 ´ 𝛼1 ` Op𝑐q

𝑤𝑐,1p𝑧q
“ p1 ` 𝑜p1qq

𝜓p2qp𝑧q

𝑤2p𝑧q

as 𝑐 Ñ 0, where the first relation holds uniformly in C (that is, including the traces on Δ𝑐,1 Y Δ2) and the
second one locally uniformly in CzΔ0,1.

Proof. Representations (5.19) and (5.20) can be easily verified by observing that the right-hand sides are
continuous across 𝚫𝑐,1 and 𝚫𝑐,2 and by comparing the zero/pole divisors and the normalizations of the left-hand
and right-hand sides, see (2.5), (5.3), and (5.18). Asymptotic formula (5.21) follows immediately from the first
relation in (5.20), asymptotic formulae (5.6) and (5.7), and the last claim of Lemma 5.1. �

5.3. Proof of Proposition 3.1. It was shown in [45, Section 6] that the Szegő function 𝑆𝑐p𝒛q satisfying (3.7)
is given by

𝑆𝑐p𝒛q :“ exp

#

1
6𝜋i

2
ÿ

𝑖“1

ż

𝚫𝑐,𝑖

logp𝜌𝑖𝑤𝑐,𝑖`qp𝑠qC𝒛p𝒔q

+

,

where C𝒛p𝒔q is the third kind differential on 𝕽𝑐 with three simple poles at 𝒛, 𝒛1, 𝒛2 that have the same natural
projection 𝑧 and respective residues ´2, 1, 1. Limit (3.8) was in fact proven in [45, Section 7]. Thus, it only
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remains to show the validity of (3.9) and (3.10). In order to do that we shall use an alternative construction of
𝑆𝑐p𝒛q that is more amenable to asymptotic analysis.

Since we are interested in what happens when 𝑐 Ñ 0, we shall assume that 𝑐 ď mint1{2, 𝑐˚˚u (the choice
of 1{2 is rather arbitrary, but convenient to use in (4.7)). Set

𝐷𝑐,1p𝑧q :“
ˆ

𝑧 ´ p𝛽𝑐,1 ` 𝛼𝑐,1q{2 ` 𝑤𝑐,1p𝑧q

2𝑤𝑐,1p𝑧q

˙1{2
, 𝑧 P CzΔ𝑐,1,

where we take the branch of the square root such that 𝐷𝑐,1p𝑧q is holomorphic and non-vanishing in the domain
of the definition and has value 1 at infinity. The traces of 𝐷𝑐,1p𝑧q on Δ𝑐,1 satisfy

(5.22) |𝐷𝑐,1˘p𝑥q|2 “
`

𝐷𝑐,1`𝐷𝑐,1´

˘

p𝑥q “
𝛽𝑐,1 ´ 𝛼1

4|𝑤𝑐,1p𝑥q|
“

i
4
𝛽𝑐,1 ´ 𝛼1

𝑤𝑐,1`p𝑥q
, 𝑥 P Δ𝑐,1.

Let 𝛿 ą 0 be as in Lemma 5.2, that is, 𝛿 ď p𝛼2 ´ 𝛽1q{2. Then it follows from (4.7) that 𝛿𝑐 ď |Δ𝑐,1|{8. Using
(4.7) once more together with our assumption that 𝑐 ď 1{2, we get that

(5.23)

#
a

3p𝛼2 ´ 𝛽1q ă |𝑤𝑐,1p𝑠q|{p𝑐
?
𝛿q ă 3

?
𝛽2 ´ 𝛼1, |𝑠 ´ 𝛼1| “ 𝛿𝑐, |𝑠 ´ 𝛽𝑐,1| “ 𝛿𝑐,

a

𝛿p𝛼2 ´ 𝛽1q ă |𝑤𝑐,1˘p𝑥q|{𝑐 ă 8p𝛽2 ´ 𝛼1q, 𝛼1 ` 𝛿𝑐 ď 𝑥 ď 𝛽𝑐,1 ´ 𝛿𝑐,

(the constants in the above inequalities are in no way sharp, but sufficient for our purposes). Therefore, (5.23)
and similar straightforward estimates of |2𝑧´𝛼1 ´ 𝛽𝑐,1| using (4.7) as well as (5.22) and the maximum modulus
principle for holomorphic functions applied to both 𝐷𝑐,1p𝑧q and 𝐷´1

𝑐,1p𝑧q yield that

(5.24)

#

|𝐷𝑐,1p𝑠q| „ 𝛿´1{4, |𝑠 ´ 𝛼1| “ 𝛿𝑐, |𝑠 ´ 𝛽𝑐,1| “ 𝛿𝑐,

1 À |𝐷𝑐,1p𝑧q| À 𝛿´1{4, 0 ă 𝛿𝑐 ď distp𝑧, t𝛼1, 𝛽𝑐,1uq,

uniformly on the respective sets, where the constants of proportionality do not depend on 𝑐, 𝛿. Additionally,
since 𝛽𝑐,1 Ñ 𝛼1 as 𝑐 Ñ 0 and therefore 𝑤𝑐,1p𝑧q “ 𝑧´𝛼1 ` 𝑜p1q locally uniformly in CzΔ0,1 as 𝑐 Ñ 0, it holds
locally uniformly in CzΔ0,1 that
(5.25) 𝐷𝑐,1p𝑧q “ 1 ` 𝑜p1q as 𝑐 Ñ 0.

Now, let 𝐷𝑐,𝜌1p𝑧q be the Szegő function of the restriction of 𝜌1p𝑥q to Δ𝑐,1 normalized to have value 1 at
infinity. That is,

(5.26) 𝐷𝑐,𝜌1p𝑧q “ exp

#

𝑤𝑐,1p𝑧q

2𝜋i

ż

Δ𝑐,1

log 𝜌1p𝑥q

𝑧 ´ 𝑥

d𝑥
𝑤𝑐,1`p𝑥q

´

ż

Δ𝑐,1

log 𝜌1p𝑥q

𝑤𝑐,1`p𝑥q

d𝑥
2𝜋i

+

,

𝑧 P CzΔ𝑐,1, where we set log 𝜌1p𝑥q :“ log 𝜇1
1p𝑥q ` logp2𝜋q ´ 𝜋i{2, see (3.2) and recall that 𝜇1

1p𝑥q is positive
on Δ1. Observe that

(5.27) ´

ż

Δ𝑐,1

1
𝑤𝑐,1`p𝑥q

d𝑥
𝜋i

“ 1 and
1
𝜋i

ż

Δ𝑐,1

1
𝑧 ´ 𝑥

d𝑥
𝑤𝑐,1`p𝑥q

“ ´
1

𝑤𝑐,1p𝑧q
,

by Cauchy’s theorem and integral formula. Hence, 𝐷𝑐,𝜌1p𝑧q “ 𝐷𝑐,𝜇1
1
p𝑧q is a holomorphic and non-vanishing

function in CzΔ𝑐,1 with continuous and conjugate-symmetric traces on Δ𝑐,1 that satisfy

(5.28) 𝜌1p𝑥q|𝐷𝑐,𝜌1˘p𝑥q|2 “
`

𝜌1𝐷𝑐,𝜌1`𝐷𝑐,𝜌1´

˘

p𝑥q “ 𝐺𝑐,𝜌1 :“ exp

#

´

ż

Δ𝑐,1

log 𝜌1p𝑥q

𝑤𝑐,1`p𝑥q

d𝑥
𝜋i

+

,

according to Plemelj-Sokhotski formulae. Now, analyticity of 𝜌1p𝑥q in a neighborhood of Δ1 implies that
max𝑥PΔ𝑐,1 |𝜌1p𝑥q{𝜌1p𝛼1q ´ 1| Ñ 0 as 𝑐 Ñ 0. Combining this estimate with (5.27) yields that

´

ż

Δ𝑐,1

log 𝜌1p𝑥q

𝑤𝑐,1`p𝑥q

d𝑥
𝜋i

“ log 𝜌1p𝛼1q ´

ż

Δ𝑐,1

logp𝜌1p𝑥q{𝜌1p𝛼1qq

𝑤𝑐,1`p𝑥q

d𝑥
𝜋i

“ log 𝜌1p𝛼1q ` 𝑜p1q

when 𝑐 Ñ 0 as well as that
𝑤𝑐,1p𝑧q

𝜋i

ż

Δ𝑐,1

log 𝜌1p𝑥q

𝑧 ´ 𝑥

d𝑥
𝑤𝑐,1`p𝑥q

“
𝑤𝑐,1p𝑧q

𝜋i

ż

Δ𝑐,1

logp𝜌1p𝑥q{𝜌1p𝛼1qq

𝑧 ´ 𝑥

d𝑥
𝑤𝑐,1`p𝑥q

´ log 𝜌1p𝛼1q

“ 𝑜p1q ´ log 𝜌1p𝛼1q

uniformly on compact subsets of CzΔ0,1 when 𝑐 Ñ 0. Thus, it follows from the maximum modulus principle
that
(5.29) 𝐷𝑐,𝜌1p𝑧q “ 1 ` 𝑜p1q and 𝐺𝑐,𝜌1 “

`

1 ` 𝑜p1q
˘

𝜌1p𝛼1q
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locally uniformly in CzΔ0,1 as 𝑐 Ñ 0. One can also see from its very definition in (5.28) combined with
the second formula of (5.29) that 𝐺𝑐,𝜌1 extends to a non-vanishing continuous function of 𝑐 P r0, 1s (it is
constant for all 𝑐 ě 𝑐˚). This observation as well as (5.28) combined with positivity of 𝜌1p𝑥q on Δ1 show that
|𝐷𝑐,𝜌1˘p𝑥q| „ 1 uniformly on Δ𝑐,1 for all 𝑐 P p0, 1q. Then the maximum modulus principle for holomorphic
functions applied to 𝐷𝑐,𝜌1p𝑧q and 𝐷´1

𝑐,𝜌1p𝑧q yields that

(5.30) 𝐺𝑐,𝜌1 , |𝐷𝑐,𝜌1p𝑧q| „ 1,

uniformly inC for all 𝑐 P p0, 1q (notice that |𝐷𝑐,𝜌1p𝑧q| is a continuous function on the entire sphereC independent
of 𝑐 when 𝑐 ě 𝑐˚).

Let Γ𝑐,2 :“ 𝜒𝑐p𝚫𝑐,2q, which are clockwise oriented analytic Jordan curves (recall that 𝚫𝑐,2 is oriented so
that 𝕽p0q

𝑐 remains on the left when 𝚫𝑐,2 is traversed in the positive direction and that 𝜒𝑐p𝒛q is conformal on 𝕽𝑐
and maps 8p0q into 8). The function

(5.31) 𝑆𝑐,2p𝒛q :“ exp

#

1
2𝜋i

ż

Γ𝑐,2

logp𝐷𝑐,1𝐷𝑐,𝜌1q
`

𝜋
`

𝜒´1
𝑐 p𝑠q

˘˘

𝑠 ´ 𝜒𝑐p𝒛q
d𝑠

+

is holomorphic and bounded in 𝕽𝑐z𝚫𝑐,2 and has value 1 at 8p0q. It follows from Plemelj-Sokhotski formulae
that

(5.32) 𝑆𝑐,2´p𝒙q “ 𝑆𝑐,2`p𝒙qp𝐷𝑐,1𝐷𝑐,𝜌1qp𝑥q, 𝒙 P 𝚫𝑐,2.

Observe also that p𝐷𝑐,1𝐷𝑐,𝜌1qp𝜋p𝒛qq is holomorphic in a neighborhood of 𝚫𝑐,2. Therefore, 𝑆𝑐,2p𝒛q can
be continued analytically across each side of 𝚫𝑐,2. In fact, this continuation has an integral representation
similar to (5.31), where one simply needs to homologously deform Γ𝑐,2 within the domain of holomorphy of
p𝐷𝑐,1𝐷𝑐,𝜌1q

`

𝜋
`

𝜒´1
𝑐 p𝑠q

˘˘

. Moreover, it holds that

(5.33) 𝑆𝑐,2p𝒛q “ 1 ` 𝑜p1q as 𝑐 Ñ 0 and |𝑆𝑐,2p𝒛q| „ 1, 𝑐 P p0, 𝑐˚˚s,

uniformly on 𝕽𝑐 (again, this means including the traces on 𝚫𝑐,2). Indeed, observe that the analytic curves Γ𝑐,2
approach the circle

 

|𝑧 ´ 𝐵0,2| “ p𝛽2 ´ 𝛼2q{4
(

by (2.7) and (5.2). Let 𝛿 ą 0 be small enough so that the
integrand in (5.31) is analytic in a neighborhood of the closure of the annular domain bounded by Γ𝑐,2 and
𝐶𝛿 :“ t|𝑧 ´ 𝐵0,2| “ 2𝛿 ` p𝛽2 ´ 𝛼2q{4u. Assuming that 𝐶𝛿 is clockwise oriented, it follows from Cauchy’s
theorem that Γ𝑐,2 can be replaced by 𝐶𝛿 whenever 𝒛 P 𝕽p2q

𝑐 , i.e., whenever 𝜒𝑐p𝒛q is interior or on Γ𝑐,2. Then it
trivially holds that

|𝑆𝑐,2p𝑧q| ď exp
"

|𝐶𝛿 |

2𝜋𝛿
max
𝑠P𝐶𝛿

ˇ

ˇlogp𝐷𝑐,1𝐷𝑐,𝜌1q
`

𝜋
`

𝜒´1
𝑐 p𝑠q

˘˘
ˇ

ˇ

*

,

for 𝒛 P 𝕽p2q
𝑐 , where |𝐶𝛿 | is the arclength of 𝐶𝛿 . The desired limit in 𝕽p2q

𝑐 now follows from (5.25) and (5.29)
while the uniform boundedness follows from (5.24) and (5.30). Clearly, the estimates in the remaining part of
𝕽𝑐 can be obtained analogously by deforming Γ𝑐,2 into the circles t|𝑧 ´ 𝐵0,2| “ ´2𝛿 ` p𝛽2 ´ 𝛼2q{4u.

As a part of the final piece of our construction, let Γ𝑐,1 :“ 𝜒𝑐p𝚫𝑐,1q. Similarly to Γ𝑐,2, these are clockwise
oriented analytic Jordan curves that collapse into a point 𝐵0,1 by (2.7) and (5.2). Let

(5.34) 𝑆𝑐,1p𝒛q :“ exp

#

1
2𝜋i

ż

Γ𝑐,1

log
“

𝑆𝜌2

`

𝜋
`

𝜒´1
𝑐 p𝑠q

˘˘

{𝑆𝜌2p8q
‰

𝑠 ´ 𝜒𝑐p𝒛q
d𝑠

+

,

which is a holomorphic and bounded function on 𝕽𝑐 that has value 1 at 8p1q and whose traces on 𝚫𝑐,1 are
continuous and satisfy

(5.35) 𝑆𝑐,1´p𝒙q “ 𝑆𝑐,1`p𝒙q𝑆𝜌2p𝑥q{𝑆𝜌2p8q, 𝒙 P 𝚫𝑐,1,

by Plemelj-Sokhotski formulae. Notice that all the observation about analytic continuations (contour deforma-
tion) made for 𝑆𝑐,2p𝒛q apply to 𝑆𝑐,1p𝒛q as well. Since the Cauchy kernel is integrated against the pullback of a
fixed function 𝑆𝜌2p𝑧q{𝑆𝜌2p8q from Δ𝑐,1 while the curves Γ𝑐,1 collapse into a point, straightforward estimates
of Cauchy integrals as well as analytic continuation (deformation of a contour) technique yield that

(5.36) 𝑆𝑐,1p𝒛q “ 1 ` 𝑜p1q as 𝑐 Ñ 0 and |𝑆𝑐,1p𝒛q| „ 1, 𝑐 P p0, 𝑐˚˚s,

locally uniformly on p𝕽p0q
𝑐 Y𝕽p2q

𝑐

˘

zΔ𝑐,1 and uniformly on𝕽𝑐 , respectively. To examine what happens to 𝑆𝑐,1p𝒛q

on 𝕽p1q
𝑐 , given 𝜖 ą 0, let 𝐶𝜖 :“ t|𝑧 ´ 𝐵𝑐,1| “ 𝜖u be clockwise oriented circle. It follows from (5.2) that the



JACOBI MATRICES ON TREES GENERATED BY ANGELESCO SYSTEMS 21

Jordan curve 𝜒´1
𝑐 p𝐶𝜖 q belongs to 𝕽p0q

𝑐 and is homologous to 𝚫𝑐,1 for all 𝑐 sufficiently small. A straightforward
computation shows that

(5.37)
ż

𝐶𝜖

log
“

𝑆𝜌2

`

𝜋
`

𝜒´1
𝑐 p𝑠q

˘˘

{𝑆𝜌2p8q
‰

𝑠 ´ 𝐵𝑐,1

d𝑠
2𝜋i

“ log
𝑆𝜌2p𝛼1q

𝑆𝜌2p8q
` O

¨

˝ max
𝑧P𝜋

`

𝜒
´1
𝑐 p𝐶𝜖 q

˘

ˇ

ˇ

ˇ

ˇ

log
𝑆𝜌2p𝑧q

𝑆𝜌2p𝛼1q

ˇ

ˇ

ˇ

ˇ

˛

‚.

It further follows from (2.7) and (5.2) that Jordan curves 𝜋
`

𝜒´1
𝑐 p𝐶𝜖 q

˘

converge to the analytic Jordan curve
p𝜑2 ` 𝐵0,2q´1p𝐶𝜖 q (recall that 𝜑2p𝑧q “ 𝜑p0qp𝑧q) and the latter curves collapse into a point 𝛼1 as 𝜖 Ñ 0. Hence,
by taking the limit as 𝑐 Ñ 0 and then the limit as 𝜖 Ñ 0 of the Op¨q in (5.37) gives 0. Therefore, analytic
continuation (deformation of a contour) technique and (5.34) imply that

(5.38) lim
𝑐Ñ0

𝑆𝑐,1
`

8p1q
˘

“ lim
𝑐Ñ0

exp

#

1
2𝜋i

ż

𝐶𝜖

log
“

𝑆𝜌2

`

𝜋
`

𝜒´1
𝑐 p𝑠q

˘˘

{𝑆𝜌2p8q
‰

𝑠 ´ 𝐵𝑐,1
d𝑠

+

“
𝑆𝜌2p𝛼1q

𝑆𝜌2p8q
.

Finally, we are ready to state an alternative formula for the functions 𝑆𝑐p𝒛q when 𝑐 ď 𝑐˚˚. Since relations
(3.7) characterize 𝑆𝑐p𝒛q up to multiplication by a cubic root of unity, it follows from the normalization of
𝐷𝑐,1p𝑧q and 𝐷𝑐,𝜌1p𝑧q at infinity, the normalization of 𝑆𝑐,1p𝒛q and 𝑆𝑐,2p𝒛q at 8p0q, and relations (3.4), (5.22),
(5.28), (5.32), and (5.35) that

(5.39)
𝑆𝑐p𝒛q

𝑆𝑐
`

8p0q
˘ “

`

𝑆𝑐,1𝑆𝑐,2
˘

p𝒛q

$

’

’

&

’

’

%

𝑆´1
𝜌2 p8qp𝐷𝑐,1𝐷𝑐,𝜌1𝑆𝜌2qp𝑧q, 𝒛 P 𝕽p0q

𝑐 z
`

𝚫𝑐,1 Y 𝚫𝑐,2
˘

,

i 𝛽𝑐,1´𝛼1
4 𝐺𝑐,𝜌1p𝐷𝑐,1𝐷𝑐,𝜌1q´1p𝑧q, 𝒛 P 𝕽p1q

𝑐 z𝚫𝑐,1,

p𝑆𝜌2p8q𝑆𝜌2p𝑧qq´1, 𝒛 P 𝕽p2q
𝑐 z𝚫𝑐,2.

Now, it follows from (5.33) and (5.36) that

(5.40) 𝑆
p2q
𝑐 p𝑧q{𝑆

p0q
𝑐 p8q “ p1 ` 𝑜p1qqp𝑆𝜌2p8q𝑆𝜌2p𝑧qq´1

uniformly in C (that is, including the traces on Δ2) as 𝑐 Ñ 0. Similarly, it follows from (5.25), (5.29), (5.33),
and (5.36) that

(5.41) 𝑆
p0q
𝑐 p𝑧q{𝑆

p0q
𝑐 p8q “ p1 ` 𝑜p1qq𝑆𝜌2p𝑧q{𝑆𝜌2p8q

locally uniformly in CzΔ0,1 as 𝑐 Ñ 0. Further, it follows from the middle relation in (3.7) and the last two
asymptotic formulae that

(5.42)
𝑆

p1q
𝑐 p𝑧q

𝑆
p0q
𝑐 p8q

“
1

𝑆
p0q
𝑐 p8q3

𝑆
p0q
𝑐 p8q

𝑆
p0q
𝑐 p𝑧q

𝑆
p0q
𝑐 p8q

𝑆
p2q
𝑐 p𝑧q

“ p1 ` 𝑜p1qq
𝑆𝜌2p8q2

𝑆
p0q
𝑐 p8q3

locally uniformly in CzΔ0,1 as 𝑐 Ñ 0. Since relations (5.40)–(5.42) also provide asymptotics for the ratios of
𝑆

p𝑘q
𝑐 p8q{𝑆

p0q
𝑐 p8q, the limits in (3.9) easily follow. In fact, we deduce from (5.40) and (5.42) that

(5.43) 𝑆
p2q
𝑐 p8q “ p1 ` 𝑜p1qq

𝑆
p0q
𝑐 p8q

𝑆2
𝜌2p8q

and 𝑆
p1q
𝑐 p8q “ p1 ` 𝑜p1qq

˜

𝑆𝜌2p8q

𝑆
p0q
𝑐 p8q

¸2

.

On the other hand, it follows from the normalization 𝐷𝑐,1p𝑧q and 𝐷𝑐,𝜌1p𝑧q at infinity, (3.2), (4.8), (5.29), (5.33),
and (5.38) that

(5.44) lim
𝑐Ñ0

1
𝑐

𝑆
p1q
𝑐 p8q

𝑆
p0q
𝑐 p8q

“
2𝜋𝜇1

1p𝛼1q|𝑤2p𝛼1q|𝑆𝜌2p𝛼1q

𝑆𝜌2p8q
.

Plugging in the second asymptotic formula of (5.43) into (5.44) yields the first limit in (3.10). The other two
now follow from (5.43).

5.4. Auxiliary Estimates, II. The sole purpose of this subsection is to state the following lemma that follows
from (5.24), (5.30), (5.33), (5.36), (5.39), as well as the analogous results for 𝑐 P r𝑐˚, 1q and 𝑐 Ñ 1.

Lemma 5.4. It holds uniformly on 𝕽𝑐 for all 𝑐 P p0, 1q that

𝑐

ˇ

ˇ

ˇ

ˇ

ˇ

𝑆
p0q
𝑐 p8q

𝑆
p1q
𝑐 p8q

ˇ

ˇ

ˇ

ˇ

ˇ

, p1 ´ 𝑐q

ˇ

ˇ

ˇ

ˇ

ˇ

𝑆
p0q
𝑐 p8q

𝑆
p2q
𝑐 p8q

ˇ

ˇ

ˇ

ˇ

ˇ

„ 1.
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Moreover, let 𝛿 ą 0 be such that 0 ă 𝛿𝑐 ď |Δ𝑐,1|{8 and 0 ă 𝛿p1 ´ 𝑐q ď |Δ𝑐,2|{8 for all 𝑐 P p0, 1q. Then it
holds for all 𝑐 P p0, 1q that

ˇ

ˇ

ˇ

ˇ

ˇ

𝑆
p0q
𝑐 p𝑧q

𝑆
p0q
𝑐 p8q

ˇ

ˇ

ˇ

ˇ

ˇ

„ 𝛿´1{4

uniformly on each circle t|𝑧´𝛼1| “ 𝛿𝑐u, t|𝑧´ 𝛽𝑐,1| “ 𝛿𝑐u, t|𝑧´𝛼𝑐,2| “ 𝛿p1´ 𝑐qu, and t|𝑧´ 𝛽2| “ 𝛿p1´ 𝑐qu;
and

1 À

ˇ

ˇ

ˇ

ˇ

ˇ

𝑆
p0q
𝑐 p𝑧q

𝑆
p0q
𝑐 p8q

ˇ

ˇ

ˇ

ˇ

ˇ

À 𝛿´1{4

uniformly on t𝛿𝑐 ď distp𝑧, t𝛼1, 𝛽𝑐,1uqu and t𝛿p1 ´ 𝑐q ď distp𝑧, t𝛼𝑐,2, 𝛽2uqu. In addition, it holds for all
𝑐 P p0, 1q and each 𝑖 P t1, 2u that

ˇ

ˇ

ˇ

ˇ

ˇ

𝑆
p𝑖q
𝑐 p𝑧q

𝑆
p𝑖q
𝑐 p8q

ˇ

ˇ

ˇ

ˇ

ˇ

„ 𝛿1{4

uniformly on circles t|𝑧 ´ 𝛼𝑐,𝑖| “ 𝛿p𝑖 ´ 1 ´ p´1q𝑖𝑐qu and t|𝑧 ´ 𝛽𝑐,𝑖| “ 𝛿p𝑖 ´ 1 ´ p´1q𝑖𝑐qu; and

𝛿1{4 À

ˇ

ˇ

ˇ

ˇ

ˇ

𝑆
p𝑖q
𝑐 p𝑧q

𝑆
p𝑖q
𝑐 p8q

ˇ

ˇ

ˇ

ˇ

ˇ

À 1

uniformly on t𝛿p𝑖 ´ 1 ´ p´1q𝑖𝑐q ď distp𝑧, t𝛼𝑐,𝑖 , 𝛽𝑐,𝑖uqu.

6. Proof of Theorem 3.1

Let 𝛼1 ď 𝑥 ®𝑛,1 ă 𝑥 ®𝑛,2 ă . . . ă 𝑥 ®𝑛,𝑛1 ď 𝛽1 be the zeros of 𝑃®𝑛p𝑥q on Δ1. Then we can write

𝑃®𝑛p𝑥q “: 𝑃®𝑛,1p𝑥q𝑃®𝑛,2p𝑥q, 𝑃®𝑛,1p𝑥q :“
𝑛1
ź

𝑖“1
p𝑥 ´ 𝑥 ®𝑛,𝑖q.

Observe that the polynomials t𝑃®𝑛,1p𝑥qu®𝑛PN0 form a normal family in a neighborhood of Δ2. As degp𝑃®𝑛,2q “ 𝑛2
and it holds that

ż

𝑥𝑙𝑃®𝑛,2p𝑥q𝑃®𝑛,1p𝑥qd𝜇2p𝑥q “ 0, 𝑙 P t0, . . . , 𝑛2 ´ 1u,

by (1.5), the asymptotics of 𝑃®𝑛,2p𝑧q follows from [12, Theorem 2.7]. Namely, it holds that

(6.1) 𝑃®𝑛,2p𝑧q “ p1 ` 𝑜p1qq
`

𝑆𝜌2p𝑧q{𝑆𝜌2p8q
˘

˜

𝑛1
ź

𝑖“1
𝑆p𝑧; 𝑥 ®𝑛,𝑖q

¸

𝜑
𝑛2
2 p𝑧q

uniformly on compact subsets of CzΔ2. Thus, to obtain the asymptotic formula for 𝑃®𝑛p𝑧q, we only need to show
that all the zeros t𝑥 ®𝑛,𝑖u

𝑛1
𝑖“1 approach 𝛼1. We shall do it in a slightly more general setting.

Lemma 6.1. Suppose that 𝜇2 is an absolutely continuous Szegő measure, i.e.,
ş

Δ2
log 𝜇1

2p𝑥qd𝑥 ą ´8, and that
N0 is any marginal sequence, that is, 𝑛1{𝑛2 Ñ 0 as |®𝑛| Ñ 8 for ®𝑛 P N0. Assuming formula (6.1) remains
valid, it holds that 𝑥 ®𝑛,𝑛1 Ñ 𝛼1 as |®𝑛| Ñ 8 for ®𝑛 P N0. Moreover,

(6.2) lim
|®𝑛|Ñ8, ®𝑛PN0

lim
𝑧Ñ8

ˆ

𝑃®𝑛`®𝑒𝑖 p𝑧q

𝑃®𝑛p𝑧q
´ 𝑧

˙

“ ´𝐵0,𝑖 , 𝑖 P t1, 2u.

