
REMARK ON THE FORMULA BY RAKHMANOV AND STEKLOV’S CONJECTURE

S. DENISOV

Abstract. The conjecture by Steklov was solved negatively by Rakhmanov in 1979. His original proof

was based on the formula for orthogonal polynomial obtained by adding point masses to the measure of

orthogonality. In this note, we show how this polynomial can be obtained by applying the method developed
recently for proving the sharp lower bounds for the problem by Steklov.

1. Introduction: Steklov’s conjecture and recent development

Consider the weight ρ(x) on the interval [−1, 1] and the sequence of polynomials {Pn(x)}∞n=0,
which are orthonormal ∫ 1

−1
Pn(x)Pm(x) ρ(x) dx = δn,m , n,m = 0, 1, 2 . . . (1)

with respect to ρ. Assuming that the leading coefficient of Pn(x) is positive, these polynomials are
defined uniquely. The Steklov conjecture dates back to 1921 [13] and it asks whether a sequence
{Pn(x)} is bounded at any point x∈(−1, 1), provided that ρ(x) is positive on [−1, 1], i.e.,

ρ(x) > δ, δ > 0 . (2)

This conjecture attracted a lot of attention (check, e.g., [3, 4, 5, 7] and a survey [14]). It was
solved negatively by Rakhmanov in [10]. All existing proofs use the following connection between
the polynomials orthogonal on the segment of the real line and on the unit circle. Let ψ, (x ∈
[−1, 1], ψ(−1) = 0) be a non-decreasing bounded function with an infinite number of growth points.
Consider the system of polynomials {Pk}, (k = 0, 1, . . .) orthonormal with respect to the measure
dψ supported on the segment [−1, 1]. Introduce the function

σ(θ) =

{
−ψ(cos θ), 0 6 θ 6 π,
ψ(cos θ), π 6 θ 6 2π,

(3)

which is bounded and non-decreasing on [0, 2π]. Consider the polynomials φk(z, σ) = λkz
k + . . . ,

λk > 0 orthonormal with respect to measure dσ, i.e.,∫ 2π

0
φn(eiθ)φm(eiθ) dσ = δn,m , n,m = 0, 1, 2 . . . (4)

These polynomials can be though of as polynomials orthonormal on the unit circle T with respect
to a measure σ given on T as well.

Later, we will use the following notation: for every polynomial Qn(z) = qnz
n + . . .+ q0 of degree

at most n, we introduce the (∗)–operation:

Qn(z)
(∗)−→ Q∗n(z) = q̄0z

n + . . .+ q̄n

This (∗) depends on n. Then, we have the Lemma.
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Lemma 1.1. ([6, 15]) The polynomial φn is related to Pk by the formula

Pk(x, ψ) =
φ2k(z, σ) + φ∗2k(z, σ)√
2π
[
1 + λ−1

2k φ2k(0, σ)
] z−k, k = 0, 1, . . . , (5)

where x=(z+z−1)/2.

This reduction also works in the opposite direction: given a measure σ, defined on T and sym-
metric with respect to R, we can map it to the measure on the real line and the corresponding
polynomials will be related by (5).

For every δ ∈ (0, 1), let Sδ denote the class of probability measures σ which satisfy

σ′(θ) > δ/(2π), a.e. θ ∈ [0, 2π). (6)

We will call Sδ the Steklov class. The version of Steklov’s conjecture for the unit circle then
reads as follows:

Given σ ∈ Sδ, is it true that the sequence {φn(z, σ)} is bounded for every z ∈ T?

The normalization ∫
dσ = 1

is not restrictive because of the scaling: φn(z, σ) = α1/2φn(z, ασ), α > 0. The negative answer to
this question (see [10]) implied the solution to Steklov’s conjecture on the real line due to Lemma
1.1.

Besides the orthonormal polynomials, we can define