Proof. Assume to the contrary that there exists 𝜖 ą 0 such that 𝛼1 ` 𝜖 ď 𝑥 ®𝑛,𝑛1 along some subsequence
N 1 Ă N0. Let 𝜌®𝑛,1p𝑥q :“ 𝑃®𝑛,1p𝑥q{p𝑥 ´ 𝑥 ®𝑛,𝑛1q. Then it follows from (1.5) that

(6.3)
ż 𝑥 ®𝑛,𝑛1

𝛼1

𝜌2
®𝑛,1p𝑥q|𝑃®𝑛,2p𝑥q|p𝑥 ®𝑛,𝑛1 ´ 𝑥qd𝜇1p𝑥q “

ż 𝛽1

𝑥 ®𝑛,𝑛1

𝜌2
®𝑛,1p𝑥q|𝑃®𝑛,2p𝑥q|p𝑥 ´ 𝑥 ®𝑛,𝑛1qd𝜇1p𝑥q,

(since all the zeros of 𝑃®𝑛,2p𝑥q belong to Δ2, it has a constant sign on Δ1). As the zeros of the monic polynomial
𝑃®𝑛,1p𝑧q belong to Δ1, we have that |𝑃®𝑛,1p𝑥q| ď |𝛽1 ´ 𝛼1|𝑛1 , 𝑥 P Δ1. Moreover, since each 𝑆p𝑧; 𝑥0q is a
non-vanishing function in CzΔ2, compactness of Δ1 implies that there exists a constant 𝐶1 ą 1 such that
𝐶´1

1 ď |𝑆p𝑥; 𝑥0q| ď 𝐶1 for any 𝑥, 𝑥0 P Δ1. Therefore, we can deduce from (6.1) that

(6.4)
ż 𝛽1

𝑥 ®𝑛,𝑛1

𝜌2
®𝑛,1p𝑥q|𝑃®𝑛,2p𝑥q|p𝑥 ´ 𝑥 ®𝑛,𝑛1qd𝜇1p𝑥q ď 𝐶

𝑛1
2 |𝜑2p𝛼1 ` 𝜖q|𝑛2
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for some absolute constant 𝐶2 ą 0. On the other hand, by restricting the interval of integration from r𝛼1, 𝑥 ®𝑛,𝑛1s

to r𝛼1, 𝛼1 ` 𝜖{2s and then using (6.1), the lower estimate of the Szegő functions 𝑆p𝑧; 𝑥0q, the facts that 𝜇1
1p𝑥q is

non-vanishing and |𝜑2p𝑥q| is decreasing for 𝑥 ă 𝛼2 we get that

(6.5)
ż 𝑥 ®𝑛,𝑛1

𝛼1

𝜌2
®𝑛,1p𝑥q|𝑃®𝑛,2p𝑥q|p𝑥 ®𝑛,𝑛1 ´ 𝑥qd𝜇1p𝑥q ě 𝐶

𝑛1
3 |𝜑2p𝛼1 ` 𝜖{2q|𝑛2

ż 𝛼1`𝜖 {2

𝛼1

𝜌2
®𝑛,1p𝑥qd𝑥

ě 𝐶
𝑛1
3 min

®𝑛PN1

˜

ż 𝛼1`𝜖 {2

𝛼1

𝐿2
𝑛1´1p𝑥qd𝑥

¸

|𝜑2p𝛼1 ` 𝜖{2q|𝑛2 ě 𝐶
𝑛1
4 |𝜑2p𝛼1 ` 𝜖{2q|𝑛2

for some constants 𝐶3, 𝐶4 ą 0 that might depend on 𝜖 , but are independent of ®𝑛, where 𝐿𝑛p𝑥q is the 𝑛-th monic
orthogonal polynomial with respect to d𝑥 on r𝛼1, 𝛼1 `𝜖{2s (rescaled Legendre polynomial) and the last estimate
follows from [37, Table 18.3.1]. Since 𝑛1{𝑛2 Ñ 0 and |𝜑2p𝑥q| is decreasing on p´8, 𝛼2q, we have that

𝐶
𝑛1{𝑛2
4 |𝜑2p𝛼1 ` 𝜖{2q| ą 𝐶

𝑛1{𝑛2
2 |𝜑2p𝛼1 ` 𝜖q|

for all |®𝑛| large, ®𝑛 P N0. Hence, the above estimate shows that (6.4)–(6.5) are incompatible with (6.3). Thus, it
indeed holds that 𝑥 ®𝑛,𝑛1 Ñ 𝛼1 as |®𝑛| Ñ 8, ®𝑛 P N0. Further, it holds that

lim
𝑧Ñ8

ˆ

𝑃®𝑛`®𝑒1 ,1p𝑧q

𝑃®𝑛,1p𝑧q
´ 𝑧

˙

“ ´

𝑛1`1
ÿ

𝑖“1
𝑥 ®𝑛`®𝑒1 ,𝑖 `

𝑛1
ÿ

𝑖“1
𝑥 ®𝑛,𝑖 “ ´𝛼1 ` 𝑜p1q ´

𝑛1
ÿ

𝑖“1

`

𝑥 ®𝑛`®𝑒1 ,𝑖`1 ´ 𝑥 ®𝑛,𝑖
˘

.

It is known that the zeros of 𝑃®𝑛p𝑧q and 𝑃®𝑛`®𝑒1p𝑧q interlace, see for example [8, Lemma A.2]. Therefore,

0 ď

𝑛1
ÿ

𝑖“1

`

𝑥 ®𝑛`®𝑒1 ,𝑖`1 ´ 𝑥 ®𝑛,𝑖
˘

ď 𝑥 ®𝑛`®𝑒1 ,𝑛1 ´ 𝑥 ®𝑛,1 “ 𝑜p1q,

where the last conclusion follows from the fact that 𝑥 ®𝑛,1, 𝑥 ®𝑛`®𝑒1 ,𝑛1 Ñ 𝛼1 (observe that t®𝑛 ` ®𝑒1 : ®𝑛 P N0u is also
a marginal sequence). Thus,

(6.6) lim
|®𝑛|Ñ8, ®𝑛PN0

lim
𝑧Ñ8

ˆ

𝑃®𝑛`®𝑒1 ,1p𝑧q

𝑃®𝑛,1p𝑧q
´ 𝑧

˙

“ ´𝛼1.

Furthermore, it follows from the explicit definition (3.5) that

𝑆2p𝑧; 𝑥0q “
1 ´

𝐵0,2`𝜑2p𝑥0q

𝑧
` Op𝑧´2q

1 ´
𝐵0,2`𝐴0,2𝜑

´1
2 p𝑥0q

𝑧
` Op𝑧´2q

1 ´
𝐵0,2
𝑧

` Op𝑧´2q

1 ´
𝑥0
𝑧

,

where we used (2.6) to get that 𝜑2p𝑧q “ 𝑧 ´ 𝐵0,2 ` Op𝑧´1q as 𝑧 Ñ 8. Since

(6.7) 𝐵0,2 ` 𝜑2p𝑥0q ´ 𝑥0 ´ 𝐴0,2𝜑
´1
2 p𝑥0q “ 2p𝐵0,2 ` 𝜑2p𝑥0q ´ 𝑥0q,

we have that 𝑆p𝑧; 𝑥0q “ 1 ´ p𝐵0,2 ` 𝜑2p𝑥0q ´ 𝑥0q𝑧´1 ` O
`

𝑧´2˘ as 𝑧 Ñ 8. Now, interlacing of the zeros
t𝑥 ®𝑛`®𝑒1 ,𝑖u

𝑛1`1
𝑖“1 and t𝑥 ®𝑛,𝑖u

𝑛1
𝑖“1, their convergence to 𝛼1, and monotonicity of 𝜑2p𝑧q yield similarly to (6.6) that

(6.8) lim
|®𝑛|Ñ8, ®𝑛PN0

lim
𝑧Ñ8

𝑧

˜

ś𝑛1`1
𝑖“1 𝑆p𝑧; 𝑥 ®𝑛`®𝑒1 ,𝑖q
ś𝑛1
𝑖“1 𝑆p𝑧; 𝑥 ®𝑛,𝑖q

´ 1

¸

“ ´p𝐵0,2 ` 𝜑2p𝛼1q ´ 𝛼1q.

Hence, it follows from (6.1), (6.6), (6.8), and (2.7) that the limit in (6.2) when 𝑖 “ 1 is equal to

lim
|®𝑛|Ñ8, ®𝑛PN0

lim
𝑧Ñ8

˜

𝑃®𝑛`®𝑒1 ,1p𝑧q

𝑃®𝑛,1p𝑧q

ś𝑛1`1
𝑖“1 𝑆p𝑧; 𝑥 ®𝑛`®𝑒1 ,𝑖q
ś𝑛1
𝑖“1 𝑆p𝑧; 𝑥 ®𝑛,𝑖q

´ 𝑧

¸

“ ´𝐵0,1.

Since t®𝑛 ` ®𝑒2 : ®𝑛 P N0u is a marginal sequence as well and the zeros of 𝑃®𝑛p𝑧q and 𝑃®𝑛`®𝑒2p𝑧q also interlace, the
limit in (6.2) for 𝑖 “ 2 follows similarly to the case 𝑖 “ 1. �

7. Proof of Theorems 3.2–3.4

To prove Theorems 3.2–3.4 we use the extension to multiple orthogonal polynomials [24] of by now classical
approach of Fokas, Its, and Kitaev [20, 21] connecting orthogonal polynomials to matrix Riemann-Hilbert
problems. The RH problem is then analyzed via the non-linear steepest descent method of Deift and Zhou [17].

As was agreed in Section 3.3, we label quantities dependent on 𝑐 ®𝑛 only by the subindex ®𝑛 as in 𝛽®𝑛,1 :“ 𝛽𝑐 ®𝑛 ,1,
Δ®𝑛,𝑖 :“ Δ𝑐 ®𝑛 ,𝑖 , etc. If Δ is a closed interval, we denote by Δ˝ the open interval with the same endpoints.
Moreover, when convenient, we write 𝛼®𝑛,1p“ 𝛼1q and 𝛽®𝑛,2p“ 𝛽2q even though they do not depend on the
index ®𝑛.
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Throughout this section, the reader must keep in mind the definition of constants 𝑐˚ and 𝑐˚˚ in Proposition 4.1.
Moreover, we would like to use the symbol 𝑐 as a free parameter from the interval r0, 1s, as was done in the
previous sections. Thus, we slightly modify the notation from the statement of Theorems 3.2–3.4 and assume
that we deal with a sequence of multi-indices N𝑐‹

such that

𝑐 ®𝑛 “ 𝑛1{|®𝑛| Ñ 𝑐‹ P r0, 1s and 𝑛1, 𝑛2 Ñ 8 as |®𝑛| Ñ 8, ®𝑛 P N𝑐‹
.

We let r𝑨s𝑖, 𝑗 to stand for p𝑖, 𝑗q-th entry of a matrix 𝑨 and 𝑬𝑖, 𝑗 to be the matrix whose entries are all zero
except for r𝑬𝑖, 𝑗s𝑖, 𝑗 “ 1. We set 𝑰 to be the identity matrix, 𝜎3 :“ diagp1,´1q to be the third Pauli matrix, and
𝜎p®𝑛q :“ diag p|®𝑛|,´𝑛1,´𝑛2q. Finally, for compactness of notation, we introduce transformations T𝑖 , 𝑖 P t1, 2u,
that act on 2 ˆ 2 matrices in the following way:

T1

ˆ

𝑒11 𝑒12
𝑒21 𝑒22

˙

“

¨

˝

𝑒11 𝑒12 0
𝑒21 𝑒22 0
0 0 1

˛

‚ and T2

ˆ

𝑒11 𝑒12
𝑒21 𝑒22

˙

“

¨

˝

𝑒11 0 𝑒12
0 1 0
𝑒21 0 𝑒22

˛

‚.

7.1. Initial RH Problem. Let the measures 𝜇1, 𝜇2 be as in Theorem 1.2 and the functions 𝜌1p𝑥q, 𝜌2p𝑥q be
given by (3.2). Consider the following Riemann-Hilbert problem (RHP-𝒀): find a 2 ˆ 2 matrix function 𝒀p𝑧q

such that
(a) 𝒀p𝑧q is analytic in CzpΔ1 Y Δ2q and lim

𝑧Ñ8
𝒀p𝑧q𝑧´𝜎p®𝑛q “ 𝑰;

(b) 𝒀p𝑧q has continuous traces on Δ˝
𝑖

that satisfy 𝒀`p𝑥q “ 𝒀´p𝑥qp𝑰 ` 𝜌𝑖p𝑥q𝑬1,𝑖`1q, 𝑖 P t1, 2u;
(c) the entries of the p𝑖 ` 1q-st column of 𝒀p𝑧q behave like O plog |𝑧 ´ 𝜉|q as 𝑧 Ñ 𝜉 P t𝛼𝑖 , 𝛽𝑖u, while the

remaining entries stay bounded, 𝑖 P t1, 2u.

Lemma 7.1 (Proposition 3.1 of [45]). Solution of RHP-𝒀 is unique and given by

(7.1) 𝒀p𝑧q :“

¨

˚

˚

˝

𝑃®𝑛p𝑧q 𝑅
p1q

®𝑛 p𝑧q 𝑅
p2q

®𝑛 p𝑧q

𝑚 ®𝑛,1𝑃®𝑛´®𝑒1p𝑧q 𝑚 ®𝑛,1𝑅
p1q

®𝑛´®𝑒1
p𝑧q 𝑚 ®𝑛,1𝑅

p2q

®𝑛´®𝑒1
p𝑧q

𝑚 ®𝑛,2𝑃®𝑛´®𝑒2p𝑧q 𝑚 ®𝑛,2𝑅
p1q

®𝑛´®𝑒2
p𝑧q 𝑚 ®𝑛,2𝑅

p2q

®𝑛´®𝑒2
p𝑧q

˛

‹

‹

‚

,

where 𝑃®𝑛p𝑧q is the polynomial satisfying (1.5), 𝑅p𝑖q

®𝑛 p𝑧q, 𝑖 P t1, 2u, are its functions of the second kind, see
(3.14), 𝑚 ®𝑛,𝑖 are constants such that lim

𝑧Ñ8
𝑚 ®𝑛,𝑖𝑅

p𝑖q

®𝑛´®𝑒𝑖
p𝑧q𝑧𝑛𝑖 “ 1 and ®𝑒1 :“ p1, 0q, ®𝑒2 :“ p0, 1q.

7.2. Opening of the Lenses. Given 𝑐 P p0, 1q and 𝛿 ą 0, denote by 𝑈𝑐, 𝛿,𝑒 an open square with vertices
𝑒˘𝑐𝛿, 𝑒˘ i𝑐𝛿 when 𝑒 P t𝛼1, 𝛽𝑐,1u and 𝑒˘p1´𝑐q𝛿, 𝑒˘ ip1´𝑐q𝛿 when 𝑒 P t𝛼𝑐,2, 𝛽2u. Define 𝛿𝑖p𝑐q, 𝑖 P t1, 2u,
via

$

’

’

’

’

&

’

’

’

’

%

𝛿1p𝑐q :“
1
8𝑐

"

mint𝛽𝑐,1 ´ 𝛼1, 𝛽1 ´ 𝛽𝑐,1u, 𝑐 ă 𝑐˚,

mint𝛽1 ´ 𝛼1, 𝛼2 ´ 𝛽1u, 𝑐˚ ď 𝑐,

𝛿2p𝑐q :“
1

8p1 ´ 𝑐q

"

mint𝛽2 ´ 𝛼2, 𝛼2 ´ 𝛽1u, 𝑐 ď 𝑐˚˚,

mint𝛽2 ´ 𝛼𝑐,2, 𝛼𝑐,2 ´ 𝛼2u, 𝑐˚˚ ă 𝑐.

Of course, it holds that 𝑐𝛿1p𝑐q (resp. p1 ´ 𝑐q𝛿2p𝑐q) is constant for 𝑐 ě 𝑐˚ (resp. 𝑐 ď 𝑐˚˚). Moreover, 𝛿1p𝑐q

(resp. 𝛿2p𝑐q) approaches a non-zero constant as 𝑐 Ñ 0` (resp. 𝑐 Ñ 1´) by (4.8) and it approaches 0 as
𝑐 Ñ 𝑐˚´ (resp. 𝑐 Ñ 𝑐˚˚`). Set 𝛿p𝑐q :“ mint𝛿1p𝑐q, 𝛿2p𝑐qu. For brevity, we write

𝑈𝑒 :“ 𝑈𝑐 ®𝑛 , 𝛿,𝑒, ®𝑛 P N𝑐‹
, 𝑒 P 𝐸 ®𝑛 :“ 𝐸𝑐 ®𝑛 , 𝐸𝑐 :“ t𝛼1, 𝛽𝑐,1, 𝛼𝑐,2, 𝛽2u,

assuming that 𝛿 P p0, 𝛿p𝑐‹qq. In particular, all the domains𝑈𝑒 are disjoint and 𝛽1 R 𝑈𝛽𝑐,1 when 𝑐‹ ă 𝑐˚ while
𝛼2 R 𝑈𝛼𝑐,2 when 𝑐‹ ą 𝑐˚˚, again, for all |®𝑛| large enough, ®𝑛 P N𝑐‹

.
Section 7.4 contains a construction of maps 𝜁𝑒p𝑧q, conformal in 𝑈𝑒, 𝑒 P 𝐸𝑐 , such that 𝜁𝑒p𝑧q is real on the

real line, vanishes at 𝑒, and maps pΔ𝑐,1 Y Δ𝑐,2q X𝑈𝑒 into the negative reals (these subsets of Δ𝑐,1 Y Δ𝑐,2 are
covered by the darker shading on Figure 3). Using these conformal maps corresponding to 𝑐 ®𝑛 for ®𝑛 P N𝑐‹

, we
can select piecewise smooth open Jordan arcs Γ˘

®𝑛,𝑖 , connecting 𝛼®𝑛,𝑖 to 𝛽®𝑛,𝑖 , defined by the following properties:

(7.2) 𝜁𝛽 ®𝑛,𝑖

`

Γ
˘

®𝑛,𝑖 X𝑈𝛽 ®𝑛,𝑖

˘

Ă 𝐼˘ :“
 

𝑧 : argp𝑧q “ ˘2𝜋{3
(

, 𝜁𝛼®𝑛,𝑖

`

Γ
˘

®𝑛,𝑖 X𝑈𝛼®𝑛,𝑖

˘

Ă 𝐼¯,

and Γ
˘

®𝑛,𝑖 consist of straight line segments outside of 𝑈𝛼®𝑛,𝑖 and 𝑈𝛽 ®𝑛,𝑖 , see Figure 3. When 𝑐‹ “ 𝑐˚, we slightly
modify (7.2) and require that

(7.3) r𝜁𝛽 ®𝑛,1

`

Γ
˘

®𝑛,1 X𝑈𝛽 ®𝑛,1

˘

Ă 𝐼˘, r𝜁𝛽 ®𝑛,1p𝑧q :“ 𝜁𝛽 ®𝑛,1p𝑧q ´ 𝜁𝛽 ®𝑛,1p𝛽1q,
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𝛽2𝛼2
𝛽1

𝛼1
𝛽®𝑛,1

Γ
`

®𝑛,1

Γ
´

®𝑛,1

Γ
`

®𝑛,2 “ Γ
`

2

Γ
´

®𝑛,2 “ Γ
´

2

Ω
`

®𝑛,1

Ω
´

®𝑛,1

Ω
`

®𝑛,2 “ Ω
`

2

Ω
´

®𝑛,2 “ Ω
´

2

Figure 3. The squares𝑈𝛼®𝑛,𝑖 ,𝑈𝛽 ®𝑛,𝑖 , and𝑈𝛽1 , arcs Γ˘

®𝑛,𝑖 , and domains Ω˘

®𝑛,𝑖 (shaded).

with an analogous modification holding for 𝑐‹ “ 𝑐˚˚ at 𝛼®𝑛,2. We denote by Ω
˘

®𝑛,𝑖 the domains delimited by Γ
˘

®𝑛,𝑖
and Δ®𝑛,𝑖 , see Figure 3.

Given 𝒀p𝑧q, the solution of RHP-𝒀 , set

(7.4) 𝑿p𝑧q :“ 𝒀p𝑧q

$

’

&

’

%

T𝑖
ˆ

1 0
¯1{𝜌𝑖p𝑧q 1

˙

, 𝑧 P Ω
˘

®𝑛,𝑖 , 𝑖 P t1, 2u,

𝑰, otherwise.

It can be readily verified that 𝑿p𝑧q solves the following Riemann-Hilbert problem (RHP-𝑿):

(a) 𝑿p𝑧q is analytic in Cz
Ť2
𝑖“1

`

Δ𝑖 Y Γ
`

®𝑛,𝑖 Y Γ
´

®𝑛,𝑖
˘

and lim
𝑧Ñ8

𝑿p𝑧q𝑧´𝜎p®𝑛q “ 𝑰;

(b) 𝑿p𝑧q has continuous traces on
Ť2
𝑖“1

`

Δ˝
𝑖

Y Γ
`

®𝑛,𝑖 Y Γ
´

®𝑛,𝑖
˘

that satisfy

𝑿`p𝑠q “ 𝑿´p𝑠q

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

T𝑖
ˆ

0 𝜌𝑖p𝑠q

´1{𝜌𝑖p𝑠q 0

˙

, 𝑠 P Δ®𝑛,𝑖 ,

T𝑖
ˆ

1 0
1{𝜌𝑖p𝑠q 1

˙

, 𝑠 P Γ
`

®𝑛,𝑖 Y Γ
´

®𝑛,𝑖 ,

T𝑖
ˆ

1 𝜌𝑖p𝑠q

0 1

˙

, 𝑠 P Δ˝
𝑖
zΔ®𝑛,𝑖 ,

for each 𝑖 P t1, 2u;
(c) the entries of the first and p𝑖 ` 1q-st columns of 𝑿p𝑧q behave like O plog |𝑧 ´ 𝜉|q as 𝑧 Ñ 𝜉 P t𝛼𝑖 , 𝛽𝑖u,

while the remaining entries stay bounded, 𝑖 P t1, 2u.
The following lemma is contained in [45, Lemma 8.1].

Lemma 7.2. RHP-𝑿 is solvable if and only if RHP-𝒀 is solvable. When solutions of RHP-𝑿 and RHP-𝒀 exist,
they are unique and connected by (7.4).

7.3. Auxiliary Parametrices. The following Riemann-Hilbert problem (RHP-𝑵) is essentially obtained by
discarding the jumps of 𝑿p𝑧q outside of Δ®𝑛,1 Y Δ®𝑛,2:

(a) 𝑵p𝑧q is analytic in CzpΔ®𝑛,1 Y Δ®𝑛,2q and lim
𝑧Ñ8

𝑵p𝑧q𝑧´𝜎p®𝑛q “ 𝑰;

(b) 𝑵p𝑧q has continuous traces on Δ˝

®𝑛,𝑖 that satisfy 𝑵`p𝑠q “ 𝑵´p𝑠qT𝑖
ˆ

0 𝜌𝑖p𝑠q

´1{𝜌𝑖p𝑠q 0

˙

;

(c) it holds that 𝑵p𝑧q “ O
`

|𝑧 ´ 𝑒|´1{4˘ as 𝑧 Ñ 𝑒 P 𝐸 ®𝑛.
Let 𝑆 ®𝑛p𝒛q :“ 𝑆𝑐 ®𝑛p𝒛q be the one granted by Proposition 3.1. Put

𝑺p𝑧q :“ diag
`

𝑆
p0q

®𝑛 p𝑧q, 𝑆
p1q

®𝑛 p𝑧q, 𝑆
p2q

®𝑛 p𝑧q
˘

for 𝑧 P CzpΔ®𝑛,1 Y Δ®𝑛,2q. Further, let Φ®𝑛p𝒛q, 𝑤 ®𝑛,𝑖p𝑧q :“ 𝑤𝑐 ®𝑛 ,𝑖p𝑧q, and Υ®𝑛,𝑖p𝒛q :“ Υ𝑐 ®𝑛 ,𝑖p𝒛q be the functions
given by (3.13), (3.6), and (5.3), respectively. Define

(7.5) 𝑴p𝑧q :“ 𝑺´1p8q

¨

˚

˚

˝

1 1{𝑤 ®𝑛,1p𝑧q 1{𝑤 ®𝑛,2p𝑧q

Υ
p0q

®𝑛,1p𝑧q Υ
p1q

®𝑛,1p𝑧q{𝑤 ®𝑛,1p𝑧q Υ
p2q

®𝑛,1p𝑧q{𝑤 ®𝑛,2p𝑧q

Υ
p0q

®𝑛,2p𝑧q Υ
p1q

®𝑛,2p𝑧q{𝑤 ®𝑛,1p𝑧q Υ
p2q

®𝑛,2p𝑧q{𝑤 ®𝑛,2p𝑧q

˛

‹

‹

‚

𝑺p𝑧q.
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Then RHP-𝑵 is solved by 𝑵p𝑧q :“ 𝑪p𝑴𝑫qp𝑧q, see [45, Section 8.2], where 𝑪 is a diagonal matrix of constants
such that

(7.6) lim
𝑧Ñ8

𝑪𝑫p𝑧q𝑧´𝜎p®𝑛q “ 𝑰 and 𝑫p𝑧q :“ diag
´

Φ
p0q

®𝑛 p𝑧q,Φ
p1q

®𝑛 p𝑧q,Φ
p2q

®𝑛 p𝑧q

¯

.

Since the jump matrix in RHP-𝑵(b) has determinant 1, it follows from RHP-𝑵(a,b) that detp𝑵qp𝑧q is holo-
morphic in Cz𝐸 ®𝑛 with at most square root singularities at the points of 𝐸 ®𝑛. Thus, detp𝑵qp𝑧q is a constant and
detp𝑵qp𝑧q ” 1 by RHP-𝑵(a). Therefore, it holds that detp𝑴qp𝑧q ” detp𝑫qp𝑧q ” detp𝑪q “ 1 due to the second
relation in (3.7) and (3.13). Moreover, it follows from (5.19) and (5.20) that

(7.7) 𝑴´1p𝑧q “ 𝑺´1p𝑧q

¨

˚

˚

˚

˝

Π
p0q

®𝑛 p𝑧q Π
p0q

®𝑛,1p𝑧q Π
p0q

®𝑛,2p𝑧q

𝑤 ®𝑛,1p𝑧qΠ
p1q

®𝑛 p𝑧q 𝑤 ®𝑛,1p𝑧qΠ
p1q

®𝑛,1p𝑧q 𝑤 ®𝑛,1p𝑧qΠ
p1q

®𝑛,2p𝑧q

𝑤 ®𝑛,2p𝑧qΠ
p2q

®𝑛 p𝑧q 𝑤 ®𝑛,2p𝑧qΠ
p2q

®𝑛,1p𝑧q 𝑤 ®𝑛,2p𝑧qΠ
p2q

®𝑛,2p𝑧q

˛

‹

‹

‹

‚

𝑺p8q.

We use the following convention: |𝑨p𝑧q| À |𝑩p𝑧q| (resp. |𝑨p𝑧q| „ |𝑩p𝑧q| if all the individual entries satisfy
|r𝑨s𝑖, 𝑗p𝑧q| À |r𝑩s𝑖, 𝑗p𝑧q| (resp. |r𝑨s𝑖, 𝑗p𝑧q| „ |r𝑩s𝑖, 𝑗p𝑧q|). Moreover, if the constants appearing in inequalities À

and „ do depend on a certain parameter, say 𝛿, we write À𝛿 and „𝛿 . Furthermore, we shall write 𝑨p𝑧q “ O𝛿p1q

if all the individual entries satisfy |r𝑨s𝑖, 𝑗p𝑧q| À𝛿 1.

Lemma 7.3. It holds that 𝑴˘1p𝑧q “ O𝛿p1q uniformly for 𝑧 such that 0 ă 𝛿𝑐 ®𝑛 ď distp𝑧, t𝛼1, 𝛽®𝑛,1uq and
0 ă 𝛿p1 ´ 𝑐 ®𝑛q ď distp𝑧, t𝛼®𝑛,2, 𝛽2uq, where the estimate is independent of the parameter 𝑐 ®𝑛. Moreover, it holds
that |𝑴p𝑧q| is

„

¨

˚

˝

𝛿´1{4 𝛿´1{4 1 ´ 𝑐 ®𝑛
𝛿´1{4 𝛿´1{4 𝑐 ®𝑛p1 ´ 𝑐 ®𝑛q

p1 ´ 𝑐 ®𝑛q𝛿´1{4 p1 ´ 𝑐 ®𝑛q𝛿´1{4 1

˛

‹

‚
and „

¨

˚

˝

𝛿´1{4 𝑐 ®𝑛 𝛿´1{4

𝑐 ®𝑛𝛿
´1{4 1 𝑐 ®𝑛𝛿

´1{4

𝛿´1{4 𝑐 ®𝑛p1 ´ 𝑐 ®𝑛q 𝛿´1{4

˛

‹

‚

uniformly on |𝑧´𝛼1| “ 𝛿𝑐 ®𝑛, |𝑧´ 𝛽®𝑛,1| “ 𝛿𝑐 ®𝑛 and on |𝑧´𝛼®𝑛,2| “ 𝛿p1´ 𝑐 ®𝑛q, |𝑧´ 𝛽2| “ 𝛿p1´ 𝑐 ®𝑛q, respectively,
where the constants of proportionality are independent of 𝑐 ®𝑛 and 𝛿. Finally, it holds that 𝑴´1p𝑧q is equal to

O

¨

˚

˝

1
𝛿1{4

¨

˚

˝

1 1 1 ´ 𝑐 ®𝑛
1 1 1 ´ 𝑐 ®𝑛

p1 ´ 𝑐 ®𝑛q𝛿´1{4 p1 ´ 𝑐 ®𝑛q𝛿´1{4 𝛿´1{4

˛

‹

‚

˛

‹

‚
and O

¨

˚

˝

1
𝛿1{4

¨

˚

˝

1 𝑐 ®𝑛 1
𝑐 ®𝑛𝛿

´1{4 𝛿´1{4 𝑐 ®𝑛𝛿
´1{4

1 𝑐 ®𝑛 1

˛

‹

‚

˛

‹

‚

uniformly on |𝑧´𝛼1| “ 𝛿𝑐 ®𝑛, |𝑧´ 𝛽®𝑛,1| “ 𝛿𝑐 ®𝑛 and on |𝑧´𝛼®𝑛,2| “ 𝛿p1´ 𝑐 ®𝑛q, |𝑧´ 𝛽2| “ 𝛿p1´ 𝑐 ®𝑛q, respectively,
with Op¨q holding independently of 𝑐 ®𝑛 and 𝛿.

Proof. Consider first 𝑧 on one of the circles from the statement of the lemma. It follows from (3.10) and
Lemma 5.4 that

𝑺p8q „ diag
´

𝑐
´1{3
®𝑛 p1 ´ 𝑐 ®𝑛q´1{3, 𝑐

2{3
®𝑛 p1 ´ 𝑐 ®𝑛q´1{3, 𝑐

´1{3
®𝑛 p1 ´ 𝑐 ®𝑛q2{3

¯

,

where the constants of proportionality are independent of 𝑐 ®𝑛. It further follows from Lemma 5.4 that

|𝑺p𝑧q| „ 𝑺p8qdiag
´

𝛿´1{4, 𝛿1{4, 1
¯

and |𝑺p𝑧q| „ 𝑺p8qdiag
´

𝛿´1{4, 1, 𝛿1{4
¯

uniformly on |𝑧´𝛼1| “ 𝛿𝑐 ®𝑛, |𝑧´ 𝛽®𝑛,1| “ 𝛿𝑐 ®𝑛 and on |𝑧´𝛼®𝑛,2| “ 𝛿p1´ 𝑐 ®𝑛q, |𝑧´ 𝛽2| “ 𝛿p1´ 𝑐 ®𝑛q, respectively,
where the constants of proportionality are independent of 𝑐 ®𝑛 and 𝛿. Moreover, we deduce from Lemma 5.2 and
(5.23) that 𝑺p8q

ˇ

ˇ

`

𝑴𝑺´1˘p𝑧q
ˇ

ˇ is

„

¨

˚

˝

1 𝑐´1
®𝑛 𝛿´1{2 1

𝑐 ®𝑛 𝛿´1{2 𝑐2
®𝑛

p1 ´ 𝑐 ®𝑛q2 𝑐´1
®𝑛 p1 ´ 𝑐 ®𝑛q2𝛿´1{2 1

˛

‹

‚
and „

¨

˚

˝

1 1 p1 ´ 𝑐 ®𝑛q´1𝛿´1{2

𝑐2
®𝑛 1 𝑐2

®𝑛p1 ´ 𝑐 ®𝑛q´1𝛿´1{2

1 ´ 𝑐 ®𝑛 p1 ´ 𝑐 ®𝑛q2 𝛿´1{2

˛

‹

‚

uniformly on |𝑧 ´ 𝛼1| “ 𝛿𝑐 ®𝑛, |𝑧 ´ 𝛽®𝑛,1| “ 𝛿𝑐 ®𝑛 and on |𝑧 ´ 𝛼®𝑛,2| “ 𝛿p1 ´ 𝑐 ®𝑛q, |𝑧 ´ 𝛽2| “ 𝛿p1 ´ 𝑐 ®𝑛q,
respectively, where the constants of proportionality are independent of 𝑐 ®𝑛 and 𝛿. The combination of the above
three estimates yields the desired asymptotics of 𝑴p𝑧q on the circles around 𝛼1, 𝛽®𝑛,1, 𝛼®𝑛,2, 𝛽2.

It further follows from Lemma 5.4 that

|𝑺˘p𝑥q| À 𝑺p8qdiag
´

𝛿´1{4, 1, 1
¯

uniformly for 𝑥 P p𝛼1 ` 𝛿𝑐 ®𝑛, 𝛽®𝑛,1 ´ 𝛿𝑐 ®𝑛q Y p𝛼®𝑛,2 ` 𝛿p1 ´ 𝑐 ®𝑛q, 𝛽2 ´ 𝛿p1 ´ 𝑐 ®𝑛qq where the constants of
proportionality are independent of 𝑐 ®𝑛 and 𝛿. Analogously, it follows from Lemma 5.2 and (5.23) that the
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above estimate of 𝑺p8q
`

𝑴𝑺´1˘p𝑧q on the circles remains valid as an upper estimate on p𝛼1 ` 𝛿𝑐 ®𝑛, 𝛽®𝑛,1 ´

𝛿𝑐 ®𝑛q Y p𝛼®𝑛,2 ` 𝛿p1 ´ 𝑐 ®𝑛q, 𝛽2 ´ 𝛿p1 ´ 𝑐 ®𝑛qq. The last two observations and the maximum modulus principle for
holomorphic functions show that 𝑴p𝑧q “ O𝛿p1q uniformly for 𝑧 such that 0 ă 𝛿𝑐 ®𝑛 ď distp𝑧, t𝛼1, 𝛽®𝑛,1uq and
0 ă 𝛿p1 ´ 𝑐 ®𝑛q ď distp𝑧, t𝛼®𝑛,2, 𝛽2uq, where the estimate is independent of the parameter 𝑐 ®𝑛.

Finally, as detp𝑴qp𝑧q ” 1, the estimates of 𝑴´1p𝑧q follow in a straightforward fashion from the ones for
𝑴p𝑧q. �

Besides 𝑵p𝑧q, we shall also need matrix functions that solve RHP-𝑿 within the domains 𝑈𝑒, introduced at
the beginning of Section 7.2, with an additional matching condition on the boundary. More precisely, let 𝜀 ®𝑛 be
given by (3.11). For each 𝑒 P t𝛼1, 𝛽®𝑛,1, 𝛼®𝑛,2, 𝛽2u we are seeking a solution of the following RHP-𝑷𝑒:
(a,b,c) 𝑷𝑒p𝑧q satisfies RHP-𝑿(a,b,c) within𝑈𝑒;

(d) 𝑷𝑒p𝑠q “ 𝑴p𝑠qp𝑰 ` 𝒐p1qq𝑫p𝑠q uniformly on B𝑈𝑒z
Ť2
𝑖“1

`

Δ𝑖 Y Γ
`

®𝑛,𝑖 Y Γ
´

®𝑛,𝑖
˘

, where

|r𝒐p1qs 𝑗 ,𝑘 | ď 𝐶𝜀 ®𝑛

$

’

&

’

%

𝛿´1{2, 𝑒 “ 𝛼1,

𝛿´3{2, 𝑒 “ 𝛽®𝑛,1 when 𝑐‹ ă 𝑐˚,
`

𝛿p𝑧𝑐‹
´ 𝛽1q

˘´1{2
, 𝑒 “ 𝛽1 when 𝑐‹ ą 𝑐˚,

for some constant 𝐶 ą 0 independent of ®𝑛 and 𝛿, and analogous estimates hold around 𝛼®𝑛,2, 𝛽2 (in the
cases 𝑐‹ “ 𝑐˚ and 𝑐‹ “ 𝑐˚˚ we cannot specify the exact rate of the error term), where the point 𝑧𝑐 , or
more precisely 𝒛𝑐 was defined in Proposition 4.2.

We will solve RHP-𝑷𝑒 only for 𝑒 P t𝛼1, 𝛽®𝑛,1u understanding that the solutions for 𝑒 P t𝛼®𝑛,2, 𝛽2u can be
constructed similarly. Solution of each RHP-𝑷𝑒 will require a construction, carried out in the next subsection,
of a local conformal map around 𝛼1 and 𝛽®𝑛,1. Recall that these maps were already used in (7.2).

7.4. Conformal Maps. In this subsection we construct local conformal maps needed to solve problems RHP-
𝑷𝑒. To this end, recall the definition, given right after (4.1), and properties, described in Proposition 4.2, of the
function ℎ𝑐p𝒛q that is rational on the surface 𝕽𝑐 .

7.4.1. Local maps around 𝛼1. Given 𝑐 P p0, 1q, define

(7.8) 𝜁𝑐,𝛼1p𝑧q :“
ˆ

1
4

ż 𝑧

𝛼1

´

ℎ
p0q
𝑐 ´ ℎ

p1q
𝑐

¯

p𝑠qd𝑠
˙2
, <𝑧 ă 𝛽𝑐,1.

Since ℎp0q

𝑐˘p𝑥q “ ℎ
p1q

𝑐¯p𝑥q on Δ˝
𝑐,1, the function 𝜁𝑐,𝛼1p𝑧q is holomorphic in the region of definition. When 𝜔 is a

real measure on the real line, it trivially holds that
ż

d𝜔p𝑥q

𝑥 ´ p𝑥0 ˘ i𝑦q
“

ż

p𝑥 ´ 𝑥0qd𝜔p𝑥q

p𝑥 ´ 𝑥0q2 ` 𝑦2 ¯ i𝑦
ż

d𝜔p𝑥q

p𝑥 ´ 𝑥0q2 ` 𝑦2 .

Therefore, if the traces of
ş

p𝑥 ´ 𝑧q´1d𝜔p𝑥q exist at 𝑥0, they are necessarily conjugate-symmetric. In particular,
it follows from (4.2) that the integrand in (7.8) is purely imaginary on Δ˝

𝑐,1 and therefore 𝜁𝑐,𝛼1p𝑥q ă 0 for
𝑥 P Δ˝

𝑐,1. It also clearly follows from (4.2) that 𝜁𝑐,𝛼1p𝑥q ą 0 for 𝑥 ă 𝛼1. Moreover, since ℎ𝑐p𝒛q has a pole at
𝜶1, a ramification point of 𝕽𝑐 of order 2, 𝜁𝑐,𝛼1p𝑧q has a simple zero at 𝛼1.
Lemma 7.4. There exist 𝛿𝛼1 ą 0, 𝐴𝛼1 ą 0, and 𝐷𝛼1 ą 0, independent of 𝑐, such that each 𝜁𝑐,𝛼1p𝑧q is
conformal in t|𝑧 ´ 𝛼1| ă 𝛿𝛼1𝑐u, 4𝐴𝛼1𝑐 ď |𝜁 1

𝑐,𝛼1p𝛼1q|, and |𝜁 1
𝑐,𝛼1p𝑧q| ď 𝐷𝛼1𝑐 when t|𝑧 ´ 𝛼1| ă 𝛿𝛼1𝑐u for all

𝑐 P p0, 1q.
Proof. We start by proving the estimate on the size of |𝜁 1

𝑐,𝛼1p𝛼1q|. Assume first that 𝑐 ď 𝑐˚. Since 𝜶1 is a
simple pole of ℎ𝑐p𝒛q and ℎp0q

𝑐 p𝑥q ă 0 for 𝑥 ă 𝛼1 by (4.2), it holds that ℎp0q
𝑐 p𝑥q “ 𝑢𝑐p𝛼1 ´ 𝑥q´1{2 ` Op1q

for 𝑥 ă 𝛼1 and sufficiently close to 𝛼1, where the branch of the square root is principal and 𝑢𝑐 ă 0. Since
ℎ

p1q
𝑐 p𝑥q “ ´𝑢𝑐p𝛼1 ´ 𝑥q´1{2 ` Op1q around 𝛼1, it can be readily checked that 𝜁 1

𝑐,𝛼1p𝛼1q “ ´𝑢2
𝑐 . It was shown

in [7, Equation 2.7] that ℎ𝑐p𝒛q solves

(7.9) ℎ3 ´
`

1 ´ 𝑐 ` 𝑐2˘ 𝑧 ´ 𝑑𝑐

Πp𝑧q
ℎ ´

𝑐 ´ 𝑐2

Πp𝑧q
“ 0,

where Πp𝑧q :“ p𝑧 ´ 𝛼1qp𝑧 ´ 𝛼2qp𝑧 ´ 𝛽2q and 𝑑𝑐 is the point such that the discriminant of (7.9), whose
numerator is a cubic polynomial, vanishes at 𝛽𝑐,1 and has an additional double zero. By plugging the identity
ℎ

p0q
𝑐 p𝑥q “ 𝑢𝑐p𝛼1 ´ 𝑥q´1{2 ` Op1q into (7.9), it is easy to verify that

(7.10) 𝑢2
𝑐 “

`

1 ´ 𝑐 ` 𝑐2˘ 𝑑𝑐 ´ 𝛼1

p𝛼2 ´ 𝛼1qp𝛽2 ´ 𝛼1q
.



28 A.I. APTEKAREV, S. DENISOV, AND M. YATTSELEV

The numerator of the discriminant of (7.9) is equal to

(7.11) 4
`

1 ´ 𝑐 ` 𝑐2˘3
p𝑧 ´ 𝑑𝑐q3 ´ 27

`

𝑐 ´ 𝑐2˘2
p𝑧 ´ 𝛼1qp𝑧 ´ 𝛼2qp𝑧 ´ 𝛽2q

and must have a single sign change, which happens at 𝛽𝑐,1. If 𝑑𝑐 ď 𝛼1 were true, then the discriminant would
have been positive at 𝛼2, 𝛽2 and non-negative at 𝛼1, that is, it would have been positive on p𝛼1, 𝛽2q, which
contradicts vanishing at 𝛽𝑐,1. On the other hand if, 𝑑𝑐 ě 𝛽𝑐,1 were to be true, then the discriminant would have
been strictly negative at 𝛽𝑐,1, which, again, leads to a contradiction. Thus, 𝛼1 ă 𝑑𝑐 ă 𝛽𝑐,1. Now, (7.9) yields
that

(7.12)
𝑑𝑐 ´ 𝛼1

𝑐
“

1 ´ 𝑐

p𝛼2 ´ 𝑑𝑐qp𝛽2 ´ 𝑑𝑐q

1
ℎ3
𝑐p𝑑𝑐q

ě
p1 ´ 𝑐˚qp𝛼2 ´ 𝛽1q3

p𝛼2 ´ 𝛼1qp𝛽2 ´ 𝛼1q
,

where we used (4.2) to observe that ℎp2q
𝑐 p𝑑𝑐q ď 1{p𝛼2 ´ 𝛽1q. The above inequality and (7.10) clearly yield

the desired estimate for |𝜁 1
𝑐,𝛼1p𝛼1q| “ 𝑢2

𝑐 when 𝑐 ď 𝑐˚. In fact, when 𝑐 Ñ 0, it actually follows from the first
equality in (7.12) that

(7.13)
𝑐

𝑑𝑐 ´ 𝛼1
“

p𝛼2 ´ 𝑑𝑐qp𝛽2 ´ 𝑑𝑐q

1 ´ 𝑐

´

ℎp2qp𝑑𝑐q

¯3
Ñ p𝛼2 ´ 𝛼1qp𝛽2 ´ 𝛼1q

ˆ
ż

d𝜔2p𝑥q

𝑥 ´ 𝛼1

˙3
“

1
|𝑤2p𝛼1q|

due to (4.2), the last conclusion of Proposition 4.1, and the formula before (4.8). In this case, (7.10) and (7.13)
yield that

(7.14) 𝜁 1
𝑐,𝛼1p𝛼1q “ ´𝑢2

𝑐 “ ´𝑐
1 ` 𝑜p1q

|𝑤2p𝛼1q|
as 𝑐 Ñ 0.

When 𝑐 P
“

𝑐˚, 𝑐˚˚
‰

the surface 𝕽𝑐 is always the same. Hence, one can argue using local coordinates that the
pull-backs of ℎ𝑐p𝒛q from a fixed circular neighborhood of 𝜶1 to a fixed neighborhood in C continuously depend
on 𝑐. Since each |𝜁 1

𝑐,𝛼p𝛼1q| ą 0 for 𝑐 P p0, 1q, the desired estimate follows from compactness of r𝑐˚, 𝑐˚˚s.
When 𝑐˚˚ ď 𝑐, ℎ𝑐p𝒛q satisfies an equation similar to (7.9). Using this equation, we again can argue that the
estimate holds as 𝑐 Ñ 1, thus, proving that it holds uniformly for all 𝑐 P p0, 1q.

It remains to study conformality of 𝜁𝑐,𝛼1p𝑧q. Denote by 𝛿𝛼1p𝑐q the supremum of 𝛿 such that 𝜁𝑐,𝛼1p𝑧q is
conformal in t|𝑧 ´ 𝛼1| ă 2𝛿𝑐u. We take 𝛿𝛼1 :“ inf𝑐Pp0,1q 𝛿𝛼1p𝑐q. Since 𝛿𝛼1p𝑐q ą 0 for 𝑐 P p0, 1q and
continuously depends on 𝑐, we only need to study what happens as 𝑐 Ñ 0 and 𝑐 Ñ 1 to prove that 𝛿𝛼1 ą 0.
Assume first that 𝑐 Ñ 0. Set 𝜁𝑐,𝛼1p𝑠q :“ 𝑐´2𝜁𝑐,𝛼1p𝑧p𝑠qq, where 𝑧p𝑠q :“ 𝛼1 ` |Δ𝑐,1|p1 ´ 𝑠q{2. Then it follows
from (7.8) that

𝜁𝑐,𝛼1p𝑠q “

ˆ

|Δ𝑐,1|

8𝑐

ż 𝑠

1

`

ℎ̂
p0q
𝑐 ´ ℎ̂

p1q
𝑐

˘

p𝑡qd𝑡
˙2
,

where ℎ̂p𝑘q
𝑐 p𝑠q :“ ℎ

p𝑘q
𝑐 p𝑧p𝑠qq. By using (7.9), (7.13), and (4.8), we see that ℎ̂𝑐 solves an algebraic equation of

the form
ℎ̂3 ´ p1 ` 𝑜p1qq

2p1 ´ 𝑠q ´ 1 ´ 𝑜p1q

2p1 ´ 𝑠qp|𝑤2p𝛼1q|2 ` 𝑜p1qq
ℎ̂ ´

1 ` 𝑜p1q

2p1 ´ 𝑠qp|𝑤2p𝛼1q|3 ` 𝑜p1qq
“ 0,

where 𝑜p1q holds uniformly on compact subsets of the plane as 𝑐 Ñ 0. The above equation converges to

(7.15)
ˆ

ℎ̂2 `
ℎ̂

|𝑤2p𝛼1q|
`

1
2p1 ´ 𝑠q|𝑤2p𝛼1q|2

˙ˆ

ℎ̂ ´
1

|𝑤2p𝛼1q|

˙

“ 0.

Since the branches ℎ̂p0q
𝑐 p𝑠q and ℎ̂p1q

𝑐 p𝑠q have 1 as a branch point, their limits come from the quadratic factor in
(7.15). This observation together with with (4.8) readily yield that

(7.16) 𝜁𝑐,𝛼1p𝑠q Ñ 𝜁𝛼1p𝑠q :“

˜

1
2

ż 𝑠

1

c

𝑡 ` 1
𝑡 ´ 1

d𝑡

¸2

“
1
4

´

a

𝑠2 ´ 1 ` log
`

𝑠 `
a

𝑠2 ´ 1
˘

¯2

locally uniformly in t|1 ´ 𝑠| ă 2u, where the branches of the square roots and the logarithm are principal and
therefore 𝜁𝛼1p𝑠q is holomorphic in Czp´8,´1s and is positive for 𝑠 P p1,8q. Using the explicit expression for
𝜁𝛼1p𝑠q, we can conclude that it is conformal in t|1 ´ 𝑠| ă 2u and therefore lim inf𝑐Ñ0 𝛿𝛼1p𝑐q ě 4|𝑤2p𝛼1q| by
(4.8). When 𝑐 Ñ 1, we can similarly get from the algebraic equation for ℎ𝑐p𝒛q that 𝜁𝑐,𝛼1p𝑧q converges to
(7.17)

˜

1
2

ż 𝑧

𝛼1

d𝑥
a

p𝑥 ´ 𝛼1qp𝑥 ´ 𝛽1q

¸2

“
1
4

ˆ

log
ˆ

𝛽1 ` 𝛼1
2

´ 𝑧 ´

b

p𝑧 ´ 𝛼1qp𝑧 ´ 𝛽1q

˙

´ log
ˆ

𝛽1 ´ 𝛼1
2

˙˙2
,

which allows us to conclude that lim inf𝑐Ñ1 𝛿𝛼1p𝑐q ą 0 as desired.
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Finally, let 𝐷𝛼1p𝑐q :“ 𝑐´1 max|𝑧´𝛼1|ď𝛿𝛼1 𝑐
|𝜁 1
𝑐,𝛼1p𝑧q|. These constants are finite for each 𝑐 P p0, 1q since

each 𝜁𝑐,𝛼1p𝑧q is, in fact, analytic in t|𝑧 ´ 𝛼1| ă 2𝛿𝛼1𝑐u. Moreover, since 𝜁𝑐,𝛼1p𝑧q continuously depends on 𝑐,
so do the constants 𝐷𝛼1p𝑐q. Thus, we only need to check their limits as 𝑐 Ñ 0 and 𝑐 Ñ 1. The finiteness of
𝐷𝛼1 :“ sup𝑐Pp0,1q 𝐷𝛼1p𝑐q now easily follows from (4.8), (7.16), and (7.17). �

7.4.2. Local maps around 𝛽𝑐,1 when 𝑐 P p0, 𝑐˚s. Given 𝑐 P p0, 𝑐˚s, define

(7.18) 𝜁𝛽𝑐,1p𝑧q :“

˜

´
3
4

ż 𝑧

𝛽𝑐,1

´

ℎ
p0q
𝑐 ´ ℎ

p1q
𝑐

¯

p𝑠qd𝑠

¸2{3

, 𝛼1 ă <𝑧 ă 𝛼2,

where the choice of the root function can be made such that 𝜁𝛽𝑐,1p𝑧q is holomorphic with a simple zero at 𝛽𝑐,1
and is positive for 𝑥 ą 𝛽𝑐,1. Indeed, since ℎ𝑐p𝒛q is bounded at 𝜷𝑐,1, which is a ramification point of order 2,
we can write
(7.19) ℎ

p0q
𝑐 p𝑥q “ ℎ𝑐p𝜷𝑐,1q ´ 𝑣𝑐

a

𝑥 ´ 𝛽𝑐,1 ´ Op𝑥 ´ 𝛽𝑐,1q

for some number 𝑣𝑐 and 𝑥 ą 𝛽𝑐,1 sufficiently small. It follows from Proposition 4.2 that ℎp𝜷𝑐,1q is a non-zero
real number. It is also clear from (4.2) that ℎp0q

𝑐 p𝑥q and ℎp2q
𝑐 p𝑥q assume any non-zero real number somewhere on

p´8, 𝛼1q Y p𝛽2,8q and p´8, 𝛼2q Y p𝛽2,8q, respectively. Thus, if 𝑣𝑐 “ 0, then the function ℎ𝑐p𝒛q ´ ℎp𝜷𝑐,1q

would have at least four zeros (the zero at 𝜷𝑐,1 would be at least a double one), but only three poles, which
is impossible. Hence, 𝑣𝑐 ‰ 0, or more precisely, 𝑣𝑐 ą 0 since ℎp0q

𝑐 p𝑥q is a decreasing function on p𝛽𝑐,1, 𝛼2q

as can be seen (4.2). Therefore, the integrand in (7.18) vanishes as a square root at 𝛽𝑐,1. Thus, 𝜁𝛽𝑐,1p𝑧q has a
simple zero there. Again, as in (7.8), we select such a branch of the root function so that 𝜁𝛽𝑐,1p𝑧q is negative on
Δ˝
𝑐,1. Since the difference ℎp0q

𝑐 p𝑥q ´ ℎ
p1q
𝑐 p𝑥q is real in the gap p𝛽𝑐,1, 𝛼2q, the map 𝜁𝛽𝑐,1p𝑧q is positive there.

Lemma 7.5. There exist 𝛿𝛽1 ą 0 and 𝐴𝛽1 ą 0, independent of 𝑐 P p0, 𝑐˚s, such that each 𝜁𝛽𝑐,1p𝑧q is conformal
in t|𝑧 ´ 𝛽𝑐,1| ă 𝛿𝛽1𝑐u and 4𝐴𝛽1𝑐

´1{3 ď 𝜁 1
𝛽𝑐,1

p𝛽𝑐,1q for all 𝑐 P p0, 𝑐˚s.

Proof. Since 𝜁 1
𝛽𝑐,1

p𝛽𝑐,1q ‰ 0 for 𝑐 P p0, 𝑐˚s, to prove the second claim, we only need to consider what happens
as 𝑐 Ñ 0. Similarly to considerations preceding (7.15), let ℎ̂𝑐p𝑠q :“ ℎ𝑐p𝛽𝑐,1 ` |Δ𝑐,1|p𝑠 ´ 1q{2q and ℎ̂p𝑠q be
the limit of ℎ̂𝑐p𝑠q as 𝑐 Ñ 0. Then (7.15) gets replaced by

ˆ

ℎ̂2 `
ℎ̂

|𝑤2p𝛼1q|
`

1
2p𝑠 ` 1q|𝑤2p𝛼1q|2

˙ˆ

ℎ̂ ´
1

|𝑤2p𝛼1q|

˙

“ 0.

Since each ℎ̂p0q
𝑐 p𝑠q has branchpoints at ˘1 and is negative for 𝑠 ă ´1, see (4.2), the same must be true for their

limit ℎ̂p0qp𝑠q. Thus, solving the above quadratic equation gives us

ℎ̂p0qp𝑠q “ ´
1

2|𝑤2p𝛼1q|

˜

1 `

c

𝑠 ´ 1
𝑠 ` 1

¸

“ ´
1

2|𝑤2p𝛼1q|
´

1
2|𝑤2p𝛼1q|

c

𝑠 ´ 1
2

` Op𝑠 ´ 1q.

Plugging the above limit and the substitution 𝑥 “ 𝛽𝑐,1 ` |Δ𝑐,1|p𝑠 ´ 1q{2 into (7.19) yields

(7.20) 𝜁 1
𝛽𝑐,1

p𝛽𝑐,1q “ 𝑣
2{3
𝑐 “ 𝑐´1{3 1 ` 𝑜p1q

p16q1{3|𝑤2p𝛼1q|

as 𝑐 Ñ 0, where 𝑣𝑐 was introduced in (7.19). This finishes the proof of the second claim of the lemma. To
prove the first one, it is enough to observe that

(7.21) p3𝑐q´2{3𝜁𝛽𝑐,1
`

𝛽𝑐,1 ` |Δ𝑐,1|p𝑠´ 1q{2
˘

Ñ

˜

ż 𝑠

1

c

𝑡 ´ 1
𝑡 ` 1

d𝑡

¸2{3

“

´

a

𝑠2 ´ 1 ´ log
`

𝑠 `
a

𝑠2 ´ 1
˘

¯2{3

as 𝑐 Ñ 0, where the limit is conformal around 1. �

7.4.3. Local maps around 𝛽1 for 𝑐 close to 𝑐˚ from the right. This construction will be used only for the ray
sequences N𝑐˚ with infinitely many indices ®𝑛 such that 𝑐 ®𝑛 ą 𝑐˚. By Proposition 4.2, ℎ𝑐˚ p𝒛q is bounded at 𝜷1
while ℎ𝑐p𝒛q has a simple pole at 𝜷1 for all 𝑐 ą 𝑐˚ and a simple zero 𝒛𝑐 that approaches 𝜷1 as 𝑐 Ñ 𝑐˚`. Since
the functions ℎ𝑐p𝒛q converge around 𝜷1 to ℎ𝑐˚ p𝒛q as 𝑐 Ñ 𝑐˚` by (4.2) and Proposition 4.1, we can write

(7.22) ´
3
4

ż 𝑧

𝛽1

´

ℎ
p0q
𝑐 ´ ℎ

p1q
𝑐

¯

p𝑠qd𝑠 “
a

𝑧 ´ 𝛽1 p𝑧 ´ 𝛽1 ´ 𝜖𝑐q 𝑓𝑐p𝑧q, 𝛼1 ă <𝑧 ă 𝛼2,

for some 𝜖𝑐 ą 0 such that 𝜖𝑐 Ñ 0` as 𝑐 Ñ 𝑐˚`, where 𝑓𝑐p𝑧q is a holomorphic function that is real on p𝛼1, 𝛼2q

(observe that the Puisuex expansion of pℎ
p0q
𝑐 ´ ℎ

p1q
𝑐 qp𝑥q around 𝛽𝑐,1 does not have the integral powers of 𝑥´ 𝛽1).



30 A.I. APTEKAREV, S. DENISOV, AND M. YATTSELEV

Similarly, it holds that 𝜁3{2
𝛽𝑐˚ ,1

p𝑧q “ p𝑧 ´ 𝛽1q3{2 𝑓𝑐˚ p𝑧q for some holomorphic function 𝑓𝑐˚ p𝑧q that is real on

p𝛼1, 𝛼2q and is positive at 𝛽1. Since the right-hand side of (7.22) converges to 𝜁3{2
𝛽𝑐˚ ,1

p𝑧q as 𝑐 Ñ 𝑐˚`, the
functions 𝑓𝑐p𝑧q converge to 𝑓𝑐˚ p𝑧q (in particular, 𝑓𝑐p𝛽1q ą 0 for all 𝑐 sufficiently close to 𝑐˚).

Lemma 7.6. There exist 𝑐1 ą 𝑐˚ and a fixed neighborhood of 𝛽1 such that for every 𝑐 P p𝑐˚, 𝑐1s there exists a
function 𝜁𝑐,𝛽1p𝑧q, conformal in this neighborhood, such that

(7.23) ´
3
4

ż 𝑧

𝛽1

´

ℎ
p0q
𝑐 ´ ℎ

p1q
𝑐

¯

p𝑠qd𝑠 “ 𝜁
3{2
𝑐,𝛽1

p𝑧q ´ 𝜁𝑐,𝛽1p𝛽1 ` 𝜖𝑐q𝜁
1{2
𝑐,𝛽1

p𝑧q

(we can adjust the constant 𝛿𝛽1 ą 0 from Lemma 7.5 so that the neighborhood of conformality is given by
t|𝑧 ´ 𝛽1| ă 𝛿𝛽1𝑐

1u). Moreover, 𝜁𝑐,𝛽1p𝑧q is positive for 𝑥 ą 𝛽1 and converges to 𝜁𝛽𝑐˚ ,1
p𝑧q as 𝑐 Ñ 𝑐˚`.

Proof. Let 𝐹p𝑧; 𝜖q be a family of holomorphic and non-vanishing functions in t|𝑧| ă 𝑟0u that are positive at
the origin and continuously depend on the parameter 𝜖 P r0, 𝜖0s. Consider the equation

(7.24) 𝑢p𝑧; 𝜖qp𝑢p𝑧; 𝜖q ´ 3𝑝 𝜖 q2 “ 2𝑔p𝑧; 𝜖q, 𝑔p𝑧; 𝜖q :“ 𝑧p𝑧 ´ 𝜖q2𝐹p𝑧; 𝜖q,

where 𝑝 𝜖 ą 0 is a parameter that we shall fix in a moment. The solution of this cubic equation is formally
given by

$

&

%

𝑢p𝑧; 𝜖q “ 2𝑝 𝜖 ` 𝑣1{3p𝑧; 𝜖q ` 𝑝2
𝜖 𝑣

´1{3p𝑧; 𝜖q,

𝑣p𝑧; 𝜖q “ 𝑔p𝑧; 𝜖q ´ 𝑝3
𝜖 `

b

𝑔p𝑧; 𝜖qp𝑔p𝑧; 𝜖q ´ 2𝑝3
𝜖 q.

Observe that 𝑔1p𝑥; 𝜖q “ p𝑥 ´ 𝜖q
“

p3𝑥 ´ 𝜖q𝐹p𝑥; 𝜖q ` 𝑥p𝑥 ´ 𝜖q𝐹1p𝑥; 𝜖q
‰

. The expression in the square brackets
is negative at 0 and positive at 𝜖 . Since 𝐹p0; 𝜖q ą 𝛿 ą 0, independently of 𝜖 P r0, 𝜖0s for some 𝛿, 𝜖0 ą 0
sufficiently small, the derivative of the expression in the square brackets, that is, 3𝐹p𝑥; 𝜖q ` p5𝑥 ´ 𝜖q𝐹1p𝑥; 𝜖q `

𝑥p𝑥´𝜖q𝐹2p𝑥; 𝜖q, is positive on r0, 𝜖s for all 𝜖 P r0, 𝜖0s, where we might need to decrease 𝜖0 if necessary. Hence,
there exists a unique point 𝑥𝜖 P p0, 𝜖q such that 𝑔1p𝑥𝜖 q “ 0. Then we let

(7.25) 2𝑝3
𝜖 :“ 𝑔p𝑥𝜖 ; 𝜖q “ max

𝑥Pr0, 𝜖 s
𝑔p𝑥; 𝜖q.

Since 𝑔1p𝑥; 𝜖q “ p𝑥 ´ 𝜖q
“

2𝑥𝐹p𝑥; 𝜖q ` p𝑥 ´ 𝜖qp𝐹p𝑥; 𝜖q ` 𝑥𝐹1p𝑥; 𝜖qq
‰

and 𝐹p0; 𝜖q ą 𝛿 ą 0, independently of
𝜖 P r0, 𝜖0s, we can decrease 𝑟0 if necessary so that 𝑔1p𝑥; 𝜖q ą 0 for 𝑥 P p𝜖, 𝑟0q and 𝜖 P r0, 𝜖0s. Thus, there exists
a unique 𝑦 𝜖 P p𝜖, 𝑟0q such that 2𝑝3

𝜖 “ 𝑔p𝑦 𝜖 ; 𝜖q for all 𝜖 P r0, 𝜖0s, where, again, we might need to decrease 𝜖0.
Hence, we can choose 𝑣p𝑧; 𝜖q to be holomorphic in t|𝑧| ă 𝑟0uzr0, 𝑦 𝜖 s and 𝑣1{3p𝑧; 𝜖q such that 𝑣1{3p𝑥; 𝜖q Ñ ´𝑝 𝜖
as 𝑥 Ñ 0´.

Now, since 𝑔p𝑥; 𝜖q ´ 𝑝3
𝜖 is real on r0, 𝑦 𝜖 s and changes sign exactly once on each interval r0, 𝑥𝜖 s, r𝑥𝜖 , 𝜖s, and

r𝜖, 𝑦 𝜖 s while the square root vanishes at the endpoint of these intervals, the change of the argument of 𝑣˘p𝑥; 𝜖q

is equal to 3𝜋. Thus, we can define 𝑣1{3p𝑧; 𝜖q holomorphically in t|𝑧| ă 𝑟0uzr0, 𝑦 𝜖 s as well, where it also
holds that 𝑣1{3

` p𝑥; 𝜖q𝑣
1{3
´ p𝑥; 𝜖q “ 𝑝2

𝜖 and 𝑣˘p𝜖 ; 𝜖q “ ´𝑒¯2𝜋i{3𝑝 𝜖 . In this case 𝑢p𝑧; 𝜖q is in fact holomorphic
in t|𝑧| ă 𝑟0u, has a simple zero at the origin, is positive for 𝑥 ą 0, and satisfies 𝑢p𝜖 ; 𝜖q “ 2𝑝 𝜖 . Since
𝑢p𝑧; 0q “ 𝑧p2𝐹p𝑧; 0qq1{3 and 𝑢p𝑧; 𝜖q continuously depends on 𝜖 , we can decrease 𝑟0 if necessary so that all the
function 𝑢p𝑧; 𝜖q are conformal in t|𝑧| ă 𝑟0u.

Let 𝑢p𝑧; 𝜖𝑐q be the discussed solution of (7.24) and (7.25) with 𝐹p𝑧; 𝜖𝑐q “ 𝑓 2
𝑐 p𝑧 ` 𝛽1q{2. Then the desired

function 𝜁𝑐,𝛽1p𝑧q is given by 𝑢p𝑧 ´ 𝛽1; 𝜖𝑐q. �

7.4.4. Local maps around 𝛽1 when 𝑐 ą 𝑐˚. This construction will be used only for the ray sequences N𝑐‹
with

𝑐‹ ą 𝑐˚. Similarly to (7.8), given 𝑐 P p𝑐˚, 1q, define

(7.26) 𝜁𝑐,𝛽1p𝑧q :“
ˆ

1
4

ż 𝑧

𝛽1

´

ℎ
p0q
𝑐 ´ ℎ

p1q
𝑐

¯

p𝑠qd𝑠
˙2
, 𝛼1 ă <𝑧 ă 𝛼2.

Then 𝜁𝑐,𝛽1p𝑧q is holomorphic in the domain of the definition, has a simple zero at 𝛽1, is real positive for 𝑥 ą 𝛽1,
and is real negative for 𝑥 ă 𝛽1.

Lemma 7.7. There exists a continuous and non-vanishing function 𝛿𝛽1p𝑐q on p𝑐˚, 1q with non-zero one-sided
limit at 1 such that 𝜁𝑐,𝛽1p𝑧q is conformal in t|𝑧´ 𝛽1| ă 𝛿𝛽1p𝑐qu. Moreover, the constant 𝐴𝛽1 in Lemma 7.5 can
be adjusted so that 4𝐴𝛽1p𝑧𝑐 ´ 𝛽1q ď |𝜁 1

𝑐,𝛽1
p𝛽1q|, where 𝒛𝑐 is the zero of ℎ𝑐p𝒛q described in Proposition 4.2.



JACOBI MATRICES ON TREES GENERATED BY ANGELESCO SYSTEMS 31

Proof. Since 𝜁𝑐,𝛽1p𝑧q has a simple zero at 𝛽1, 𝛿𝛽1p𝑐q is simply the largest radius of conformality, which is
clearly positive. Moreover, when 𝑐 Ñ 1, the limiting behavior of 𝜁𝑐,𝛽1p𝑧q is similar to the one described in
(7.17) and therefore lim𝑐Ñ1´ 𝛿𝛽1p𝑐q ą 0. To prove the second claim of the lemma observe that 𝜁 1

𝑐,𝛽1
p𝛽1q “ 𝑢2

𝑐 ,
where

ℎ
p0q
𝑐 p𝑥q “ 𝑢𝑐p𝑥 ´ 𝛽1q´1{2 ` ℎ̃

p0q
𝑐 p𝑥q, ℎ̃

p0q
𝑐 p𝑥q “ Op1q as 𝑥 Ñ 𝛽1,

exactly as in Lemma 7.4. Thus, we only need to investigate what happens when 𝑐 Ñ 𝑐˚` (existence of a limit
of 𝜁𝑐,𝛽1p𝑧q as 𝑐 Ñ 1, which is conformal around 𝛽1, shows that |𝜁 1

𝑐,𝛽1
p𝛽1q| is bounded from below as 𝑐 Ñ 1).

It follows from the second part of Proposition 4.1 and (4.2) that the Puiseux expansion of ℎp0q
𝑐 p𝑥q must converge

to the Puiseux expansion of ℎp0q

𝑐˚ p𝑥q in some punctured neighborhood of 𝛽1. In particular, we have that 𝑢𝑐 Ñ 0
and ℎ̃p0q

𝑐 p𝑥𝑐q Ñ ℎ
p0q

𝑐˚ p𝛽1q “ ℎ𝑐˚ p𝜷1q as 𝑐 Ñ 𝑐˚` for any sequence of points 𝑥𝑐 Ñ 𝛽`

1 as 𝑐 Ñ 𝑐˚`. Since
ℎ

p0q
𝑐 p𝑧𝑐q “ 0, it holds that 𝑢𝑐p𝑧𝑐 ´ 𝛽1q´1{2 “ ´ℎ̃

p0q
𝑐 p𝑧𝑐q Ñ ´ℎ𝑐˚ p𝜷1q as 𝑐 Ñ 𝑐˚`, from which the estimate

follows. �

7.4.5. Estimates of 𝐻p0q
𝑐 p𝑧q ´ 𝐻

p1q
𝑐 p𝑧q around Δ𝑐,1. The following lemma will be used in the proof of

Lemma 7.10, but is presented here due to its connection to the conformal maps constructed above.

Lemma 7.8. Let 𝐻𝑐p𝒛q be as in (4.1) and 𝛿𝛽1 as in Lemma 7.5. There exists 𝛿𝛽1 P p0, 𝛿𝛽1q such that given
𝑐 P p0, 𝑐˚q and 𝛿 P p0, 𝛿𝛽1q, it holds that

(7.27)
´

𝐻
p0q
𝑐 ´ 𝐻

p1q
𝑐

¯

p𝑥 ` i𝑦q ď ´𝐵𝛽1𝛿
3{2𝑐, 𝑥 P r𝛽𝑐,1 ` 𝛿𝑐, 𝛼2 ´ 𝛿𝑐s, 𝑦 P r´𝛿𝑐{2, 𝛿𝑐{2s,

where 𝐵𝛽1 ą 0 is a constant independent of 𝑐 and 𝛿. Moreover, for any fixed 𝛿 ą 0 small enough there exist
𝑐𝛿 ą 0 and 𝜖 ą 0 such that

(7.28)
´

𝐻
p0q
𝑐 ´ 𝐻

p1q
𝑐

¯

p𝑥 ` i𝑦q ď ´𝜖

for all 𝑐 P p0, 𝑐𝛿q, 𝑥 P r𝛼1 ` 𝛿, 𝛼2 ´ 𝛿s, and 𝑦 P r´𝛿{2, 𝛿{2s. Finally, for any 𝑐 P p0, 1q, it holds that

(7.29)
´

𝐻
p0q
𝑐 ´ 𝐻

p1q
𝑐

¯

p𝑥 ˘ i𝛿𝑐q ě 𝐵𝛽1𝛿
5{2𝑐, 𝑥 P r𝛼1, 𝛽𝑐,1s.

Proof. Since ℎ𝑐p𝒛q “ 2B𝑧𝐻𝑐p𝒛q and 𝜷𝑐,1 is a ramification point of 𝕽𝑐 belonging to both 𝕽p0q
𝑐 and 𝕽p1q

𝑐 , it holds
that

(7.30)
´

𝐻
p0q
𝑐 ´ 𝐻

p1q
𝑐

¯

p𝑧q “ <
˜

ż 𝑧

𝛽𝑐,1

´

ℎ
p0q
𝑐 ´ ℎ

p1q
𝑐

¯

p𝑠qd𝑠

¸

, 𝛼1 ă <𝑧 ă 𝛼2.

It further follows from (4.2) that

B𝑥<
´

ℎ
p0q
𝑐 ´ ℎ

p1q
𝑐

¯

p𝑥 ` i𝑦q “

ż

𝑦2 ´ p𝑡 ´ 𝑥q2

pp𝑡 ´ 𝑥q2 ` 𝑦2q2 dp2𝜔𝑐,1 ` 𝜔𝑐,2qp𝑡q ă 0

when |𝑦| ă 𝛿𝑐 ď distp𝑥,Δ𝑐,1 Y Δ𝑐,2q. Therefore, it holds that
´

𝐻
p0q
𝑐 ´ 𝐻

p1q
𝑐

¯

p𝑥 ` i𝑦q ď

´

𝐻
p0q
𝑐 ´ 𝐻

p1q
𝑐

¯

p𝛽𝑐,1 ` 𝛿𝑐 ` i𝑦q

for all 𝑥 P r𝛽𝑐,1 ` 𝛿𝑐, 𝛼2 ´ 𝛿𝑐s and 𝑦 P r´𝛿𝑐{2, 𝛿𝑐{2s. Now, by combining (7.18) and (7.30) we get that

(7.31)
´

𝐻
p0q
𝑐 ´ 𝐻

p1q
𝑐

¯

p𝑧q “ ´
4
3
<

´

𝜁
3{2
𝛽𝑐,1

p𝑧q

¯

, 𝛼1 ă <𝑧 ă 𝛼2,

for all 𝑐 P p0, 𝑐˚s. Take 𝛿𝛽1 ď sinp𝜋{6q𝛿𝛽1 . Since each map 𝜁𝛽𝑐,1p𝑧q is conformal in |𝑧 ´ 𝛽𝑐,1| ă 𝛿𝛽1𝑐 and
𝛿 ă sinp𝜋{6q𝛿𝛽1 , every point 𝛽𝑐,1 ` 𝛿𝑐 ` i𝑦 lies within a disk of conformality of 𝜁𝛽𝑐,1p𝑧q when |𝑦| ă 𝛿𝑐{2.
Since Argp𝛿𝑐` i𝑦q P r´𝜋{6, 𝜋{6s when |𝑦| ă 𝛿𝑐{2 and 𝜁𝛽𝑐,1p𝑥q is positive for 𝑥 ą 𝛽𝑐,1, is negative for 𝑥 ă 𝛽𝑐,1
and has a positive derivative at 𝛽𝑐,1, there exists 𝛿𝑐 ą 0 such that

<
´

𝜁
3{2
𝛽𝑐,1

p𝛽𝑐,1 ` 𝛿𝑐 ` i𝑦q

¯

ě
1
2

ˇ

ˇ

ˇ
𝜁

3{2
𝛽𝑐,1

p𝛽𝑐,1 ` 𝛿𝑐 ` i𝑦q

ˇ

ˇ

ˇ

for all |𝑦| ă 𝛿𝑐{2 and 𝛿 ă 𝛿𝑐 . Since the maps 𝜁𝛽𝑐,1p𝑧q continuously depend on 𝑐 and have a rescaled conformal
limit as 𝑐 Ñ 0, see (7.21), the constants 𝛿𝑐 can be chosen so that 𝛿𝑐 ě 𝛿𝛽1 ą 0 for all 𝑐 P p0, 𝑐˚q and some
𝛿𝛽1 ą 0. Thus,

´

𝐻
p0q
𝑐 ´ 𝐻

p1q
𝑐

¯

p𝑥 ` i𝑦q ď ´
2
3

ˇ

ˇ

ˇ
𝜁

3{2
𝛽𝑐,1

p𝛽𝑐,1 ` 𝛿𝑐 ` i𝑦q

ˇ

ˇ

ˇ
ď ´𝐵𝛽1𝛿

3{2𝑐
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for 𝑥 P r𝛽𝑐,1 ` 𝛿𝑐, 𝛼2 ´ 𝛿𝑐s, 𝑦 P r´𝛿𝑐{2, 𝛿𝑐{2s, and a constant 𝐵𝛽1 ą 0 independent of 𝑐 by Lemma 7.5 and
(5.1), which finishes the proof of (7.27).

Estimate (7.28) follows in straightforward fashion from the observation that the left-hand side of (7.28)
converges to 𝑉𝜔2p𝛼1q ´ 𝑉𝜔2p𝑥 ` i𝑦q as 𝑐 Ñ 0 uniformly on the considered set by Proposition 4.1 and (4.1),
where 𝜔2 is the arcsine distribution on Δ2.

To prove (7.29), observe that for each 𝑥 P Δ𝑐,1 fixed, the functions
`

𝐻
p0q
𝑐 ´ 𝐻

p1q
𝑐

˘

p𝑥 ˘ i𝑦q are increasing
for 𝑦 P r0,8q and vanish at 𝑦 “ 0 by (4.1) and (2.3). Moreover, since these functions have the same value at
conjugate-symmetric points, it is enough to consider only the upper half-plane. As the right-hand side of (7.29) is
positive whenever 𝑐, 𝛿 ą 0, we can assume without loss of generality that 𝛿 ă mint𝛿𝛼1 , 𝛿𝛽1 ,min𝑐Pr𝑐1 ,1q 𝛿𝛽1p𝑐qu,
where 𝛿𝛼1 , 𝛿𝛽1 , 𝑐1, and 𝛿𝛽1p𝑐q were introduced in Lemmas 7.4, 7.5, 7.6, and 7.7, respectively.

Suppose that |𝑥 ` i𝛿𝑐 ´ 𝛼1| ă 𝛿𝛼1𝑐. Then it follows from Lemma 7.4 together with (5.1) that

(7.32)
ˇ

ˇ

ˇ
𝜁

1{2
𝑐,𝛼1p𝑥 ` i𝛿𝑐q

ˇ

ˇ

ˇ
ě p𝐴𝛼1{4q1{2𝛿1{2𝑐.

It clearly holds that Argp𝑥` i𝛿𝑐q P
“

arctanp𝛿{𝛿𝛼1q, 𝜋{2
‰

. Since 𝜁𝑐,𝛼1p𝑧q is conformal, negative for 𝑧 ą 𝛼1, and
positive for 𝑧 ă 𝛼1, there exists 𝛿𝑐 ą 0 such that

(7.33) Arg
´

𝜁
1{2
𝑐,𝛼1p𝑥 ` i𝛿𝑐q

¯

P
`

0, p𝜋 ´ arctanp𝛿{𝛿𝛼1qq{2
‰

for all 𝛿 P p0, 𝛿𝑐q. Since the maps 𝜁𝑐,𝛼1p𝑧q continuously depend on 𝑐 and have a rescaled conformal limit
as 𝑐 Ñ 0, see (7.16), and a conformal limit as 𝑐 Ñ 1, see (7.17), the constants 𝛿𝑐 can be chosen so that
𝛿𝑐 ě 𝛿˚ ą 0 for all 𝑐 P p0, 1q. However, as mentioned before, without loss of generality we can consider only
𝛿 P p0, 𝛿˚q. Furthermore, similarly to (7.31), it holds that

´

𝐻
p0q
𝑐 ´ 𝐻

p1q
𝑐

¯

p𝑧q “ 4<
´

𝜁
1{2
𝑐,𝛼1p𝑧q

¯

, <𝑧 ă 𝛽𝑐,1,

by (7.8). Thus, combining the above expression with (7.32) and (7.33) gives us

(7.34)
´

𝐻
p0q
𝑐 ´ 𝐻

p1q
𝑐

¯

p𝑥 ` i𝛿𝑐q ě sinparctanp𝛿{𝛿𝛼1q{2q

ˇ

ˇ

ˇ
𝜁

1{2
𝑐,𝛼1p𝑥 ` i𝛿𝑐q

ˇ

ˇ

ˇ
ě 𝐵1𝛿3{2𝑐

for some 𝐵1 ą 0, independent of 𝑐 and 𝛿.
Now, we shall examine what happens when 𝑥 lies in the vicinity of 𝛽𝑐,1. Unfortunately, there are three different

constructions of the conformal maps in this case. Thus, we first assume that 𝑐 P p0, 𝑐˚s and |𝑥`i𝛿´𝛽𝑐,1| ă 𝛿𝛽1𝑐,
see Lemma 7.5. Then it follows from Lemma 7.5 and (5.1) that

ˇ

ˇ

ˇ
𝜁

3{2
𝛽𝑐,1

p𝑥 ` i𝛿𝑐q
ˇ

ˇ

ˇ
ě p𝐴𝛽1{4q3{2𝛿3{2𝑐.

In the considered case Argp𝑥` i𝛿𝑐q P
“

𝜋{2, 𝜋´arctanp𝛿{𝛿𝛽1q
‰

. Since the conformal maps 𝜁3{2
𝛽𝑐,1

p𝑧q continuously
depend on 𝑐, have a rescaled limit when 𝑐 Ñ 0, see (7.21), are positive for 𝑧 ą 𝛽𝑐,1 and negative for 𝑥 ă 𝛽𝑐,1,
(7.33) gets now replaced by

(7.35) Arg
´

𝜁
3{2
𝛽𝑐,1

p𝑥 ` i𝛿𝑐q
¯

P
`

5𝜋{8, p3𝜋 ´ arctanp𝛿{𝛿𝛼1qq{2
‰

for all 𝛿 P p0, 𝛿˚q and a possibly adjusted constant 𝛿˚ ą 0. Thus, combining the above observations with (7.31)
gives us that

(7.36)
´

𝐻
p0q
𝑐 ´ 𝐻

p1q
𝑐

¯

p𝑥 ` i𝛿𝑐q ě p4{3q sinparctanp𝛿{𝛿𝛽1q{2q

ˇ

ˇ

ˇ
𝜁

3{2
𝛽𝑐,1

p𝑥 ` i𝛿𝑐q
ˇ

ˇ

ˇ
ě 𝐵2𝛿5{2𝑐

for some 𝐵2 ą 0, independent of 𝛿 and 𝑐. Let now 𝑐1 be the same as in Lemma 7.6 and |𝑥 ` i𝛿 ´ 𝛽1| ă 𝛿𝛽1𝑐

for any 𝑐 P p𝑐˚, 𝑐1s, again, see Lemma 7.6. Then it follows from (7.23) that
´

𝐻
p0q
𝑐 ´ 𝐻

p1q
𝑐

¯

p𝑧q “ ´
4
3
<

´

𝜁
3{2
𝑐,𝛽1

p𝑧q ´ 𝜁𝑐,𝛽1p𝛽1 ` 𝜖𝑐q𝜁
1{2
𝑐,𝛽1

p𝑧q

¯

.

Since 𝜁𝑐,𝛽1p𝑥q is positive for 𝑥 ą 𝛽1 and negative for 𝑥 ă 𝛽1, it holds that

´
4
3
<

´

𝜁
3{2
𝑐,𝛽1

p𝑧q ´ 𝜁𝑐,𝛽1p𝛽1 ` 𝜖𝑐q𝜁
1{2
𝑐,𝛽1

p𝑧q

¯

ą ´
4
3
<

´

𝜁
3{2
𝑐,𝛽1

p𝑧q

¯

for 𝑧 with Argp𝑧q P p0, 𝜋q. Since the maps 𝜁𝑐,𝛽1p𝑧q continuously depend on 𝑐 P r𝑐˚, 𝑐1s, where we set
𝜁𝑐˚ ,𝛽1p𝑧q :“ 𝜁𝑐˚ ,𝛽1p𝑧q, see Lemma 7.6, the constant 𝛿˚ can be adjusted so that (7.35) remains valid with
𝜁𝑐,𝛽1p𝑧q replaced by 𝜁𝑐,𝛽1p𝑧q for |𝛿| ă 𝛿˚ and 𝑐 P r𝑐˚, 𝑐1s. Hence, we can proceed exactly as in the case
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𝑐 P p0, 𝑐˚s, perhaps, at the expense of possibly adjusting the constant 𝐵2 in (7.36). Further, when 𝑐 P r𝑐1, 1q, it
follows from (7.26) that

´

𝐻
p0q
𝑐 ´ 𝐻

p1q
𝑐

¯

p𝑧q “ 4<
´

𝜁
1{2
𝑐,𝛽1

p𝑧q

¯

, 𝛼1 ă <𝑧 ă 𝛼2.

It also follows from Proposition 4.2 and Lemma 7.7 that |𝜁 1
𝑐,𝛽1

p𝛽1q| is bounded away from 0 independently of
𝑐 P r𝑐1, 1q (the bound does depend on 𝑐1). Notice also that in this case (7.33) remains valid with 𝛿𝛼1 replaced
by min𝑐Pr𝑐1 ,1q 𝛿𝛽1p𝑐q. Therefore, (7.34) remains valid as well, where we need to replace 𝜁𝑐,𝛼1p𝑧q by 𝜁𝑐,𝛽1p𝑧q

and, perhaps, adjust 𝐵1.
It only remains to examine what happens when 𝛼1 ` 𝛿1𝑐 ď 𝑥 ď 𝛽𝑐,1 ´ 𝛿1𝑐 for some 𝛿1 ą 0. To this end, let

us denote by ℎ̃𝑐p𝑥q the following function:

ℎ̃𝑐p𝑥q :“ 2i=
`

ℎ
p0q

𝑐`p𝑥q
˘

“ ℎ
p0q

𝑐`p𝑥q ´ ℎ
p0q

𝑐´p𝑥q “ ℎ
p0q

𝑐`p𝑥q ´ ℎ
p1q

𝑐`p𝑥q

“ 2i=
`

ℎ
p1q

𝑐´p𝑥q
˘

“ ´2i=
`

ℎ
p1q

𝑐`p𝑥q
˘

“ ´2i=
`

ℎ
p0q

𝑐´p𝑥q
˘

, 𝑥 P Δ˝
𝑐,1.

Let us show that ℎ̃𝑐p𝑥q ‰ 0 for 𝑥 P Δ˝
𝑐,1. Indeed, if ℎ̃𝑐p𝑥1q “ 0 for some 𝑥1 P Δ˝

𝑐,1, then ℎp0q

𝑐`p𝑥1q “ ℎ
p0q

𝑐´p𝑥1q “

ℎ
p1q

𝑐`p𝑥1q “ ℎ
p1q

𝑐´p𝑥1q and this value is real. That is, there exist 𝒙1, 𝒙2 P 𝚫𝑐,1 (𝜋p𝒙1q “ 𝜋p𝒙2q “ 𝑥1) at which
ℎ𝑐p𝒛q assumes the same non-zero real value. On the other hand, when 𝑐 P p𝑐˚, 𝑐˚˚q, ℎ𝑐p𝒛q has simple poles
at 𝜶1, 𝜷1,𝜶2, 𝜷2. Therefore, it can be clearly seen from (4.2) that ℎp0q

𝑐 p𝑥q assumes every non-zero real value
twice, once on p´8, 𝛼1qYp𝛽2,8q and once on p𝛽1, 𝛼2q. Furthermore, (4.2) also shows that ℎp1q

𝑐 p𝑥q and ℎp2q
𝑐 p𝑥q

assume every non-zero real value once on p´8, 𝛼1q Y p𝛽1,8q and p´8, 𝛼2q Y p𝛽2,8q, respectively. As ℎ𝑐p𝒛q
has four zeros/poles, it assumes every value exactly four times. Thus, if ℎ̃𝑐p𝑥1q were zero, ℎ𝑐p𝒛q would assume
a given real value six times, which is impossible. Since the proof for the case 𝑐 P p0, 𝑐˚s Y r𝑐˚˚, 1q is quite
similar, the claim follows.

For the next step, we would like to argue that

ℎ̃min :“ inf
𝑐Pp0,1q

min
𝛼1`𝛿1𝑐ď𝑥ď𝛽𝑐,1´𝛿1𝑐

|ℎ̃𝑐p𝑥q| ą 0.

For that, it will be convenient to consider the rescaled function ˆ̃ℎ𝑐p𝑠q :“ ℎ̃𝑐p𝛽𝑐,1 ` |Δ𝑐,1|p𝑠 ´ 1q{2q. These
functions are purely-imaginary and non-vanishing on p´1, 1q. It follows from (4.8) that there exists 𝛿2 ą 0
such that

ℎ̃min ě inf
𝑐Pp0,1q

min
´1`𝛿2ď𝑠ď1´𝛿2

|
ˆ̃ℎ𝑐p𝑠q|.

For each 𝑐 fixed, the minimum over 𝑠 is clearly non-zero and continuously depends on 𝑐. On the other hand,
exactly as in Lemma 7.5, it holds that

(7.37) ˆ̃ℎ𝑐p𝑠q Ñ ´
i

|𝑤2p𝛼1q|

c

1 ´ 𝑠

1 ` 𝑠

as 𝑐 Ñ 0 uniformly on r´1`𝛿2, 1´𝛿2s, which again, has a non-zero minimum of the absolute value. Moreover,
a computation similar to the one leading to (7.17) gives us that

(7.38) ˆ̃ℎ𝑐p𝑠q Ñ ´
4i

?
𝛽1 ´ 𝛼1

1
?

1 ´ 𝑠2

as 𝑐 Ñ 1 uniformly on r´1 ` 𝛿2, 1 ´ 𝛿2s, which also has a non-zero minimum of the absolute value. Hence, it
indeed holds that ℎ̃min ą 0.

Now, observe that ℎ̃𝑐p𝑥q is a trace of a function analytic across Δ˝
𝑐,1, namely, of

ℎ̃𝑐p𝑧q :“

#

ℎ
p0q
𝑐 p𝑧q ´ ℎ

p1q
𝑐 p𝑧q, =𝑧 ą 0,

ℎ
p1q
𝑐 p𝑧q ´ ℎ

p0q
𝑐 p𝑧q, =𝑧 ă 0.

Therefore, for each 𝑥1 P r𝛼1 ` 𝛿1𝑐, 𝛽𝑐,1 ´ 𝛿1𝑐s fixed, there exists 𝛿p𝑐; 𝑥1q ą 0 such that

(7.39)
ˇ

ˇ
r𝐻𝑐p𝑧; 𝑥1q

ˇ

ˇ ě pℎ̃min{4q|𝑧 ´ 𝑥1|, r𝐻𝑐p𝑧; 𝑥1q :“
ż 𝑧

𝑥1

ℎ̃𝑐p𝑠qd𝑠,

for all |𝑧 ´ 𝑥1| ă 𝛿p𝑐; 𝑥1q𝑐 by (5.1). Notice that 𝛿p𝑥1q𝑐 can be taken to be the radius of the largest disk of
conformality of r𝐻𝑐p𝑧; 𝑥1q. Observe also that 𝛿p𝑐; 𝑥1q continuously depends on 𝑥1 and therefore there exists
𝛿p𝑐q ą 0 such that 𝛿p𝑐; 𝑥1q ě 𝛿p𝑐q for all 𝑥1 P r𝛼1 ` 𝛿1𝑐, 𝛽𝑐,1 ´ 𝛿1𝑐s. Since 𝛿p𝑐q can be made to continuously
depend on 𝑐 and the limits (7.37) and (7.38) hold not only on p´1, 1q, but in some neighborhood of p´1, 1q as
well, the constant 𝛿˚ can be adjusted so that 𝛿p𝑐q ą 𝛿˚ for all 𝑐 P p0, 1q.
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Since the functions r𝐻𝑐p𝑧; 𝑥1q are conformal in |𝑧 ´ 𝑥1| ă 𝛿˚𝑐 for each 𝑥1 P r𝛼1 ` 𝛿1𝑐, 𝛽𝑐,1 ´ 𝛿1𝑐s and are
purely imaginary on the real axis, the same continuity and compactness arguments we have been employing
throughout the lemma imply that

(7.40) <
´

r𝐻𝑐p𝑥1 ` i𝑦; 𝑥1q

¯

ě 𝐶
ˇ

ˇ
r𝐻𝑐p𝑥1 ` i𝑦; 𝑥1q

ˇ

ˇ

for all 𝑦 P p0, 𝛿˚𝑐q and 𝑥1 P r𝛼1 ` 𝛿1𝑐, 𝛽𝑐,1 ´ 𝛿1𝑐s, where 𝐶 ą 0 is constant independent of 𝑐. Since
ℎ𝑐p𝒛q “ 2B𝑧𝐻𝑐p𝒛q, it follows from (7.39) and (7.40) that

(7.41)
´

𝐻
p0q
𝑐 ´ 𝐻

p1q
𝑐

¯

p𝑥 ` i𝛿𝑐q “ <
´

r𝐻𝑐p𝑥 ` i𝛿𝑐; 𝑥q

¯

ě p𝐶ℎ̃min{4q𝛿𝑐.

The estimate in (7.29) now follows from (7.34), (7.36), and (7.41). �

7.5. Local Parametrices. Below, we construct solutions of RHP-𝑷𝑒 for 𝑒 P t𝛼1, 𝛽®𝑛,1u, ®𝑛 P N𝑐‹
. Recall that

the squares 𝑈𝑒 have diagonals of length 2𝛿𝑐, where 𝛿 ď 𝛿p𝑐‹q see Section 7.2. Additionally, we assume
that 𝛿 ď mint𝛿𝛼1 , 𝛿𝛽1u or 𝛿 ď mint𝛿𝛼1 , 𝛿𝛽1p𝑐‹qu, depending on 𝑐‹, see Lemmas 7.4–7.7. Then the maps
constructed in Section 7.4 are conformal in the corresponding squares𝑈𝑒.

7.5.1. Matrix 𝑷𝛼1p𝑧q. Let 𝚿p𝜁q be a matrix-valued function such that
(a) 𝚿p𝜁q is holomorphic in Cz

`

𝐼` Y 𝐼´ Y p´8, 0s
˘

, see (7.2);
(b) 𝚿p𝜁q has continuous traces on 𝐼` Y 𝐼´ Y p´8, 0q that satisfy

𝚿`p𝜁q “ 𝚿´p𝜁q

$

’

’

&

’

’

%

ˆ

0 1
´1 0

˙

, 𝜁 P p´8, 0q,

ˆ

1 0
1 1

˙

, 𝜁 P 𝐼˘,

where 𝐼˘ are oriented towards the origin;
(c) 𝚿p𝜁q “ Oplog |𝜁 |q as 𝜁 Ñ 0;
(d) 𝚿p𝜁q has the following behavior near 8:

𝚿p𝜁q “
𝜁´𝜎3{4

?
2

ˆ

1 i
i 1

˙

´

𝑰 ` O
´

𝜁´1{2
¯¯

exp
!

2𝜁1{2𝜎3

)

uniformly in Cz
`

𝐼` Y 𝐼´ Y p´8, 0s
˘

.
Solution of RHP-𝚿 was constructed explicitly in [35] with the help of modified Bessel and Hankel functions.
Observe that the jump matrices in RHP-𝚿(b) have determinant one. Therefore, it follows from RHP-𝚿(d) that
detp𝚿p𝜁qq ”

?
2.

Let 𝜁®𝑛,𝛼1p𝑧q :“ 𝜁𝑐 ®𝑛 ,𝛼1p𝑧q, see (7.8), which is conformal in𝑈𝛼1 . It holds due to Lemma 7.4 and (5.1) that

(7.42)
 

|𝑧| ă 𝐴𝛼1𝛿𝑛
2
1
(

Ă |®𝑛|2𝜁®𝑛,𝛼1p𝑈𝛼1q,

where 𝐴𝛼1 is independent of 𝛿 and 𝑐 ®𝑛 “ 𝑛1{|®𝑛|. It also follows from (4.3) and (7.8) that

(7.43) 𝜁®𝑛,𝛼1p𝑧q “

ˆ

1
4|®𝑛|

log
´

Φ
p0q

®𝑛 p𝑧q{Φ
p1q

®𝑛 p𝑧q

¯

˙2
, 𝑧 P 𝑈𝛼1 .

Let 𝑫p𝑧q be given by (7.6). Note also that the matrix𝜎3𝚿p𝜁q𝜎3 also satisfies RHP-𝚿, but with the orientation
of all the rays in RHP-𝚿(b) reversed and i replaced by ´i in the asymptotic formula of RHP-𝚿(d). Relation
(7.43) and RHP-𝚿(a,b,c) imply that the matrix

(7.44) 𝑷𝛼1p𝑧q :“ 𝑬𝛼1p𝑧qT1

ˆ

`

𝜎3𝚿𝜎3
˘ `

|®𝑛|2𝜁®𝑛,𝛼1p𝑧q
˘

𝜌
´𝜎3{2
1 p𝑧q

´

Φ
p0q

®𝑛 {Φ
p1q

®𝑛

¯´𝜎3{2
p𝑧q

˙

𝑫p𝑧q,

satisfies RHP-𝑷𝛼1 (a,b,c) for any holomorphic prefactor 𝑬𝛼1p𝑧q. As 𝜁1{4
` “ i𝜁1{4

´ on p´8, 0q, where we take
the principal branch, it can be easily checked that

𝜁
´𝜎3{4
`
?

2

ˆ

1 ´i
´i 1

˙

“
𝜁

´𝜎3{4
´
?

2

ˆ

1 ´i
´i 1

˙ˆ

0 ´1
1 0

˙

there. Then RHP-𝑵(b) implies that

(7.45) 𝑬𝛼1p𝑧q :“ 𝑴p𝑧qT1

˜

p|®𝑛|2𝜁®𝑛,𝛼1p𝑧q
˘´𝜎3{4

?
2

ˆ

1 ´i
´i 1

˙

𝜌
´𝜎3{2
1 p𝑧q

¸´1
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is holomorphic in𝑈𝛼1zt𝛼1u. Since the first and second columns of 𝑴p𝑧q have at most quarter root singularities
at 𝛼1 and the third one is bounded, see Lemma 7.3, 𝑬𝛼1p𝑧q is in fact holomorphic in 𝑈𝛼1 as desired. Finally,
RHP-𝑷𝛼1 (d) follows from RHP-𝚿(d) and (7.42).

Recall that detp𝑴p𝑧qq ” detp𝑫p𝑧qq ” 1 as explained between (7.5) and (7.6). Hence, it holds that
detp𝑬𝛼1p𝑧qq ” 1{

?
2 and respectively detp𝑷𝛼1p𝑧qq ” 1.

7.5.2. Matrix 𝑷𝛽 ®𝑛,1p𝑧q when 𝑐‹ ď 𝑐˚ and 𝑐 ®𝑛 ď 𝑐˚. Below, given N𝑐‹
, with 𝑐‹ ď 𝑐˚, we solve RHP-𝑷𝛽 ®𝑛,1

along the subsequence Nď
𝑐‹

:“
 

®𝑛 P N𝑐‹
: 𝑐 ®𝑛 ď 𝑐˚

(

, when such a subsequence is infinite. Clearly, Nď
𝑐‹

only
omits finitely many terms from N𝑐‹

when 𝑐‹ ă 𝑐˚.
Given 𝜎 P Czp´8, 0q and 𝑠 P p´8,8q, let 𝚽𝜎p𝜁 ; 𝑠q be a matrix-valued function such that
(a) 𝚽𝜎p𝜁 ; 𝑠q is holomorphic in Cz

`

𝐼` Y 𝐼´ Y p´8,8q
˘

;
(b) 𝚽𝜎p𝜁 ; 𝑠q has continuous traces on 𝐼` Y 𝐼´ Y p´8, 0q Y p0,8q that satisfy

𝚽𝜎`p𝜁 ; 𝑠q “ 𝚽𝜎´p𝜁 ; 𝑠q

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ˆ

0 1
´1 0

˙

, 𝜁 P p´8, 0q,

ˆ

1 0
1 1

˙

, 𝜁 P 𝐼˘,

ˆ

1 𝜎

0 1

˙

, 𝜁 P p0,8q;

(c) 𝚽1p𝜁 ; 𝑠q “ Op1q and 𝚽𝜎p𝜁 ; 𝑠q “ Oplog |𝜁 |q when 𝜎 ‰ 1 as 𝜁 Ñ 0;
(d) 𝚽p𝜁 ; 𝑠q has the following behavior near 8:

𝚽𝜎p𝜁 ; 𝑠q “
𝜁´𝜎3{4

?
2

ˆ

1 i
i 1

˙

´

𝑰 ` O
´

𝜁´1{2
¯¯

exp
"

´
2
3

p𝜁 ` 𝑠q3{2𝜎3

*

uniformly in Cz
`

𝐼` Y 𝐼´ Y p´8,8q
˘

.
As in the previous subsection, notice that detp𝚽𝜎p𝜁 ; 𝑠qq ”

?
2.

Besides RHP-𝚽𝜎 , we shall also need RHP-r𝚽 obtained from RHP-𝚽0 by replacing RHP-𝚽0(d) with
(d) r𝚽p𝜁 ; 𝑠q has the following behavior near 8:

r𝚽p𝜁 ; 𝑠q “
𝜁´𝜎3{4

?
2

ˆ

1 i
i 1

˙

´

𝑰 ` O
´

𝜁´1{2
¯¯

exp
"

´
2
3

´

𝜁3{2 ` 𝑠𝜁1{2
¯

𝜎3

*

.

When 𝜎 “ 1 and 𝑠 “ 0, the Riemann-Hilbert problem RHP-𝚽1 is well known [16] and is solved using Airy
functions. In fact, in this case RHP-𝚽1(d) can be improved to

(7.46) 𝚽1p𝜁 ; 0q “
𝜁´𝜎3{4

?
2

ˆ

1 i
i 1

˙

´

𝑰 ` O
´

𝜁´3{2
¯¯

exp
"

´
2
3
𝜁3{2𝜎3

*

uniformly in Cz
`

𝐼` Y 𝐼´ Y p´8,8q
˘

. More generally, when 𝜎 “ 1, the solvability of these two problems for
all 𝑠 P p´8,8q was shown in [27] with further properties investigated in [28]. The solvability of the general
case 𝜎 P Czp´8, 0q was obtained in [44]. In [45, Theorem 4.1] it was shown that RHP-𝚽𝜎(d) can be replaced
by

(7.47) 𝚽𝜎p𝜁 ; 𝑠q “
𝜁´𝜎3{4

?
2

ˆ

1 i
i 1

˙

˜

𝑰 ` O
˜

d

|𝑠| ` 1
|𝜁 | ` 1

¸¸

exp
"

´
2
3

p𝜁 ` 𝑠q3{2𝜎3

*

which holds uniformly for 𝜁 P Cz
`

𝐼` Y 𝐼´ Y p´8,8q
˘

and 𝑠 P p´8,8q when 𝜎 ‰ 0, and uniformly for
𝑠 P r0,8q when 𝜎 “ 0; and that RHP-r𝚽(d) can be replaced by

(7.48) r𝚽p𝜁 ; 𝑠q “
𝜁´𝜎3{4

?
2

ˆ

1 i
i 1

˙

˜

𝑰 ` O
˜

d

|𝑠| ` 1
|𝜁 | ` 1

¸¸

exp
"

´
2
3

´

𝜁3{2 ` 𝑠𝜁1{2
¯

𝜎3

*

uniformly for 𝜁 P Cz
`

𝐼` Y 𝐼´ Y p´8, 0s
˘

and 𝑠 P p´8, 0s.
Let 𝜁𝛽 ®𝑛,1p𝑧q :“ 𝜁𝛽𝑐 ®𝑛,1p𝑧q be the functions defined in (7.18) that are conformal in 𝑈𝛽 ®𝑛,1 , see Lemma 7.5. It

follows from (4.3) and (7.18) that

(7.49) 𝜁𝛽 ®𝑛,1p𝑧q “

ˆ

´
3

4|®𝑛|
log

´

Φ
p0q

®𝑛 {Φ
p1q

®𝑛

¯

˙2{3
, 𝑧 P 𝑈𝛽 ®𝑛,1 .
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According to Lemma 7.5 and (5.1), it holds that

(7.50)
!

|𝑧| ă 𝐴𝛽1𝛿𝑛
2{3
1

)

Ă |®𝑛|2{3𝜁𝛽 ®𝑛,1p𝑈𝛽 ®𝑛,1q,

where 𝐴𝛽1 is independent of ®𝑛 with ®𝑛 P Nď
𝑐‹

.
Assume now that 𝑐‹ ă 𝑐˚. Recall that is this case 𝛽1 P 𝑈𝛽 ®𝑛,1 for all |®𝑛| large enough. Relation (7.49) and

RHP-𝚽1(a,b,c) imply that the matrix

(7.51) 𝑷𝛽 ®𝑛,1p𝑧q :“ 𝑬𝛽 ®𝑛,1p𝑧qT1

ˆ

𝚽1

´

|®𝑛|2{3𝜁𝛽 ®𝑛,1p𝑧q; 0
¯

𝜌
´𝜎3{2
1 p𝑧q

´

Φ
p0q

®𝑛 {Φ
p1q

®𝑛

¯´𝜎3{2
p𝑧q

˙

𝑫p𝑧q,

satisfies RHP-𝑷𝛽 ®𝑛,1 (a,b,c) for any holomorphic prefactor 𝑬𝛽 ®𝑛,1p𝑧q. As in the previous subsection, RHP-𝑵(b)
implies that

(7.52) 𝑬𝛽 ®𝑛,1p𝑧q :“ 𝑴p𝑧qT1

¨

˝

p|®𝑛|2{3𝜁𝛽 ®𝑛,1p𝑧q
˘´𝜎3{4

?
2

ˆ

1 i
i 1

˙

𝜌
´𝜎3{2
1 p𝑧q

˛

‚

´1

is holomorphic in𝑈𝛽 ®𝑛,1 . Requirement RHP-𝑷𝛽 ®𝑛,1 (d) now follows from (7.46) and (7.50).
Assume now that 𝑐‹ “ 𝑐˚ and recall (7.3). Observe also that 𝛽®𝑛,1 ď 𝛽1 for ®𝑛 P Nď

𝑐˚ and therefore
𝑠®𝑛 :“ |®𝑛|2{3𝜁𝛽 ®𝑛,1p𝛽1q ě 0. Then, similarly to (7.51), we get from (7.49) and RHP-𝚽0(a,b,c) that

(7.53) 𝑷𝛽 ®𝑛,1p𝑧q :“ 𝑬𝛽 ®𝑛,1p𝑧qT1

ˆ

𝚽0

´

|®𝑛|2{3
r𝜁𝛽 ®𝑛,1p𝑧q; 𝑠®𝑛

¯

𝜌
´𝜎3{2
1 p𝑧q

´

Φ
p0q

®𝑛 {Φ
p1q

®𝑛

¯´𝜎3{2
p𝑧q

˙

𝑫p𝑧q,

satisfies RHP-𝑷𝛽 ®𝑛,1 (a,b,c), where holomorphic prefactor 𝑬𝛽 ®𝑛,1p𝑧q is again given by (7.52). Then it follows from
(7.47) and (7.49) that

`

𝑴´1𝑷𝛽 ®𝑛,1𝑫
´1˘p𝑠q “ T1

¨

˝𝜌
𝜎3{2
1 p𝑠q

1
?

2

ˆ

1 ´i
´i 1

˙

˜

1 `
𝜁𝛽 ®𝑛,1p𝛽1q

r𝜁𝛽 ®𝑛,1p𝑠q

¸𝜎3{4
1

?
2

ˆ

1 i
i 1

˙

ˆ

ˆ

´

𝑰 ` O

´
b

|®𝑛|´2{3 ` 𝜁𝛽 ®𝑛,1p𝛽1q

¯¯

𝜌
´𝜎3{2
1 p𝑠q

¯

for 𝑠 P B𝑈𝛽 ®𝑛,1 . Since 𝜁𝛽 ®𝑛,1p𝛽1q Ñ 0 as |®𝑛| Ñ 8, ®𝑛 P Nď

𝑐˚ , and r𝜁𝛽 ®𝑛,1p𝑧q is bounded below in modulus on B𝑈𝛽 ®𝑛,1 ,
RHP-𝑷𝛽 ®𝑛,1 (d) follows. As in the previous subsection, we point out that detp𝑷𝛽 ®𝑛,1p𝑧qq ” 1.

7.5.3. Matrix 𝑷𝛽 ®𝑛,1p𝑧q when 𝑐‹ “ 𝑐˚ and 𝑐 ®𝑛 ą 𝑐˚. Below, we solve RHP-𝑷𝛽 ®𝑛,1 along the subsequence
Ną

𝑐˚ :“
 

®𝑛 P N𝑐˚ : 𝑐 ®𝑛 ą 𝑐˚
(

, when such a subsequence is infinite. Let 𝜁®𝑛,𝛽1p𝑧q :“ 𝜁𝑐 ®𝑛 ,𝛽1p𝑧q be the conformal
map in𝑈𝛽1 constructed in Lemma 7.6. As before, it follows from (4.3) that

(7.54) 𝜁
3{2
®𝑛,𝛽1

p𝑧q ´ 𝜁®𝑛,𝛽1p𝛽1 ` 𝜖 ®𝑛q𝜁
1{2
®𝑛,𝛽1

p𝑧q “ ´
3

4|®𝑛|
log

´

Φ
p0q

®𝑛 {Φ
p1q

®𝑛

¯

, 𝑧 P 𝑈𝛽1 .

Let 𝑠®𝑛 :“ ´|®𝑛|2{3𝜁®𝑛,𝛽1p𝛽1 ` 𝜖 ®𝑛q. As above, it follows from (7.54) and RHP-r𝚽 that

𝑷𝛽1p𝑧q :“ 𝑬𝛽1p𝑧qT1

ˆ

r𝚽
´

|®𝑛|2{3𝜁®𝑛,𝛽1p𝑧q; 𝑠®𝑛
¯

𝜌
´𝜎3{2
1 p𝑧q

´

Φ
p0q

®𝑛 {Φ
p1q

®𝑛

¯´𝜎3{2
˙

𝑫p𝑧q,

satisfies RHP-𝑷𝛽1 , where 𝑬𝛽1p𝑧q is given by (7.52) with 𝜁𝛽 ®𝑛 ,1p𝑧q replaced by 𝜁®𝑛,𝛽1p𝑧q, and it follows from (7.48)
that RHP-𝑷𝛽1 (d) is satisfied with

𝑜p1q “ O
´

max
!

𝜁
1{2
®𝑛,𝛽1

p𝛽1 ` 𝜖 ®𝑛q, |®𝑛|´1{3
)¯

.

Again, we stress that detp𝑷𝛽1p𝑧qq ” 1.

7.5.4. Matrix 𝑷𝛽1p𝑧q when 𝑐‹ ą 𝑐˚. The construction of 𝑷𝛽1p𝑧q in the considered case is absolutely identical
to the one of 𝑷𝛼1p𝑧q in Section 7.5.1.

Clearly, we can assume that ®𝑛 P N𝑐‹
is such that 𝑐 ®𝑛 ą 𝑐˚. Let 𝜁®𝑛,𝛽1p𝑧q :“ 𝜁𝑐 ®𝑛 ,𝛽1p𝑧q be the conformal map

defined in (7.26), whose properties were described in Lemma 7.7. It follows from (4.3) and (7.26) that

𝜁®𝑛,𝛽1p𝑧q “

ˆ

1
4|®𝑛|

log
´

Φ
p0q

®𝑛 {Φ
p1q

®𝑛

¯

˙2
, 𝑧 P 𝑈𝛽1 .

According to Lemma 7.7 and (5.1) theorem and since 𝑛2
1 ď |®𝑛|2, it holds that

 

|𝑧| ă 𝐴𝛽1𝛿p𝑧𝑐‹
´ 𝛽1q𝑛2

1
(

Ă |®𝑛|2𝜁®𝑛,𝛽1p𝑈𝛽1q,
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where 𝛿𝛽1p𝑐q is continuous and non-vanishing on p𝑐˚, 1s. Similarly to (7.44), a solution of RHP-𝑷𝛽1 is given
by

𝑷𝛽1p𝑧q :“ 𝑬𝛽1p𝑧qT1

ˆ

𝚿
`

|®𝑛|2𝜁®𝑛,𝛽1p𝑧q
˘

𝜌
´𝜎3{2
1 p𝑧q

´

Φ
p0q

®𝑛 {Φ
p1q

®𝑛

¯´𝜎3{2
p𝑧q

˙

𝑫p𝑧q,

where

𝑬𝛽1p𝑧q :“ 𝑴p𝑧qT1

˜

p|®𝑛|2𝜁®𝑛,𝛽1p𝑧q
˘´𝜎3{4

?
2

ˆ

1 i
i 1

˙

𝜌
´𝜎3{2
1 p𝑧q

¸´1

.

It again holds that detp𝑷𝛽1p𝑧qq ” 1.

7.6. Solution of RHP-𝑿. Set𝑈®𝑛 :“ 𝑈𝛼1 Y𝑈𝛽 ®𝑛,1 Y𝑈𝛼®𝑛,2 Y𝑈𝛽2 and Γ®𝑛 :“ Γ
`

®𝑛,1 Y Γ
´

®𝑛,1 Y Γ
`

®𝑛,2 Y Γ
´

®𝑛,2. Put

Σ®𝑛, 𝛿 :“ B𝑈®𝑛 Y

´

`

Γ®𝑛 Y r𝛽®𝑛,1, 𝛽1s Y r𝛼2, 𝛼®𝑛,2s
˘

z𝑈 ®𝑛

¯

,

see Figure 4. For definiteness, we agree that all the segments in Σ®𝑛, 𝛿 are oriented from left to right and all

B𝑈𝛽2B𝑈𝛼2B𝑈𝛼1 B𝑈𝛽 ®𝑛,1
Γ

`

®𝑛,1z𝑈 ®𝑛

Γ
´

®𝑛,1z𝑈 ®𝑛

Γ
`

2 z𝑈 ®𝑛

Γ
´

2 z𝑈 ®𝑛

Figure 4. Lens Σ®𝑛, 𝛿 consisting of two connected components Σ®𝑛, 𝛿,1 (the left one) and Σ®𝑛, 𝛿,2 (the
right one).

the polygons are oriented counter-clockwise. We shall further denote by Σ®𝑛, 𝛿,1 and Σ®𝑛, 𝛿,2 the left and right,
respectively, connected components of Σ®𝑛, 𝛿 .

For what is to come, we shall need uniform boundedness of the Cauchy operators on Σ®𝑛, 𝛿 . For convenience,
we formulate this claim as a lemma.

Lemma 7.9. Given 𝑟 ą 1, there exists a constant 𝐶𝑟 ą 0 such that for all 𝛿 ą 0 it holds that
}C˘ 𝑓 }𝐿𝑟 pΣ ®𝑛,𝛿q ď 𝐶𝑟 } 𝑓 }𝐿𝑟 pΣ ®𝑛,𝛿q,

where C 𝑓 p𝑧q “ 1
2𝜋i

ş

Σ ®𝑛,𝛿

𝑓 p𝑡qd𝑡
𝑡´𝑧

and C˘ 𝑓 p𝑠q are the traces of C 𝑓 p𝑧q on the left (´) and right (`) hand-sides of
Σ®𝑛, 𝛿 .

Proof. Recall the following known fact, see [15, Equation (7.11)], if 𝑅1, 𝑅2 are two semi-infinite rays with a
common endpoint, then
(7.55) }C𝑅1 𝑓 }𝐿𝑟 p𝑅2q ď 𝐶𝑟 } 𝑓 }𝐿𝑟 p𝑅1q,

for some constant𝐶𝑟 ą 0 (we can take𝐶2 “ 1), where C𝑅1 is the Cauchy operator defined on 𝑅1. Moreover, the
same estimate holds when 𝑅2 “ 𝑅1 and C𝑅1 is replaced by the trace operators C𝑅1˘, see [15, Equations (7.5)–
(7.7)]. Trivially, the same estimate holds when 𝑅2 is replaced by an interval disjoint from 𝑅1 (may be for an
adjusted constant 𝐶𝑟 ). Since we can embed any two segments with a common endpoint into semi-infinite rays
with a common endpoint and embed a function from 𝐿𝑟 space of a segment into 𝐿𝑟 space of the corresponding ray
by extending it by zero, the desired estimate then follows from (7.55) (again, with an adjusted constant 𝐶𝑟 ). �

Given the global parametrix 𝑵p𝑧q “ 𝑪p𝑴𝑫qp𝑧q solving RHP-𝑵, see (7.5) and (7.6), and local parametrices
𝑷𝑒p𝑧q solving RHP-𝑷𝑒 and constructed in the previous section, consider the following Riemann-Hilbert Problem
(RHP-𝒁):

(a) 𝒁p𝑧q is a holomorphic matrix function in CzΣ®𝑛, 𝛿 and 𝒁p8q “ 𝑰;
(b) 𝒁p𝑧q has continuous traces on Σ˝

®𝑛, 𝛿 that satisfy

𝒁`p𝑠q “ 𝒁´p𝑠q

$

’

’

’

’

’

&

’

’

’

’

’

%

p𝑴𝑫qp𝑠qT𝑖
ˆ

1 0
1{𝜌𝑖p𝑠q 1

˙

p𝑴𝑫q´1p𝑠q, 𝑠 P Γ®𝑛z𝑈 ®𝑛,

p𝑴𝑫qp𝑠qT𝑖
ˆ

1 𝜌𝑖p𝑠q

0 1

˙

p𝑴𝑫q´1p𝑠q, 𝑠 P Δ𝑖zpΔ®𝑛,𝑖 Y𝑈 ®𝑛q,

𝑷𝑒p𝑠qp𝑴𝑫q´1p𝑠q, 𝑠 P B𝑈𝑒, 𝑒 P t𝛼1, 𝛽®𝑛,1, 𝛼®𝑛,2, 𝛽2u;
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(c) around the points of Σ®𝑛, 𝛿z
`

Σ˝

®𝑛, 𝛿 Y t𝛽1, 𝛼2u
˘

the function 𝒁p𝑧q is bounded and around 𝛽1 (resp. 𝛼2) its
entries are bounded except for those in the second (resp. third) column that behave like Oplog |𝑧´ 𝛽1|q

(resp. Oplog |𝑧 ´ 𝛼2|q).
To show existence and prove size estimates of the matrix function 𝒁p𝑧q, let us first estimate the size of its

jump:

(7.56) 𝑽p𝑠q :“ 𝒁´1
´ p𝑠q𝒁`p𝑠q ´ 𝑰, 𝑠 P Σ®𝑛, 𝛿 .

More precisely, the following lemma holds.

Lemma 7.10. Let 𝑽p𝑠q be given by (7.56) and RHP-𝒁(b). Then it holds that

(7.57) }𝑽}𝐿8pΣ ®𝑛,𝛿q À
𝜀 ®𝑛
𝛿4

"

1, 𝑐‹ P r0, 𝑐˚q Y p𝑐˚˚, 1s,

mint𝑧𝑐‹
´ 𝛽1, 𝛼2 ´ 𝑧𝑐‹

u´1{2, 𝑐‹ P p𝑐˚, 𝑐˚˚q,

with the constant in À being independent of 𝛿 and ®𝑛. Moreover, it also holds that }𝑽}𝐿8pΣ ®𝑛,𝛿q “ 𝑜p1q when
𝑐‹ P t𝑐˚, 𝑐˚˚u.

Proof. We shall prove (7.57) separately for different parts of Σ®𝑛, 𝛿 . In fact, we shall do it only on Σ®𝑛, 𝛿,1
understanding that the estimates on Σ®𝑛, 𝛿,2 can be carried out in the same fashion. For 𝑠 P B𝑈𝑒, 𝑒 P t𝛼1, 𝛽®𝑛,1u,
it holds that 𝑽p𝑠q “ 𝑷𝑒p𝑠qp𝑴𝑫q´1p𝑠q ´ 𝑰. Therefore, the desired estimate (7.57) follows from Lemma 7.3 and
RHP-𝑷𝑒(d). Let now 𝑠 “ 𝑥 P Δ1zpΔ®𝑛,1 Y𝑈 ®𝑛q, which is non-empty when 𝑐‹ ă 𝑐˚. In this case, it holds that

𝑽p𝑥q “ p𝑴𝑫qp𝑥qT1

ˆ

1 𝜌1p𝑥q

0 1

˙

p𝑴𝑫q´1p𝑥q ´ 𝑰 “ 𝜌1p𝑥q
Φ

p0q

®𝑛 p𝑥q

Φ
p1q

®𝑛 p𝑥q
𝑴p𝑥q𝑬1,2𝑴

´1p𝑥q.

Estimate (7.57) now follows from Lemma 7.3 and the estimate

(7.58)
ˇ

ˇ

ˇ
Φ

p0q

®𝑛 p𝑥q{Φ
p1q

®𝑛 p𝑥q

ˇ

ˇ

ˇ
“ exp

!

|®𝑛|

´

𝐻
p0q

®𝑛 p𝑥q ´ 𝐻
p1q

®𝑛 p𝑥q

¯)

ď exp
!

´𝐵𝛽1𝛿
3{2𝑛1

)

ď
𝜀 ®𝑛

𝐵𝛽1𝛿
3{2 ,

see (4.3) and (7.27). Lastly, let 𝑠 P Γ
˘

®𝑛,1z𝑈®𝑛. Then it holds that

𝑽p𝑠q “ p𝑴𝑫qp𝑠qT1

ˆ

1 0
1{𝜌1p𝑠q 1

˙

p𝑴𝑫q´1p𝑠q ´ 𝑰 “
1

𝜌1p𝑠q

Φ
p1q

®𝑛 p𝑠q

Φ
p0q

®𝑛 p𝑠q
𝑴p𝑠q𝑬2,1𝑴

´1p𝑠q.

The desired estimate (7.57) can be deduced exactly as in the second step of the proof with (7.29) used instead
of (7.27). �

It is essentially a standard argument in the theory of orthogonal polynomials to deduce existence of 𝒁p𝑧q

from Lemma 7.10, see [15, Chapter 7].

Lemma 7.11. Given N𝑐‹
, 𝑐‹ P r0, 1s, there exists a constant 𝑀pN𝑐‹

q such that a solution of RHP-𝒁 exists for
all |®𝑛| ě 𝑀pN𝑐‹

q and it satisfies

(7.59) max
𝑖, 𝑗

ˇ

ˇ

ˇ

“

𝒁p𝑧q ´ 𝑰
‰

𝑖, 𝑗

ˇ

ˇ

ˇ
À 𝛿´1}𝑽}𝐿8pΣ ®𝑛,𝛿q

for all 𝑧 P C when 𝑐‹ P r𝑐˚, 𝑐˚˚s, |𝑧 ´ 𝛽1| ě 𝛿{5 when 𝑐‹ P p0, 𝑐˚q, distp𝑧, t𝛼1, 𝛽1uq ě 𝛿{5 when 𝑐‹ “ 0,
|𝑧 ´ 𝛼2| ě 𝛿{5 when 𝑐‹ P p𝑐˚˚, 1q, and distp𝑧, t𝛼2, 𝛽2uq ě 𝛿{5 when 𝑐‹ “ 1, where the constant in À is
independent of 𝛿 and ®𝑛.

Proof. Let C and C´ be the operators defined in Lemma 7.9 and C𝑽 : 𝐿𝑟 pΣ®𝑛, 𝛿q Ñ 𝐿𝑟 pΣ®𝑛, 𝛿q, 𝑟 ą 1, be an
operator defined by C𝑽 𝑭 :“ C´p𝑭𝑽q for any 2 ˆ 2 matrix function 𝑭p𝑠q in 𝐿𝑟 pΣ®𝑛, 𝛿q. Then it follows from
Lemmas 7.9 and 7.10 that

(7.60) }C𝑽 }𝑟 ď 𝐶𝑟 }𝑽}𝐿8pΣ ®𝑛,𝛿q “ 𝑜p1q.

Let 𝑀pN𝑐‹
q be such that the above norm is less than 1{2 for all ®𝑛 P N𝑐‹

, |®𝑛| ě 𝑀pN𝑐‹
q. Then the operator

I ´ C𝑽 is invertible in 𝐿𝑟 pΣ®𝑛, 𝛿q for all such ®𝑛. Hence, one can readily verify that

𝒁p𝑧q “ 𝑰 ` Cp𝑼𝑽qp𝑧q, 𝑼p𝑠q :“ pI ´ C𝑽 q´1p𝑰qp𝑠q.

The above formula and Hölder inequality immediately yield that

(7.61) max
𝑖, 𝑗

ˇ

ˇ

ˇ

“

𝒁p𝑧q ´ 𝑰
‰

𝑖, 𝑗

ˇ

ˇ

ˇ
À

}𝑼𝑽}𝐿𝑟 pΣ ®𝑛,𝛿q

distp𝑧,Σ®𝑛, 𝛿q
À 𝛿´1}𝑽}𝐿8pΣ ®𝑛,𝛿q
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for distp𝑧,Σ®𝑛, 𝛿q ě 𝛿{5, where the constant in À is independent of ®𝑛 and 𝛿 (it involves the arclengths of Σ®𝑛, 𝛿 ,
but the latter are uniformly bounded above and below).

It can be readily seen from RHP-𝒁(b) that 𝑽p𝑠q can be analytically continued off each connected component
of Σ˝

®𝑛, 𝛿 . Hence, solutions of RHP-𝒁 for the same value of ®𝑛 and different values of 𝛿 are, in fact, analytic
continuations of each other. Thus, using (7.61) together with (7.61) where 𝛿 is replaced by 𝛿{2, we get that
(7.61) in fact holds for distp𝑧, pr𝛽𝑐‹ ,1, 𝛽1s Y r𝛼2, 𝛼𝑐‹ ,2sqz𝑈®𝑛q ě 𝛿{5. The set pr𝛽𝑐‹ ,1, 𝛽1s Y r𝛼2, 𝛼𝑐‹ ,2sqz𝑈®𝑛
is not empty only when 𝑐‹ P r0, 𝑐˚q Y p𝑐˚˚, 1s. In particular, we have finished the proof of the lemma for
𝑐‹ P r𝑐˚, 𝑐˚˚s. When 𝑐‹ P p0, 𝑐˚q, set 𝐼®𝑛, 𝛿 :“ r𝛽1 ` i𝛿𝑐‹{3, 𝛽1s Y p𝛽𝑐‹ ,1 ` i𝛿𝑐‹{3, 𝛽1 ` i𝛿𝑐‹{3qz𝑈 ®𝑛 and let
𝑂 ®𝑛, 𝛿 be the bounded domain delimited by B𝑈®𝑛, 𝐼®𝑛, 𝛿 , and r𝛽𝑐‹ ,1, 𝛽1qz𝑈 ®𝑛. Observe that 𝑽p𝑠q extends as an
analytic matrix function into 𝑂 ®𝑛, 𝛿 and still satisfies (7.58) there by (7.27). Thus, we can analytically continue
𝒁p𝑠q into 𝑂 ®𝑛, 𝛿 by multiplying it by 𝑰 ` 𝑽p𝑧q there. This continuation will still have a jump matrix satisfying
(7.57) and therefore itself will satisfy (7.61) away from its jump contour. This finishes the proof of the lemma
when 𝑐‹ P p0, 𝑐˚q Y p𝑐˚˚, 1q (the proof for the case 𝑐‹ P p𝑐˚˚, 1q is identical). The proof in the case 𝑐‹ “ 0
(and therefore in the case 𝑐‹ “ 1) is similar and uses (7.28) instead of (7.27).

The fact that the above constructed matrix 𝒁p𝑧q has behavior as described in RHP-𝒁(c) follows from the
fact that it admits an explicit local parametrix around 𝛽1 (resp. 𝛼2) when 𝑐‹ ă 𝑐˚ (resp. 𝑐‹ ą 𝑐˚˚), see [45,
Sections 8.3 and 9.1]. �

The following lemma immediately follows from Lemma 7.11.

Lemma 7.12. A solution of RHP-𝑿 is given by

(7.62) 𝑿p𝑧q :“ 𝑪𝒁p𝑧q

#

p𝑴𝑫qp𝑧q, 𝑧 P Cz𝑈 ®𝑛,

𝑷𝑒p𝑧q, 𝑧 P 𝑈𝑒, 𝑒 P t𝛼1, 𝛽®𝑛,1, 𝛼®𝑛,2, 𝛽2u,

where 𝒁p𝑧q solves RHP-𝒁, 𝑵p𝑧q :“ 𝑪p𝑴𝑫qp𝑧q solves RHP-𝑵, see (7.5)–(7.6), and 𝑷𝑒p𝑧q solve RHP-𝑷𝑒, see
Section 7.5.

7.7. Proof of Theorems 3.2–3.4. We are now ready to prove the main results of Section 3. We stop using the
notation 𝑐‹ and resume writing 𝑐 as in the statements of Theorems 3.2–3.4.

7.7.1. Proof of Theorem 3.2. Let 𝐾 be a closed subset of CzpΔ𝑐,1 Y Δ𝑐,2q. It follows from Proposition 4.1 that
the constant 𝛿 in the definition of the contour Σ®𝑛, 𝛿 can be adjusted so that 𝐾 lies outside of each Ω

˘

®𝑛,𝑖 as well as
𝑈 ®𝑛 for all |®𝑛| large enough. Then it holds that

(7.63) 𝒀p𝑧q “ 𝑪p𝒁𝑴𝑫qp𝑧q, 𝑧 P 𝐾,

by (7.4) and Lemma 7.12, where we need to write 𝒀˘p𝑧q and 𝒁˘p𝑧q for 𝑧 P Δ𝑖zΔ𝑐,𝑖 , 𝑖 P t1, 2u. Set

(7.64) 𝐵𝑘p𝑧q :“ r𝒁p𝑧qs1,𝑘`1 ´ 𝛿0𝑘 “ 𝑜p1q, 𝑘 P t0, 1, 2u,

where 𝛿𝑖 𝑗 is the usual Kronecker symbol. Observe that 𝐵𝑘p8q “ 0 and

(7.65) |𝐵𝑘p𝑧q| “

" O𝛿,𝑐p𝜀 ®𝑛q, 𝑐 R t𝑐˚, 𝑐˚˚u,

𝑜𝛿p1q, 𝑐 P t𝑐˚, 𝑐˚˚u,

uniformly in Czt𝛼1, 𝛽1u when 𝑐 “ 0, in Czt𝛽1u when 𝑐 P p0, 𝑐˚q, in C when 𝑐 P r𝑐˚, 𝑐˚˚s, in Czt𝛼2u when
𝑐 P p𝑐˚˚, 1q, and in Czt𝛼2, 𝛽2u when 𝑐 “ 1 by (7.57) and (7.59), where the dependence on 𝑐 of O𝛿,𝑐p𝜀 ®𝑛q is
uniform on compact subsets of r0, 𝑐˚q Y p𝑐˚˚, 1s. Then it follows from (7.1), (7.63), the definition of 𝑴p𝑧q in
(7.5), and of 𝑪, 𝑫p𝑧q in (7.6) that

𝑃®𝑛p𝑧q “ r𝒀p𝑧qs1,1 “ r𝑪s1,1rp𝒁𝑴qp𝑧qs1,1r𝑫p𝑧qs1,1

“ 𝛾®𝑛𝑆
p0q

®𝑛 p𝑧q

´

1 ` 𝐵0p𝑧q ` 𝑠®𝑛,1𝐵1p𝑧qΥ
p0q

®𝑛,1p𝑧q ` 𝑠®𝑛,2𝐵2p𝑧qΥ
p0q

®𝑛,2p𝑧q

¯

Φ
p0q

®𝑛 p𝑧q,

where 𝑠®𝑛,𝑖 :“ 𝑆
p0q

®𝑛 p8q{𝑆
p𝑖q

®𝑛 p8q, 𝑖 P t1, 2u. The first asymptotic formula of the theorem now follows from
(7.65), (5.5)–(5.8), and (3.10).

Let now 𝐾 be a closed subset of Δ˝
𝑐,1 Y Δ˝

𝑐,2. Again, we can adjust 𝛿 so that 𝐾 does not intersect 𝑈 ®𝑛 for all
|®𝑛| large enough. Hence,

(7.66) 𝒀˘p𝑥q “ 𝑪p𝒁𝑴˘𝑫˘qp𝑥qp𝑰 ˘ 𝜌´1
𝑖

p𝑥q𝑬𝑖`1,1q, 𝑥 P 𝐾 X Δ𝑐,𝑖 ,
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for 𝑖 P t1, 2u, again by (7.4) and Lemma 7.12. Thus, we get for 𝑥 P 𝐾 X Δ𝑐,𝑖 that

𝑃®𝑛p𝑥q “ 𝛾®𝑛
`

𝑆 ®𝑛Φ®𝑛
˘p0q

˘
p𝑥q

´

1 ` 𝐵0p𝑥q ` 𝐵1p𝑥qΥ
p0q

®𝑛,1˘
p𝑥q ` 𝐵2p𝑥qΥ

p0q

®𝑛,2˘
p𝑥q

¯

˘ 𝛾®𝑛p𝜌𝑖𝑤 ®𝑛,𝑖˘q´1p𝑥q
`

𝑆 ®𝑛Φ®𝑛
˘p𝑖q

˘
p𝑥q

´

1 ` 𝐵0p𝑥q ` 𝐵1p𝑥qΥ
p𝑖q

®𝑛,1˘
p𝑥q ` 𝐵2p𝑥qΥ

p𝑖q

®𝑛,2˘
p𝑥q

¯

.

Since 𝐹p0q

˘ p𝑥q “ 𝐹
p𝑖q

¯ p𝑥q on Δ®𝑛,𝑖 for any rational function 𝐹p𝒛q on 𝕽®𝑛, the second asymptotic formula of the
theorem now follows from (3.7), (7.65), and (5.5)–(5.8).

7.7.2. Proof of Theorem 3.3. Similarly to the matrix 𝒀p𝑧q defined in (7.1), set

(7.67) p𝒀p𝑧q :“

¨

˚

˚

˚

˝

𝐿 ®𝑛p𝑧q ´𝐴
p1q

®𝑛 p𝑧q ´𝐴
p2q

®𝑛 p𝑧q

´𝑑 ®𝑛,1𝐿 ®𝑛`®𝑒1p𝑧q 𝑑 ®𝑛,1𝐴
p1q

®𝑛`®𝑒1
p𝑧q 𝑑 ®𝑛,1𝐴

p2q

®𝑛`®𝑒1
p𝑧q

´𝑑 ®𝑛,2𝐿 ®𝑛`®𝑒2p𝑧q 𝑑 ®𝑛,2𝐴
p1q

®𝑛`®𝑒2
p𝑧q 𝑑 ®𝑛,2𝐴

p2q

®𝑛`®𝑒2
p𝑧q

˛

‹

‹

‹

‚

,

where the constants 𝑑 ®𝑛,𝑖 are chosen so that the polynomials 𝑑 ®𝑛,𝑖𝐴
p𝑖q

®𝑛`®𝑒𝑖
p𝑧q are monic. It was shown in [24,

Theorem 4.1] that

(7.68) p𝒀p𝑧q “
`

𝒀Tp𝑧q
˘´1

.

Hence, it follows from (7.63) that on closed subsets of Cz
`

Δ𝑐,1 Y Δ𝑐,2
˘

it holds that

p𝒀p𝑧q “ 𝑪´1`𝒁´1˘T
p𝑧q

`

𝑴´1˘T
p𝑧q𝑫´1p𝑧q

(as before, the contour Σ®𝑛, 𝛿 can be adjusted to accommodate any such closed set, moreover, one needs to write
p𝒀˘p𝑧q for 𝑧 P Δ𝑖zΔ𝑐,𝑖). The above equation and (7.67) yield that

(7.69) 𝐴
p𝑖q

®𝑛 p𝑧q “ ´
“

𝑪´1`𝒁´1˘T
p𝑧q

`

𝑴´1˘T
p𝑧q𝑫´1p𝑧q

‰

1,𝑖`1, 𝑧 P 𝐾.

Let us rewrite (7.7) as

𝑴´1p𝑧q “: diag

¨

˝

1

𝑆
p0q

®𝑛 p𝑧q
,
𝑤 ®𝑛,1p𝑧q

𝑆
p1q

®𝑛 p𝑧q
,
𝑤 ®𝑛,2p𝑧q

𝑆
p2q

®𝑛 p𝑧q

˛

‚𝚷p𝑧q𝑺p8q,

which serves as a definition of the matrix 𝚷p𝑧q. Notice that 𝜏®𝑛, defined in the statement of the theorem, is equal
to r𝑪s1,1. Thus, it follows from (7.69) that

(7.70) 𝐴
p𝑖q

®𝑛 p𝑧q “ ´
“`

𝒁´1˘T
p𝑧q𝑺p8q𝚷Tp𝑧q

‰

1,𝑖`1
𝑤 ®𝑛,𝑖p𝑧q

𝜏®𝑛
`

𝑆 ®𝑛Φ®𝑛
˘p𝑖q

p𝑧q
, 𝑧 P 𝐾.

Similarly to (7.64), set

p𝐵𝑘p𝑧q :“
”

`

𝒁´1˘T
p𝑧q

ı

1,𝑘`1
´ 𝛿0𝑘 “ 𝑜p1q, 𝑘 P t0, 1, 2u.

Observe that all the jump matrices in RHP-𝒁(b) have determinant one. Since 𝒁p8q “ 𝑰, we therefore get
that detp𝒁p𝑧qq ” 1. Hence, the functions p𝐵𝑘p𝑧q do obey the estimate of (7.65) as well. Again, it holds that
p𝐵𝑘p8q “ 0. Thus,
“`

𝒁´1˘T
p𝑧q𝑺p8q𝚷Tp𝑧q

‰

1,𝑖`1 “ 𝑆
p0q

®𝑛 p8q

´

Π
p𝑖q

®𝑛 p𝑧q ` p𝐵0p𝑧qΠ
p𝑖q

®𝑛 p𝑧q

` 𝑠´1
®𝑛,1

p𝐵1p𝑧qΠ
p𝑖q

®𝑛,1p𝑧q `𝑠´1
®𝑛,2

p𝐵2p𝑧qΠ
p𝑖q

®𝑛,2p𝑧q

¯

, 𝑧 P 𝐾,

where, as before, 𝑠®𝑛,𝑙 “ 𝑆
p0q

®𝑛 p8q{𝑆
p𝑙q

®𝑛 p8q. Now, observe that

Π®𝑛,𝑙p𝒛q{Π®𝑛p𝒛q “ ´𝐴´1
®𝑛,𝑙Υ®𝑛,𝑙p𝒛q, 𝑙 P t1, 2u,

which follows from comparing zero/pole divisors and the normalizations at 8p0q of the left- and right-hand
sides of the above equality (recall that Πp0q

®𝑛 p8q “ 1 and Π
p0q

®𝑛,𝑙 p𝑧q “ ´𝑧´1 ` Op𝑧´2q, which can be seen from
(5.19)). Therefore, it follows from (7.70) that

(7.71) 𝐴
p𝑖q

®𝑛 p𝑧q “ ´

¨

˝1 ` p𝐵0p𝑧q ´
Υ

p𝑖q

®𝑛,1p𝑧q

𝑠®𝑛,1𝐴®𝑛,1
p𝐵1p𝑧q ´

Υ
p𝑖q

®𝑛,2p𝑧q

𝑠®𝑛,2𝐴®𝑛,2
p𝐵2p𝑧q

˛

‚

`

Π
p𝑖q

®𝑛 𝑤 ®𝑛,𝑖
˘

p𝑧q

𝛾®𝑛
`

𝑆 ®𝑛Φ®𝑛
˘p𝑖q

p𝑧q
.
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Hence, the first asymptotic formula of the theorem follows from (7.65), (5.5)–(5.8) (here, one needs to recall
that p𝐵𝑙p8q “ 0 and therefore the estimate for pΥ

p𝑙q

®𝑛,𝑙
p𝐵𝑙qp𝑧q around infinity follows from the maximum principle),

(3.10), and the fact that 𝐴®𝑛,1 „ 𝑐2
®𝑛 shown in the proof of Lemma 5.1. When 𝑐 “ 0 and 𝑖 “ 1, we also deduce

from (7.71) and the maximum modulus principle that

𝐴
p1q

®𝑛 p𝑧q “
𝑜p1q

𝑐2
®𝑛

𝑆
p1q

®𝑛 p8q

𝑆
p1q

®𝑛 p𝑧q

`

Π
p1q

®𝑛 𝑤 ®𝑛,1
˘

p𝑧q

𝜏®𝑛Φ
p1q

®𝑛 p𝑧q
“
𝑜p1q

𝑐2
®𝑛

`

Π
p1q

®𝑛 𝑤 ®𝑛,1
˘

p𝑧q

𝜏®𝑛Φ
p1q

®𝑛 p𝑧q
,

where we also used (3.9) and 𝑜p1q behaves like the right-hand side of (7.65). Recall that Πp1q

®𝑛 p𝑧q has a double
zero at infinity. Therefore,

ˇ

ˇ

`

Π
p1q

®𝑛 𝑤2
®𝑛,1
˘

p𝑧q
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

´

Υ
p0q

®𝑛,2Υ
p2q

®𝑛,1 ´ Υ
p2q

®𝑛,2Υ
p0q

®𝑛,1

¯

p𝑧q
𝑤 ®𝑛,1p𝑧q

𝑤 ®𝑛,2p𝑧q

ˇ

ˇ

ˇ

ˇ

“ O
`

𝑐2
®𝑛
˘

uniformly on closed subsets CzΔ0,1 by (5.20), (5.6)–(5.8), and the maximum modulus principle. Clearly, the
last two estimates prove the second asymptotic formula of the theorem (the case 𝑐 “ 1 and 𝑖 “ 2 can be treated
similarly).

Finally, (7.66) and (7.68) give us
p𝒀˘p𝑥q “ 𝑪´1`𝒁´1˘T

p𝑥q
`

𝑴´1
˘

˘T
p𝑥q𝑫´1

˘ p𝑥q
`

𝑰 ¯ 𝜌´1
𝑖

p𝑥q𝑬1,𝑖`1
˘

on any compact subset of Δ˝
𝑐,𝑖

, 𝑖 P t1, 2u. Analogously to (7.71), the above formula yields that

𝐴
p𝑖q

®𝑛 p𝑥q “ ´

¨

˝1 ` p𝐵0p𝑥q ´
Υ

p𝑖q

®𝑛,1˘
p𝑥q

𝑠®𝑛,1𝐴®𝑛,1
p𝐵1p𝑥q ´

Υ
p𝑖q

®𝑛,2˘
p𝑥q

𝑠®𝑛,2𝐴®𝑛,2
p𝐵2p𝑥q

˛

‚

`

Π
p𝑖q

®𝑛 𝑤 ®𝑛,𝑖
˘

˘
p𝑥q

𝛾®𝑛
`

𝑆 ®𝑛Φ®𝑛
˘p𝑖q

˘
p𝑥q

˘ 𝜌´1
𝑖

p𝑥q

¨

˝1 ` p𝐵0p𝑥q ´
Υ

p0q

®𝑛,1˘
p𝑥q

𝑠®𝑛,1𝐴®𝑛,1
p𝐵1p𝑥q ´

Υ
p0q

®𝑛,2˘
p𝑥q

𝑠®𝑛,2𝐴®𝑛,2
p𝐵2p𝑥q

˛

‚

Π
p0q

®𝑛˘
p𝑥q

𝛾®𝑛
`

𝑆 ®𝑛Φ®𝑛
˘p0q

˘
p𝑥q

.

Once again, (7.65) and (5.5)–(5.8) imply that

𝐴
p𝑖q

®𝑛 p𝑥q “ ´p1 ` 𝑜p1qq

`

Π
p𝑖q

®𝑛 𝑤 ®𝑛,𝑖
˘

˘
p𝑥q

𝛾®𝑛
`

𝑆 ®𝑛Φ®𝑛
˘p𝑖q

˘
p𝑥q

˘ p1 ` 𝑜p1qq𝜌´1
𝑖

p𝑥q
Π

p0q

®𝑛˘
p𝑥q

𝛾®𝑛
`

𝑆 ®𝑛Φ®𝑛
˘p0q

˘
p𝑥q

uniformly on compact subsets of Δ˝
𝑐,𝑖

. Since

¯𝜌´1
𝑖

p𝑥qΠ
p0q

®𝑛˘
p𝑥q{p𝑆 ®𝑛Φ®𝑛q

p0q

˘ p𝑥q “
`

Π
p𝑖q

®𝑛¯
𝑤 ®𝑛,𝑖¯

˘

p𝑥q{p𝑆 ®𝑛Φ®𝑛q
p𝑖q

¯ p𝑥q, 𝑥 P Δ®𝑛,𝑖 ,

by (3.7), the last asymptotic formula of the theorem follows.

7.7.3. Proof of Theorem 3.4. As in the previous two subsections, given a closed set 𝐾 in CzpΔ1 Y Δ2q, we
can adjust the contour Σ®𝑛, 𝛿 so that 𝐾 lies in the unbounded component of its complement. Hence, using the
notation of the previous two subsections, we get from (7.1), (7.5), (7.6), (7.63), and (7.65) that

𝑅
p𝑖q

®𝑛 p𝑧q “ 𝛾®𝑛𝑆
p𝑖q

®𝑛 p𝑧q𝑤´1
®𝑛,𝑖p𝑧q

´

1 ` 𝐵0p𝑧q ` 𝑠®𝑛,1𝐵1p𝑧qΥ
p𝑖q

®𝑛,1p𝑧q ` 𝑠®𝑛,2𝐵2p𝑧qΥ
p𝑖q

®𝑛,2p𝑧q

¯

Φ
p𝑖q

®𝑛 p𝑧q

for 𝑧 P 𝐾 , 𝑖 P t1, 2u. The first asymptotic formula of the theorem now follows from (7.65), (5.5)–(5.8), (3.10),
and the maximum modulus principle applied to pΥ

p𝑖q

®𝑛,𝑖𝐵𝑖qp𝑧q to extend the desired estimates to the neighborhood
of infinity. As in the proof of Theorem 3.3, it holds when 𝑐 “ 0 and 𝑖 “ 1 that

𝑅
p1q

®𝑛 p𝑧q “ 𝑜p1q𝜏®𝑛Φ
p1q

®𝑛 p𝑧q𝑤´1
®𝑛,1p𝑧q

uniformly on closed subsets of CzΔ0,1 by (5.6)–(5.8) and (3.9)–(3.10). Since an analogous formula holds for
𝑐 “ 1 and 𝑖 “ 2, the second asymptotic formula of the theorem follows.

Finally, it follows from (7.67) and (7.68) that

𝐿 ®𝑛p𝑧q “

¨

˝1 ` p𝐵0p𝑧q ´
Υ

p0q

®𝑛,1p𝑧q

𝑠®𝑛,1𝐴®𝑛,1
p𝐵1p𝑧q ´

Υ
p0q

®𝑛,2p𝑧q

𝑠®𝑛,2𝐴®𝑛,2
p𝐵2p𝑧q

˛

‚

Π
p0q

®𝑛 p𝑧q

𝛾®𝑛
`

𝑆 ®𝑛Φ®𝑛
˘p0q

p𝑧q

on closed subsets of CzpΔ𝑐,1 Y Δ𝑐,2q, from which the last asymptotic formula of the theorem follows, as usual,
by (7.65) (holding for p𝐵𝑘p𝑧q as well), (5.5)–(5.8), (3.10), and since 𝐴®𝑛,1 „ 𝑐2

®𝑛 as shown in Lemma 5.1.
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8. Proof of Theorem 1.2

While proving Theorem 1.2 we first consider the case of fully marginal sequences and then consider separately
the asymptotic behavior of 𝑎 ®𝑛,1, 𝑎 ®𝑛,2 and 𝑏 ®𝑛,1, 𝑏 ®𝑛,2.

8.1. Fully Marginal Ray Sequences. In this section we only consider sequences N0 and N1 satisfying (3.1).
Again, we present the proof only in the case of 𝑐 “ 0. Recurrence formula (1.7) for 𝑃®𝑛p𝑥q can be rewritten as

(8.1) 𝑧 ´ 𝑏 ®𝑛,𝑖 “
𝑃®𝑛`®𝑒𝑖 p𝑧q

𝑃®𝑛p𝑧q
` 𝑎 ®𝑛,1

𝑃®𝑛´®𝑒1p𝑧q

𝑃®𝑛p𝑧q
` 𝑎 ®𝑛,2

𝑃®𝑛´®𝑒2p𝑧q

𝑃®𝑛p𝑥q
, 𝑖 P t1, 2u.

One can easily see from (8.1) that

(8.2) 𝑏 ®𝑛,𝑖 “ ´ lim
𝑧Ñ8

ˆ

𝑃®𝑛`®𝑒𝑖 p𝑧q

𝑃®𝑛p𝑧q
´ 𝑧

˙

.

Thus, the limiting behavior of 𝑏 ®𝑛,1, 𝑏 ®𝑛,2 follows from Theorem 3.1 and (6.2) in Lemma 6.1. Moreover, since
the rays

 

®𝑛 ˘ ®𝑒𝑖 : ®𝑛 P N0
(

are also fully marginal, we can use Theorem 3.1 to rewrite (8.1) for 𝑖 “ 2 as

(8.3) 𝑧 ´ 𝑏 ®𝑛,2 “ p1 ` 𝑜p1qq𝜑2p𝑧q ` p1 ` 𝑜p1qq
𝑎 ®𝑛,1

𝑆p𝑧;𝛼1qp𝑧 ´ 𝛼1q
` p1 ` 𝑜p1qq

𝑎 ®𝑛,2
𝜑2p𝑧q

.

Recall that 𝑆p𝑧;𝛼1q “ 1 ´ p𝐵0,1 ´ 𝛼1q{𝑧` O
`

𝑧´2˘ by (6.7) and (2.7). Hence, if we use (2.6) to obtain the first
four terms of the power series expansion of 𝜑2p𝑧q at infinity, we then can rewrite (8.3) as

(8.4) 𝑧 ´ 𝑏 ®𝑛,2 “ p1 ` 𝑜p1qq

ˆ

𝑧 ´ 𝐵0,2 ´
𝐴0,2

𝑧
´
𝐴0,2𝐵0,2

𝑧2
` O

ˆ

1
𝑧3

˙˙

`

`
𝑎 ®𝑛,1
𝑧

ˆ

1 `
𝐵0,1

𝑧
` O

ˆ

1
𝑧2

˙˙

`
𝑎 ®𝑛,2
𝑧

ˆ

1 `
𝐵0,2

𝑧
` O

ˆ

1
𝑧2

˙˙

.

It follows immediately from (8.4) that

𝑎 ®𝑛,1 ` 𝑎 ®𝑛,2 “ p1 ` 𝑜p1qq𝐴0,2 and 𝐵0,1𝑎 ®𝑛,1 ` 𝐵0,2𝑎 ®𝑛,2 “ p1 ` 𝑜p1qq𝐵0,2𝐴0,2,

from which the limits of 𝑎 ®𝑛,1, 𝑎 ®𝑛,2 easily follow (recall that 𝜑2p𝑧q is non-vanishing).

8.2. Asymptotics of 𝑎 ®𝑛,1, 𝑎 ®𝑛,2 along non-fully Marginal Sequences. From now on we are assuming that ray
sequences N𝑐 satisfy (3.11). It can be deduced from orthogonality relations (1.5) and definition (3.14) that

𝑅
p𝑖q

®𝑛 p𝑧q “ ´
ℎ®𝑛,𝑖
2𝜋i

1
𝑧𝑛𝑖`1 ` O

`

𝑧´𝑛𝑖´2˘, ℎ®𝑛,𝑖 :“
ż

𝑃®𝑛p𝑥q𝑥𝑛𝑖d𝜇𝑖p𝑥q,

𝑖 P t1, 2u. In particular, we have that 𝑚 ®𝑛,𝑖 “ ´2𝜋i{ℎ®𝑛´®𝑒𝑖 ,𝑖 in (7.1). Then it follows from the first and second
asymptotic formulae of Theorem 3.4, the definition of constants 𝛾®𝑛 and 𝜏®𝑛 in Theorems 3.2 and 3.3, respectively,
and the definition of the matrix 𝑪 in (7.6) that

(8.5) ´
ℎ®𝑛,𝑖
2𝜋i

“
1 ` 𝑜p1q

𝑠®𝑛,𝑖

r𝑪s1,1

r𝑪s𝑖`1,𝑖`1
or ´

ℎ®𝑛,𝑖
2𝜋i

“ 𝑜p1q
r𝑪s1,1

r𝑪s𝑖`1,𝑖`1

where, as before, 𝑠®𝑛,𝑖 “ 𝑆
p0q

®𝑛 p8q{𝑆
p𝑖q

®𝑛 p8q, 𝑖 P t1, 2u, the first formula holds for 𝑖 P t1, 2u when 𝑐 P p0, 1q, 𝑖 “ 2
when 𝑐 “ 0, and 𝑖 “ 1 when 𝑐 “ 1, and the second formula holds for the remaining cases. Furthermore, we
get from (7.1) that

(8.6) ´
2𝜋i

ℎ®𝑛´®𝑒𝑖 ,𝑖
“ 𝑚 ®𝑛,𝑖 “ lim

𝑧Ñ8
𝑧1´|®𝑛|r𝒀p𝑧qs𝑖`1,1.

Analogously to the computation after (7.63)–(7.65) we get that r𝒀p𝑧qs𝑖`1,1 is equal to

(8.7) r𝑪s𝑖`1,𝑖`1
𝑆

p0q

®𝑛 p𝑧q

𝑆
p0q

®𝑛 p8q

´

𝑠®𝑛,𝑖Υ
p0q

𝑛,𝑖
p𝑧q ` 𝐵0,𝑖p𝑧q ` 𝑠®𝑛,1𝐵1,𝑖p𝑧qΥ

p0q

®𝑛,1p𝑧q ` 𝑠®𝑛,2𝐵2,𝑖p𝑧qΥ
p0q

®𝑛,2p𝑧q

¯

Φ
p0q

®𝑛 p𝑧q

in a neighborhood of infinity, where 𝐵𝑘,𝑖p𝑧q :“ r𝒁p𝑧qs𝑖`1,𝑘`1 ´ 𝛿𝑖𝑘 , 𝑘 P t0, 1, 2u, satisfy (7.65). Since
𝐵𝑘,𝑖p8q “ 0 and Υ

p0q

𝑛,𝑖
p𝑧q “ 𝐴®𝑛,𝑖𝑧

´1 ` O
`

𝑧´2˘ as 𝑧 Ñ 8, see (5.3), we get that

(8.8) ´
2𝜋i

ℎ®𝑛´®𝑒𝑖 ,𝑖
“
`

𝑠®𝑛,𝑖𝐴®𝑛,𝑖 ` 𝑜p1q
˘ r𝑪s𝑖`1,𝑖`1

r𝑪s1,1
.
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Now, it is well known, see for example [8, Lemma A.1], that 𝑎 ®𝑛,𝑖 “ ℎ®𝑛,𝑖{ℎ®𝑛´®𝑒𝑖 ,𝑖 . Therefore, it follows from
(8.5) and (8.8) that

𝑎 ®𝑛,𝑖 “ p1 ` 𝑜p1qq
`

𝐴®𝑛,𝑖 ` 𝑠´1
®𝑛,𝑖𝑜p1q

˘

or 𝑎 ®𝑛,𝑖 “ 𝑜p1q
`

𝑠®𝑛,𝑖𝐴®𝑛,𝑖 ` 𝑜p1q
˘

𝑖 P t1, 2u, where the first formula holds for 𝑖 P t1, 2u when 𝑐 P p0, 1q, 𝑖 “ 2 when 𝑐 “ 0, and 𝑖 “ 1 when
𝑐 “ 1, and the second formula holds for the remaining cases. The desired limits of 𝑎 ®𝑛,𝑖 therefore follow from
continuity of the constants 𝐴𝑐,𝑖 with respect to the parameter 𝑐, see Proposition 2.1, asymptotic formulae (3.10),
and the estimates 𝐴𝑐,1 „ 𝑐2 as 𝑐 Ñ 0 (𝐴𝑐,2 „ p1 ´ 𝑐q2 as 𝑐 Ñ 1), see (5.11) and after.

8.3. Asymptotics of 𝑏 ®𝑛,1, 𝑏 ®𝑛,2 along non-fully Marginal Sequences. Excluding the cases 𝑖 “ 1 when 𝑐 “ 0
and 𝑖 “ 2 when 𝑐 “ 1, we get from (8.6)–(8.8) and (5.6)–(5.8) that

(8.9) 𝑃®𝑛´®𝑒𝑖 p𝑧q “ p1 ` 𝑜p1qq𝐴´1
®𝑛,𝑖Υ

p0q

®𝑛,𝑖 p𝑧q𝛾®𝑛
`

𝑆 ®𝑛Φ®𝑛qp0qp𝑧q

in some neighborhood of the point at infinity. Replacing the sequence N𝑐 with t®𝑛 ` ®𝑒𝑖 : ®𝑛 P N𝑐u, we get from
(8.2), Theorem 3.2, and (8.9) that

𝑏 ®𝑛,𝑖 “ ´p1 ` 𝑜p1qq lim
𝑧Ñ8

¨

˝

𝐴®𝑛`®𝑒𝑖

Υ
p0q

®𝑛`®𝑒𝑖 ,𝑖
p𝑧q

´ 𝑧

˛

‚“ p1 ` 𝑜p1qq𝐵®𝑛`®𝑒𝑖 ,

where we also used (2.5) and (5.3). The desired claim now follows from Proposition 2.1.
Out of the two exceptional cases, we shall only consider the case 𝑖 “ 1 when 𝑐 “ 0 understanding that the

other one can be treated similarly. Assume for the moment that the measure 𝜇2 is, in fact, the arcsine distribution
on Δ2, that is,

(8.10) d𝜇2p𝑥q “
d𝑥

2𝜋
a

p𝑥 ´ 𝛼2qp𝛽2 ´ 𝑥q
“ ´

d𝑥
2𝜋i𝑤2`p𝑥q

.

Recall the notation of Section 6 where we wrote 𝑃®𝑛p𝑧q “ 𝑃®𝑛,1p𝑧q𝑃®𝑛,2p𝑧q with polynomial 𝑃®𝑛,𝑖p𝑧q having all
its zeros on Δ𝑖 . We would like to show that when 𝜇2 is of the form (8.10), formula (6.1) still holds along any
marginal ray sequence N0. To this end, we shall use 2 ˆ 2 Riemann-Hilbert analysis of orthogonal polynomials.
Since this method has been described in detail in Section 7, we shall only outline the main steps.

It follows from (1.5) and (8.10) that the Riemann-Hilbert problem
(a) 𝒀p𝑧q is analytic in CzΔ2 and lim

𝑧Ñ8
𝒀p𝑧q𝑧´𝑛2 “ 𝑰;

(b) 𝒀p𝑧q has continuous traces on each Δ˝
2 that satisfy 𝒀`p𝑥q “ 𝒀´p𝑥q

ˆ

1 p𝑃®𝑛,1{𝑤2`qp𝑥q

0 1

˙

;

(c) the entries of the first column of 𝒀p𝑧q are bounded and the entries of the second column behave like
Op|𝑧 ´ 𝜉|´1{2q as 𝑧 Ñ 𝜉 P t𝛼2, 𝛽2u;

is solved by

𝒀p𝑧q :“

˜

𝑃®𝑛,2p𝑧q 𝑅
p2q

®𝑛 p𝑧q

𝑚‹

®𝑛,2𝑃
‹

®𝑛,2p𝑧q 𝑚‹

®𝑛,2𝑅
‹

®𝑛,2p𝑧q

¸

,

where 𝑃‹

®𝑛,2p𝑧q is the monic polynomial of degree 𝑛2 ´ 1 orthogonal to lower degree polynomials with respect
to the weight 𝑃®𝑛,1p𝑥qd𝜇2p𝑥q and

𝑅‹

®𝑛,2p𝑧q “
1

2𝜋i

ż 𝑃‹

®𝑛,2p𝑥q𝑃®𝑛,1p𝑥qd𝜇2p𝑥q

𝑥 ´ 𝑧
“

1
𝑚‹

®𝑛,2𝑧
𝑛2

` O
`

𝑧´𝑛2´1˘.

Let Γ2 be a Jordan curve encircling Δ2 counter-clockwise and containing Δ1 in its exterior. Set

𝑿p𝑧q :“ 𝒀p𝑧q

$

’

&

’

%

ˆ

1 0
´p𝑤2{𝑃®𝑛,1qp𝑧q 1

˙

𝑧 P Ω2,

𝑰 otherwise,

where Ω2 is the interior domain of Γ2. Then 𝑿p𝑧q solves the following Riemann-Hilbert problem:
(a) 𝑿p𝑧q is analytic in CzpΔ2 Y Γ2q and lim

𝑧Ñ8
𝑿p𝑧q𝑧´𝑛2 “ 𝑰;
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(b) 𝑿p𝑧q has continuous traces on Δ˝
2 Y Γ2 that satisfy

𝑿`p𝑠q “ 𝑿´p𝑠q

$

’

’

&

’

’

%

ˆ

0 p𝑃®𝑛,1{𝑤2`qp𝑠q

´p𝑤2`{𝑃®𝑛,1qp𝑠q 0

˙

, 𝑠 P Δ2,

ˆ

1 0
p𝑤2{𝑃®𝑛,1qp𝑠q 1

˙

, 𝑠 P Γ2;

(c) the entries of the first column of 𝑿p𝑧q are bounded and the entries of the second column behave like
Op|𝑧 ´ 𝜉|´1{2q as 𝑧 Ñ 𝜉 P t𝛼2, 𝛽2u.

The solution of the above Riemann-Hilbert problem is given by 𝑿p𝑧q “ 𝑪p𝒁𝑳qp𝑧q, where

𝑳p𝑧q :“
ˆ

1 1{𝑤2p𝑧q

1{r𝜑2p𝑧q r𝜑2p𝑧q{𝑤2p𝑧q

˙

`

𝑆 ®𝑛 r𝜑
𝑛2
2
˘𝜎3

p𝑧q

with (compare to (3.5) and observe that r𝜑2`p𝑥qr𝜑2´p𝑥q ” 1 on Δ2)

r𝜑2p𝑧q :“ 𝐴
´1{2
0,2 𝜑2p𝑧q and 𝑆 ®𝑛p𝑧q :“

𝑛1
ź

𝑖“1

ˆ

r𝜑2p𝑧q ´ r𝜑2p𝑥 ®𝑛,𝑖q

r𝜑2p𝑧qr𝜑2p𝑥 ®𝑛,𝑖q ´ 1
r𝜑2p𝑧q

𝑧 ´ 𝑥 ®𝑛,𝑖

˙1{2

,

𝑪 is a diagonal matrix of constants such that lim𝑧Ñ8 𝑪𝑳p𝑧q𝑧´𝑛2𝜎3 “ 𝑰, and 𝒁p𝑧q solves the following
Riemann-Hilbert problem:

(a) 𝒁p𝑧q is a holomorphic matrix function in CzΓ2 and 𝒁p8q “ 𝑰;

(b) 𝒁p𝑧q has continuous traces on Γ2 that satisfy 𝒁`p𝑠q “ 𝒁´p𝑠q𝑳p𝑠q

ˆ

1 0
p𝑤2{𝑃®𝑛,1qp𝑠q 1

˙

𝑳´1p𝑠q.

Indeed, as in Section 7, we only need to verify that the jump of 𝒁p𝑧q on Γ2 can be estimated as 𝑰 ` 𝑜p1q as
𝑛2 Ñ 8, ®𝑛 P N0. The latter is equal to

𝑰 `
1

p𝑤2𝑃®𝑛,1𝑆
2
®𝑛 r𝜑

2𝑛2
2 qp𝑠q

ˆ

r𝜑2p𝑠q ´1
r𝜑2

2p𝑠q ´r𝜑2p𝑠q

˙

.

Observe that

p𝑃®𝑛,1𝑆
2
®𝑛qp𝑠q “ 𝜑

𝑛1
2 p𝑠q

𝑛1
ź

𝑖“1
𝑏p𝑠; 𝑥 ®𝑛,𝑖q, 𝑏p𝑧; 𝑥0q :“

r𝜑2p𝑧q ´ r𝜑2p𝑥0q

r𝜑2p𝑧qr𝜑2p𝑥0q ´ 1
.

Notice that inf𝑠PΓ2 |r𝜑2p𝑠q| ą 1 and inf𝑠PΓ2 ,𝑥0PΔ1 |𝑏p𝑠; 𝑥0q| ą 0 by the compactness of Δ1 and Γ2. Therefore,
there exist positive constants 𝐶1 ą 1 and 𝐶2 ă 1 such that

sup
𝑠PΓ

|p𝑤2𝑃®𝑛,1𝑆
2
®𝑛 r𝜑

2𝑛2
2 qp𝑠q|´1 ď 𝐶

𝑛1
1 𝐶

2𝑛2`𝑛1
2 “ p𝐶

𝑛1{p2𝑛2`𝑛1q

1 𝐶2q2𝑛2`𝑛1 “ 𝑜p1q

as 𝑛1{𝑛2 Ñ 0. This finishes the proof of the identity 𝑿p𝑧q “ 𝑪p𝒁𝑳qp𝑧q from which (6.1) easily follows.
Observe that 𝜇2 as in (8.10) is a Szegő weight. Hence, Lemma 6.1 is applicable. Therefore,

(8.11) lim
|®𝑛|Ñ8, ®𝑛PN0

lim
𝑧Ñ8

ˆ

𝑃®𝑛`®𝑒1p𝑧q

𝑃®𝑛p𝑧q
´ 𝑧

˙

“ ´𝐵0,1

by (6.2). On the other hand, it should be clear from the above argument that the proof in Section 7 will work if
𝜇2 is as in (8.10). Therefore, Theorem 3.2 for such a choice of 𝜇2 gives us that

(8.12)
𝑃®𝑛`®𝑒1p𝑧q

𝑃®𝑛p𝑧q
“ p1 ` 𝑜p1qq

𝛾®𝑛`®𝑒1p𝑆 ®𝑛`®𝑒1Φ®𝑛`®𝑒1qp0qp𝑧q

𝛾®𝑛p𝑆 ®𝑛Φ®𝑛qp0qp𝑧q

in a neighborhood of the point at infinity. It follows from (8.11), (8.12), and (3.9) that

(8.13) lim
|®𝑛|Ñ8, ®𝑛PN0

lim
𝑧Ñ8

¨

˝

𝜏®𝑛`®𝑒1Φ
p0q

®𝑛`®𝑒1
p𝑧q

𝜏®𝑛Φ
p0q

®𝑛 p𝑧q
´ 𝑧

˛

‚“ ´𝐵0,1,

where 𝜏®𝑛 was defined in Theorem 3.3. Observe that (8.13) is a statement about Riemann surfaces 𝕽®𝑛 for ®𝑛 P N0
and is independent of the original measures 𝜇1, 𝜇2. By Theorem 3.2, (8.12) holds for measures 𝜇1, 𝜇2 as in
Theorem 1.2, which we are currently proving. Hence, polynomials 𝑃®𝑛p𝑧q, ®𝑛 P N0, satisfy (8.11) by (8.13) and
(3.9). The final claim of the theorem now follows from (8.2).
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Appendix A.

In this appendix, we will study the operators Lp1q
𝑐 and Lp2q

𝑐 defined in (2.10). As we have already mentioned
in Section 2.2, these operators appear in [8, Formula (4.20)] used with ®𝜅 “ ®𝑒1 and ®𝜅 “ ®𝑒2, respectively. The
analysis in this section is fairly standard for the Spectral Theory of Jacobi matrices on trees (see, e.g., [33]
where the Laplacian and its perturbations were studied for some trees with the finite cone type). However, to
make the paper self-contained, we provide complete proofs. That will also emphasize the connection between
the quantities used in Spectral Theory, such as 𝑚–functions to be defined a few lines below, and the quantities
standard in the asymptotical analysis of multiple orthogonal polynomials, e.g., function 𝜒p0q

𝑐 .
We denote by 𝛿p𝑌 q the delta function (Kronecker symbol) of the vertex 𝑌 . Consider two functions

(A.1) 𝑚𝐼 p𝑧q :“ xpLp1q
𝑐 ´ 𝑧q´1𝛿p𝑂q, 𝛿p𝑂qy, 𝑚𝐼 𝐼 p𝑧q :“ xpLp2q

𝑐 ´ 𝑧q´1𝛿p𝑂q, 𝛿p𝑂qy .

Given the function 𝜒𝑐p𝒛q from Proposition 2.1 and 𝑐 P p0, 1q, [8, Equation (4.22)] yields that

𝑚𝐼 p𝑧q “
´1

𝜒
p0q
𝑐 p𝑧q ´ 𝐵𝑐,1

, 𝑚𝐼 𝐼 p𝑧q “
´1

𝜒
p0q
𝑐 p𝑧q ´ 𝐵𝑐,2

,

where, as usual, 𝜒p0q
𝑐 p𝑧q are the values taken from the zero-th sheet 𝕽p0q

𝑐 . By the Spectral Theorem [2], they
can also be written in the form

𝑚𝐼 p𝑧q “

ż

R

d𝜎p1q

𝑂
p𝑥q

𝑥 ´ 𝑧
, 𝑚𝐼 𝐼 p𝑧q “

ż

R

d𝜎p2q

𝑂
p𝑥q

𝑥 ´ 𝑧
,

where 𝜎p𝑙q

𝑂
is the spectral measure of 𝛿p𝑂q with respect to Lp𝑙q

𝑐 , 𝑙 P t1, 2u. The properties of the conformal map
𝜒𝑐p𝒛q imply that the functions 𝑚𝐼 p𝑧q and 𝑚𝐼 𝐼 p𝑧q satisfy:

(A) 𝑚𝐼 p𝑧q and 𝑚𝐼 𝐼 p𝑧q have no poles since 𝜒p0q
𝑐 p𝑧q ‰ 𝐵𝑐, 𝑗 for 𝑧 P 𝕽p0q

𝑐 by conformality;
(B) both 𝑚𝐼 p𝑧q and 𝑚𝐼 𝐼 p𝑧q are Herglotz-Nevanlinna functions in C`, i.e., they are analytic, have positive
imaginary part, and are continuous up to the boundary. Moreover, =𝑚𝐼 p𝑥q “ =𝑚𝐼 𝐼 p𝑥q “ 0 for 𝑥 P RzpΔ𝑐,1 Y

Δ𝑐,2q and =𝑚`

𝐼
p𝑥q ą 0,=𝑚`

𝐼 𝐼
p𝑥q ą 0 for 𝑥 P Δ˝

𝑐,1 Y Δ˝
𝑐,2.

We will use the following notation. If𝑌, 𝑍 P V and𝑌 „ 𝑍 , then deleting the edge p𝑌, 𝑍q that connects them
leaves us with two subtrees. The one containing 𝑌 will be called Tr𝑍,𝑌 s, the other one will be called Tr𝑌 ,𝑍s. The
restriction of any Jacobi matrix J to a subtree T 1 will be denoted by JT1 .

We learned from (A) and (B) above that 𝜎p1q

𝑂
and 𝜎p2q

𝑂
are absolutely continuous measures with supports

equal to Δ𝑐,1 Y Δ𝑐,2. We need this for the following lemma.

Lemma A.1. If 𝑐 P p0, 1q, then Lp1q
𝑐 and Lp2q

𝑐 have no eigenvalues.

Proof. Suppose that Lp𝑙q
𝑐 , 𝑙 P t1, 2u, has an eigenvector Ψ. Since 𝜎p𝑙q

𝑂
is purely absolutely continuous as just

explained, the restriction of Lp𝑙q
𝑐 to the cyclic subspace generated by 𝛿p𝑂q has no eigenvalues by the spectral

theorem. Therefore, we must haveΨ𝑂 “ 0. Now, consider the restrictions ofΨ to Tr𝑂,𝑂p𝑐ℎq,1s and to Tr𝑂,𝑂p𝑐ℎq,2s.
One of these functions is not identically equal to zero and the one that is not must be an eigenvector of the
corresponding operator: either JTr𝑂,𝑂p𝑐ℎq,1s

or JTr𝑂,𝑂p𝑐ℎq,2s
. By construction, these operators are identical to

either Lp1q
𝑐 or Lp2q

𝑐 and, as we established earlier, this implies that Ψ𝑂p𝑐ℎq,1 “ Ψ𝑂p𝑐ℎq,2 “ 0. Repeating the
argument, we can now show that Ψ “ 0 identically on the whole tree which gives a contradiction. �

The following observation holds for a general Jacobi matrix (2.8) and (2.9). Let 𝜎𝑌 denote the spectral
measure of 𝛿p𝑌 q with respect to J , i.e.,

(A.2) 𝑚𝑌 p𝑧q :“
A

pJ ´ 𝑧q´1𝛿p𝑌 q, 𝛿p𝑌 q
E

“

ż

R

𝑑𝜎𝑌 p𝑥q

𝑥 ´ 𝑧
, 𝑧 P C` .

If we delete all edges connecting𝑌 to its neighbors, say 𝑙 of them, we will be left with the vertex𝑌 and 𝑙 subtrees
tTr𝑌 ,𝑌𝑗 su

𝑙
𝑗“1. The restrictions of J to these subtrees are also Jacobi matrices and we previously denoted them

by JTr𝑌 ,𝑌𝑗 s
. Let

(A.3) 𝑚r𝑌 ,𝑌𝑗 sp𝑧q :“
A

pJTr𝑌 ,𝑌𝑗 s
´ 𝑧q´1𝛿p𝑌𝑗q, 𝛿p𝑌𝑗q

E

“

ż

R

𝑑𝜎r𝑌 ,𝑌𝑗 sp𝑥q

𝑥 ´ 𝑧
, 𝑧 P C` .

Then the following lemma holds.
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Lemma A.2. For every 𝑧 P C`, we have

(A.4) 𝑚𝑌 p𝑧q “
1

𝑉𝑌 ´
ř𝑙
𝑗“1𝑊𝑌𝑗 ,𝑌𝑚r𝑌 ,𝑌𝑗 sp𝑧q ´ 𝑧

.

Proof. Let 𝑓 :“ pJ ´ 𝑧q´1𝛿p𝑌 q. Clearly, J 𝑓 “ 𝑧 𝑓 ` 𝛿p𝑌 q, that is,

(A.5) pJ 𝑓 q𝑋 “

$

&

%

𝑉𝑋 𝑓𝑋 `
ř

𝑍„𝑋 𝑊
1{2
𝑍,𝑋

𝑓𝑋 “ 𝑧 𝑓𝑋 , 𝑋 ‰ 𝑌,

𝑉𝑌 𝑓𝑌 `
ř𝑙
𝑗“1𝑊

1{2
𝑌𝑗 ,𝑌

𝑓𝑌𝑗
“ 𝑧 𝑓𝑌 ` 1, 𝑋 “ 𝑌 .

Set 𝑓 p 𝑗q :“ ´
`

𝑊
1{2
𝑌 ,𝑌𝑗

𝑓𝑌
˘´1

𝑓|Vr𝑌 ,𝑌𝑗 s
, which is a renormalized restriction of 𝑓 to the set of vertices Vr𝑌 ,𝑌𝑗 s of

Tr𝑌 ,𝑌𝑗 s. Observe that

(A.6)
´

JTr𝑌 ,𝑌𝑗 s
𝑓 p 𝑗q

¯

𝑋
“

$

&

%

`

J 𝑓 p 𝑗q
˘

𝑋
“ 𝑧 𝑓

p 𝑗q

𝑋
, 𝑋 ‰ 𝑌 𝑗 ,

𝑉𝑌𝑗
𝑓

p 𝑗q

𝑌𝑗
`
ř

𝑍„𝑌𝑗 ,𝑍‰𝑌 𝑊
1{2
𝑍,𝑌𝑗

𝑓
p 𝑗q

𝑍
“ 𝑧 𝑓

p 𝑗q

𝑌𝑗
` 1, 𝑋 “ 𝑌 𝑗 ,

where both relations follow from the first line of (A.5) (for the second relation we need to separate the summand
corresponding to 𝑍 “ 𝑌 , bring it to the other side of the equation, and then divide by it). It follows immediately
from (A.6) that

JTr𝑌 ,𝑌𝑗 s
𝑓 p 𝑗q “ 𝑧 𝑓 p 𝑗q ` 𝛿𝑌𝑗 ñ 𝑓 p 𝑗q “ pJTr𝑌 ,𝑌𝑗 s

´ 𝑧q´1𝛿p𝑌𝑗q.

The claim of the lemma follows from the second equality in (A.5) since 𝑓𝑌 “ xpJ ´ 𝑧q´1𝛿p𝑌 q, 𝛿p𝑌 qy “ 𝑚𝑌 p𝑧q

and similarly 𝑓𝑌𝑗
“ ´

`

𝑊
1{2
𝑌 ,𝑌𝑗

𝑓𝑌
˘

𝑓
p 𝑗q

𝑌𝑗
“ ´𝑊

1{2
𝑌𝑗 ,𝑌

𝑚𝑌 p𝑧q𝑚r𝑌 ,𝑌𝑗 sp𝑧q. �

Remark. The recursion relations for 𝑚-functions, such as the one in formula (A.4), are well-known and have
been used previously, e.g., [5, 18, 34].

Let us now return to the operators J “ Lp𝑙q
𝑐 , 𝑙 P t1, 2u. Take any vertex 𝑌 ‰ 𝑂. Deleting the edge p𝑌,𝑌p𝑝qq

leaves us with two subtrees. As before, we denote by Tr𝑌 ,𝑌p𝑝qs the one containing 𝑌p𝑝q, and let 𝑚p𝑙q

𝑌
p𝑧q and

𝑚
p𝑙q

r𝑌 ,𝑍s
p𝑧q to be given by (A.2) and (A.3), respectively (with J “ Lp𝑙q

𝑐 ).

Lemma A.3. For every 𝑌 ‰ 𝑂, the function 𝑚p𝑙q

r𝑌 ,𝑌p𝑝qs
p𝑧q is meromorphic in CzpΔ𝑐,1 Y Δ𝑐,2q and the function

𝑚
p𝑙q

𝑌
p𝑧q is analytic there.

Proof. Recall that the functions 𝑚𝐼 p𝑧q and 𝑚𝐼 𝐼 p𝑧q are in fact analytic in CzpΔ𝑐,1 Y Δ𝑐,2q. We shall prove the
desired claims inductively on 𝑛, the distance from 𝑌 to the root 𝑂. Assume first that 𝑛 “ 1. Let 𝜄 be the type of
𝑌 . Formula (A.4) applied at the vertex 𝑂 to the operator Lp𝑙q

𝑐 restricted to the subtree Tr𝑌 ,𝑂s gives

𝑚
p𝑙q

r𝑌 ,𝑂s
p𝑧q “

1

𝐵𝑐,𝑙 ´ 𝐴𝑐,3´ 𝜄𝑚
p𝑙q

r𝑂,𝑍s
p𝑧q ´ 𝑧

,

where 𝑍 is the other “child” of 𝑂 and we used an obvious fact that the restriction of Lp𝑙q
𝑐 from Tr𝑌 ,𝑂s to the

subtree Tr𝑂,𝑍s is the same as the restriction of Lp𝑙q
𝑐 from T to Tr𝑂,𝑍s. Since the restriction of Lp𝑙q

𝑐 to 𝑇r𝑂,𝑍s

is Lp3´ 𝜄q
𝑐 , 𝑚p𝑙q

r𝑂,𝑍s
p𝑧q is equal to either 𝑚𝐼 p𝑧q when 𝜄 “ 2 or 𝑚𝐼 𝐼 p𝑧q when 𝜄 “ 1. In any case, 𝑚p𝑙q

r𝑌 ,𝑂s
p𝑧q is

meromorphic outside Δ𝑐,1 Y Δ𝑐,2.
Suppose now that the claims are true for all vertices up to the distance 𝑛. Consider any𝑌 such that its distance

from the root is 𝑛 ` 1. Let 𝜄 be the type of 𝑌 . As in the first part of the proof, apply (A.4) at the vertex 𝑌p𝑝q of
the subtree Tr𝑌 ,𝑌p𝑝qs to get

𝑚
p𝑙q

r𝑌 ,𝑌p𝑝qs
p𝑧q “

1

𝐵𝑐, 𝜄𝑝 ´ 𝐴𝑐, 𝜄p𝑝q
𝑚

p𝑙q

r𝑌p𝑝q ,p𝑌p𝑝qqp𝑝qs
p𝑧q ´ 𝐴𝑐,3´ 𝜄𝑚

p𝑙q

r𝑌p𝑝q ,𝑍s
p𝑧q ´ 𝑧

.

where 𝜄p𝑝q is the type of 𝑌p𝑝q and 𝑍 is the “sibling” of 𝑌 . The first function in the denominator is meromorphic
outside Δ𝑐,1 Y Δ𝑐,2 by the inductive assumption and the other one is either 𝑚𝐼 p𝑧q or 𝑚𝐼 𝐼 p𝑧q. Thus, 𝑚p𝑙q

r𝑌 ,𝑌p𝑝qs
is

also meromorphic outside Δ𝑐,1 YΔ𝑐,2. This way we get the claim for 𝑛` 1 and so we proved the first statement
of the lemma.

Now, apply (A.4) to 𝑚p𝑙q

𝑌
p𝑧q. The functions involved are 𝑚r𝑌 ,𝑌p𝑐ℎq, 𝑗 sp𝑧q, 𝑗 P t1, 2u, and 𝑚r𝑌 ,𝑌p𝑝qsp𝑧q. The

first two are 𝑚𝐼 p𝑧q, 𝑚𝐼 𝐼 p𝑧q and they are analytic in the considered domain. The third one is meromorphic there
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by the first statement of the lemma. Notice that 𝑚p𝑙q

𝑌
p𝑧q can not have poles by Lemma A.1 thus it is analytic

outside Δ𝑐,1 Y Δ𝑐,2. �

Lemma A.4. Let 𝑌 P V and 𝑐 P p0, 1q. If 𝜎p𝑙q

𝑌
is the spectral measure of 𝑌 with respect to Lp𝑙q

𝑐 , 𝑙 P t1, 2u,
then it is absolutely continuous and its support is equal to Δ𝑐,1 Y Δ𝑐,2.

Proof. The measure 𝜎p𝑙q

𝑂
is purely absolutely continuous and is supported on Δ𝑐,1 Y Δ𝑐,2 as explained before

Lemma A.1. Fix 𝑌 ‰ 𝑂 and let 𝜄𝑌 be the type of 𝑌 . Further, let 𝑚p𝑙q

𝑌
p𝑧q and 𝑚p𝑙q

r𝑌 ,𝑍s
p𝑧q be given by (A.2) and

(A.3), respectively, with J “ Lp𝑙q
𝑐 . Then is follows from (2.10) and (A.4) that

=𝑚p𝑙q

𝑌
p𝐸 ` i𝜖q “

𝐴𝑐, 𝜄𝑌=𝑚
p𝑙q

r𝑌 ,𝑌p𝑝qs
p𝐸 ` i𝜖q `

ř2
𝑖“1 𝐴𝑐,𝑖=𝑚

p𝑙q

r𝑌 ,𝑌p𝑐ℎq,𝑖s
p𝐸 ` i𝜖q ` 𝜖

|𝐵𝑐, 𝜄𝑌 ´ 𝐴𝑐, 𝜄𝑌𝑚
p𝑙q

r𝑌 ,𝑌p𝑝qs
p𝐸 ` i𝜖q ´

ř2
𝑖“1 𝐴𝑐,𝑖𝑚

p𝑙q

r𝑌 ,𝑌p𝑐ℎq,𝑖s
p𝐸 ` i𝜖q ´ p𝐸 ` i𝜖q|2

ď
1

𝐴𝑐, 𝜄𝑌=𝑚
p𝑙q

r𝑌 ,𝑌p𝑝qs
p𝐸 ` i𝜖q `

ř2
𝑖“1 𝐴𝑐,𝑖=𝑚

p𝑙q

r𝑌 ,𝑌p𝑐ℎq,𝑖s
p𝐸 ` i𝜖q ` 𝜖

ď
1

𝐴𝑐,𝑙=𝑚p𝑙q

r𝑌 ,𝑌p𝑐ℎq,𝑙s
p𝐸 ` i𝜖q

,

because the imaginary parts of all 𝑚-functions are positive in C`. Notice now that the restriction of Lp𝑙q
𝑐 to any

subtree of the type Tr𝑍p𝑝q ,𝑍s is in fact equal to either Lp1q
𝑐 or Lp2q

𝑐 . Therefore, 𝑚p𝑙q

r𝑌 ,𝑌p𝑐ℎq,𝑙s
is either 𝑚𝐼 or 𝑚𝐼 𝐼 .

The properties (A) and (B) of 𝑚𝐼 and 𝑚𝐼 𝐼 listed above can be now applied to get

sup
𝐸P𝐼 ,0ă𝜖ă1

|=𝑚p𝑙q

𝑌
p𝐸 ` i𝜖q| ă 8

for every interval 𝐼 Ă Δ𝑐,1 YΔ𝑐,2. This implies that 𝜎p𝑙q

𝑌
is purely absolutely continuous on 𝐼. By Lemma A.3,

the measure 𝜎p𝑙q

𝑌
is supported inside Δ𝑐,1 Y Δ𝑐,2 and Lemma A.1 implies that it has no mass points. Therefore,

we conclude that 𝜎p𝑙q

𝑌
is purely absolutely continuous, as claimed. �

Theorem A.1. We have that 𝜎pLp𝑙q
𝑐 q “ 𝜎esspLp𝑙q

𝑐 q “ Δ𝑐,1 Y Δ𝑐,2, 𝑙 P t1, 2u, where, as before, we understand
that Δ0,1 :“ t𝛼1u and Δ1,2 :“ t𝛽2u.

Proof. If 𝑐 P p0, 1q, Lemma A.4 shows that 𝛿p𝑌 q belongs to the absolutely continuous subspace of Lp𝑙q
𝑐 for all

𝑌 . Since all linear combinations of 𝛿p𝑌 q must belong to this subspace and are dense in ℓ2pVq, this subspace is
in fact the whole space ℓ2pVq. Thus, 𝜎pLp𝑙q

𝑐 q “ 𝜎esspLp𝑙q
𝑐 q and it is equal to Δ𝑐,1 Y Δ𝑐,2 by Lemma A.4 and

the Spectral Theorem.
Let 𝑐 P t0, 1u. We shall consider Lp2q

0 only, other cases can be handled similarly. By (2.7), we have 𝐴0,1 “ 0
and 𝐴0,2 ą 0. Thus, the operator Lp2q

0 decouples into the following direct sum

(A.7) Lp2q

0 “ A1
à

˜

8
à

𝑛“1
A2

¸

where A1 is one-sided Jacobi matrix

A1 :“

¨

˚

˚

˝

𝐵0,2
a

𝐴0,2 0 0
a

𝐴0,2 𝐵0,2
a

𝐴0,2 0
0

a

𝐴0,2 𝐵0,2
a

𝐴0,2
. . . . . . . . . . . .

˛

‹

‹

‚

and A2 is one-sided Jacobi matrix given by

A2 :“

¨

˚

˚

˝

𝐵0,1
a

𝐴0,2 0 0
a

𝐴0,2 𝐵0,2
a

𝐴0,2 0
0

a

𝐴0,2 𝐵0,2
a

𝐴0,2
. . . . . . . . . . . .

˛

‹

‹

‚

.

This direct sum decomposition implies that 𝜎pLp2q

0 q “ 𝜎pA1q Y 𝜎pA2q. It is well known that 𝜎pA1q “

r𝐵0,2 ´ 2
a

𝐴0,2, 𝐵0,2 ` 2
a

𝐴0,2s “ r𝛼2, 𝛽2s, see (2.7) for the second equality, and that

p𝑚1p𝑧q :“ xpA1 ´ 𝑧q´1𝛿p0q, 𝛿p0qy “
𝐵0,2 ´ 𝑧 `

a

p𝑧 ´ 𝐵0,2q2 ´ 4𝐴0,2

2𝐴0,2
“
𝐵0,2 ´ 𝑧 ` 𝑤2p𝑧q

2𝐴0,2
.
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Furthermore, since the restriction of A2 from ℓ2pZě0q to ℓ2pNq is equal to A1 and therefore 𝑚r0,1sp𝑧q “ p𝑚1p𝑧q

in the notation of (A.3), we get from (A.4) that

p𝑚2p𝑧q :“ xpA2 ´ 𝑧q´1𝛿p0q, 𝛿p0qy “
´1

𝐴0,2 p𝑚1p𝑧q ` 𝑧 ´ 𝐵0,1
,

where 𝑤2p𝑧q was introduced in the Proposition 2.1. One can readily check that =p𝑚2p𝑥q ą 0 for 𝑥 P p𝛼2, 𝛽2q,
=p𝑚2p𝑥q “ 0 for 𝑥 R r𝛼2, 𝛽2s, and that p𝑚2p𝑧q has the unique pole at a point q𝑥 P R given by

(A.8) 𝐴0,2 p𝑚1pq𝑥q ` q𝑥 ´ 𝐵0,1 “ 0

which implies that q𝑥 “ 𝛼1 thanks to (2.7). In other words, 𝜎pA2q “ 𝛼1 Y r𝛼2, 𝛽2s. Now, the statement about
the spectrum and essential spectrum follows from direct sum decomposition (A.7). �

References
[1] N.I. Akhiezer. The classical moment problem and some related questions in analysis. Hafner Publishing Co., New York, 1965. 2
[2] N.I. Akhiezer, I.M. Glazman. Theory of linear operators in Hilbert space. Dover Publications, Inc., New York, 1993. 45
[3] C. Allard and R. Froese. A Mourre estimate for a Schrödinger operator on a binary tree. Rev. Math. Phys. 12, no. 12, 1655–1667,

2000. 3
[4] A. Angelesco. Sur deux extensions des fractions continues algébraiques. Comptes Rendus de l’Academie des Sciences, Paris, 168:262–

265, 1919. 4
[5] K. Aomoto. Algebraic equations for Green kernel on a tree. Proc. Japan Acad. Ser. A Math. Sci., 64, no. 4, 123–125, 1988. 46
[6] A.I. Aptekarev. Asymptotics of polynomials of simultaneous orthogonality in the Angelesco case. Mat. Sb. (N.S.), 136(178)(1):56–84,

1988. 8, 9
[7] A.I. Aptekarev, A.I. Bogolubsky, and M. Yattselev. Convergence of ray sequences of Frobenious-Padé approximants. Math. Sb.,

208(3):4–27, 2017. https://doi.org/10.4213/sm8632. 27
[8] A.I. Aptekarev, S.A. Denisov, and M.L. Yattselev. Self-adjoint Jacobi matrices on trees and multiple orthogonal polynomials. Trans.

Amer. Math. Soc., 373(2), 875–917, 2020. https://doi.org/10.1090/tran/7959. 1, 2, 3, 4, 7, 23, 43, 45
[9] A.I. Aptekarev, M. Derevyagin, W. Van Assche. Discrete integrable systems generated by Hermite–Padé approximants. Nonlinearity,

29(5):1487–1506, 2016. 3
[10] A.I. Aptekarev, V.A. Kalyagin, G. López Lagomasino, and I.A. Rocha. On the limit behavior of recurrence coefficients for multiple

orthogonal polynomials. J. Approx. Theory, 139:346–370, 2006. 4
[11] A.I. Aptekarev and V.G. Lysov. Systems of Markov functions generated by graphs and the asymptotics of their Hermite-Padé

approximants. Mat. Sb., 201(2)(1):183–234, 2010. 9
[12] L. Baratchart and M. Yattselev. Convergent interpolation to Cauchy integrals over analytic arcs with Jacobi-type weights. Int. Math.

Res. Not., 2010(22):4211–4275, 2010. https://doi.org/10.1093/imrn/rnq026. 22
[13] J. Breuer, S. Denisov, and L. Eliaz. On the essential spectrum of Schrödinger operators on trees. Math. Phys. Anal. Geom., 21(4) Art.

33, 25 pp., 2018. 6, 7
[14] J. Breuer, R. Frank. Singular spectrum for radial trees. Rev. Math. Phys., 21, no. 7, 929–945, 2009. 3
[15] P. Deift. Orthogonal Polynomials and Random Matrices: a Riemann-Hilbert Approach, volume 3 of Courant Lectures in Mathematics.

Amer. Math. Soc., Providence, RI, 2000. 37, 38
[16] P. Deift, T. Kriecherbauer, K.T.-R. McLaughlin, S. Venakides, and X. Zhou. Strong asymptotics for polynomials orthogonal with

respect to varying exponential weights. Comm. Pure Appl. Math., 52(12):1491–1552, 1999. 35
[17] P. Deift and X. Zhou. A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the mKdV equation.

Ann. of Math., 137:295–370, 1993. 23
[18] S. Denisov. On the preservation of absolutely continuous spectrum for Schrödinger operators. J. Funct. Anal., 231, no. 1, 143–156,

2006. 46
[19] S. Denisov, A. Kiselev. Spectral properties of Schrödinger operators with decaying potentials. (English summary) Spectral theory and

mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, 565–589, Proc. Sympos. Pure Math., 76, Part 2, Amer.
Math. Soc., Providence, RI, 2007. 3

[20] A.S. Fokas, A.R. Its, and A.V. Kitaev. Discrete Painlevé equations and their appearance in quantum gravity. Comm. Math. Phys.,
142(2):313–344, 1991. 23

[21] A.S. Fokas, A.R. Its, and A.V. Kitaev. The isomonodromy approach to matrix models in 2D quantum gravitation. Comm. Math. Phys.,
147(2):395–430, 1992. 23

[22] R. Froese, D. Hasler, W. Spitzer. Transfer matrices, hyperbolic geometry and absolutely continuous spectrum for some discrete
Schrödinger operators on graphs. J. Funct. Anal., 230, no. 1, 184–221, 2006. 3

[23] V. Georgescu, S. Golénia. Isometries, Fock spaces, and spectral analysis of Schrödinger operators on trees. J. Funct. Anal., 227, no.
2, 389–429, 2005. 3

[24] J.S. Geronimo, A.B. Kuijlaars, and W. Van Assche. Riemann-Hilbert problems for multiple orthogonal polynomials. In Special
functions 2000: current perspective and future directions, number 30 in NATO Sci. Ser. II Math. Phys. Chem., pages 23–59,
Dordrecht, 2001. Kluwer Acad. Publ. 23, 40

[25] S. Golénia. 𝐶˚-algebras of anisotropic Schrödinger operators on trees. J. Ann. Henri Poincaré, 5, no. 6, 1097–1115, 2004. 3
[26] A.A. Gonchar and E.A. Rakhmanov. On convergence of simultaneous Padé approximants for systems of functions of Markov type.

Trudy Mat. Inst. Steklov, 157:31–48, 1981. English transl. in Proc. Steklov Inst. Math. 157, 1983. 5, 12
[27] A.R. Its, A.B.J. Kuijlaars, and J. Östensson. Critical edge behavior in unitary random matrix ensembles and the thirty-fourth Painlevé

transcendent. Int. Math. Res. Not. IMRN, 67 pp., 2008. Art. ID rnn017. 35
[28] A.R. Its, A.B.J. Kuijlaars, and J. Östensson. Asymptotics for a special solution of the thirty fourth Painlevé equation. Nonlinearity,

22(7):1523–1558, 2009. 35

https://doi.org/10.4213/sm8632
https://doi.org/10.1090/tran/7959
https://doi.org/10.1093/imrn/rnq026


JACOBI MATRICES ON TREES GENERATED BY ANGELESCO SYSTEMS 49

[29] V.A. Kalyagin. On a class of polynomials defined by two orthogonality relations. Mat. Sb., 110(4):609–627, 1979. 8
[30] M. Keller and D. Lenz. Unbounded Laplacians on graphs: basic spectral properties and the heat equation. Math. Model. Nat. Phenom.,

5, 198–224, 2010. 3
[31] M. Keller, D. Lenz, S. Warzel. Absolutely continuous spectrum for random operators on trees of finite cone type. J. Anal. Math., 118,

no. 1, 363–396, 2012. 3, 7
[32] M. Keller, D. Lenz, S. Warzel. An invitation to trees of finite cone type: random and deterministic operators. Markov Process. Related

Fields, 21, no. 3, part 1, 557–574, 2015. 3, 7
[33] M. Keller, D. Lenz, S. Warzel. On the spectral theory of trees with finite cone type. Israel J. Math., 194, no. 1, 107–135, 2013. 3, 7,

45
[34] A. Klein. Extended states in the Anderson model on the Bethe lattice. Adv. Math., 133, no. 1, 163–184, 1998. 46
[35] A.B. Kuijlaars, K.T.-R. McLaughlin, W. Van Assche, and M. Vanlessen. The Riemann-Hilbert approach to strong asymptotics for

orthogonal polynomials on r´1, 1s. Adv. Math., 188(2):337–398, 2004. 34
[36] J. Nuttall and G.M. Trojan. Asymptotics of Hermite-Padé polynomials for a set of functions with different branch points. Constr.

Approx. 3:13–29, 1987. 8
[37] F.W.J. Olver et al. editors. NIST digital library of mathematical functions. http://dlmf.nist.gov. 23
[38] Ch. Pommerenke. Boundary Behaviour of Conformal Maps. Springer-Verlag, New York, 1992 15
[39] I.I. Privalov. Boundary Properties of Analytic Functions. GITTL, Moscow, 1950. German transl., VEB Deutscher Verlag Wiss.,

Berlin, 1956. 12
[40] T. Ransford. Potential Theory in the Complex Plane. volume 28 of London Mathematical Society Student Texts. Cambridge University

Press, Cambridge, 1995. 5
[41] M. Reed, B. Simon. Methods of modern mathematical physics, I, Functional analysis. Academic Press, Inc. Harcourt Brace Jovanovich

Publishers, New York, 1980. 2, 7
[42] E.B. Saff and V. Totik. Logarithmic Potentials with External Fields. volume 316 of Grundlehren der Math. Wissenschaften. Springer-

Verlag, Berlin, 1997. 12, 13, 14
[43] W. Van Assche. Nearest neighbor recurrence relations for multiple orthogonal polynomials. J. Approx. Theory, 163:1427–1448, 2011.

3
[44] S.-X. Xu and Y.-Q. Zhao. Painlevé XXXIV asymptotics of orthogonal polynomials for the Gaussian weight with a jump at the edge.

Stud. Appl. Math., 127:67–105, 2011. 35
[45] M. Yattselev. Strong asymptotics of Hermite-Padé approximants for Angelesco systems. Canad. J. Math., 68(5):1159–1200, 2016.

http://dx.doi.org/10.4153/CJM-2015-043-3. 8, 12, 14, 16, 18, 24, 25, 26, 35, 39

Keldysh Institute of Applied Mathematics, Russian Academy of Science, Miusskaya Pl. 4, Moscow, 125047 Russian
Federation

Email address: aptekaa@keldysh.ru

Department of Mathematics, University of Wisconsin-Madison, 480n Lincoln Dr., Madison, WI 53706, USA

Keldysh Institute of Applied Mathematics, Russian Academy of Science, Miusskaya Pl. 4, Moscow, 125047 Russian
Federation

Email address: denissov@math.wisc.edu

Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, 402 North Blackford Street,
Indianapolis, IN 46202, USA

Keldysh Institute of Applied Mathematics, Russian Academy of Science, Miusskaya Pl. 4, Moscow, 125047 Russian
Federation

Email address: maxyatts@iupui.edu

http://dlmf.nist.gov
http://dx.doi.org/10.4153/CJM-2015-043-3
mailto:aptekaa@keldysh.ru
mailto:denissov@math.wisc.edu
mailto:maxyatts@iupui.edu

	1. Introduction
	1.1. Jacobi matrices on trees
	1.2. Multiple orthogonal polynomials and recurrence relations
	1.3. Angelesco systems and ray limits of NNRR coefficients
	1.4. Results and structure of the paper

	2. Expressions for the ray limits and proof of Theorem 1.3
	2.1. Expressions for the ray limits
	2.2. Proof of Theorem 1.3

	3. Multiple Orthogonal Polynomials for Angelesco Systems
	3.1. Fully Marginal Ray Sequences
	3.2. Szegő Functions
	3.3. Non-Fully Marginal and Non-Marginal Ray Sequences

	4. On the Supports of the Equilibrium measures
	5. Proof of Propositions 2.1 and 3.1
	5.1. Proof of Proposition 2.1
	5.2. Auxiliary Estimates, I
	5.3. Proof of Proposition 3.1
	5.4. Auxiliary Estimates, II

	6. Proof of Theorem 3.1
	7. Proof of Theorems 3.2–3.4
	7.1. Initial RH Problem
	7.2. Opening of the Lenses
	7.3. Auxiliary Parametrices
	7.4. Conformal Maps
	7.5. Local Parametrices
	7.6. Solution of [rhx]RHP-bold0mu mumu XXXXXX
	7.7. Proof of Theorems 3.2–3.4

	8. Proof of Theorem 1.2
	8.1. Fully Marginal Ray Sequences
	8.2. Asymptotics of  a,1,a,2  along non-fully Marginal Sequences
	8.3. Asymptotics of  b,1,b,2 along non-fully Marginal Sequences

	Appendix A. 
	References

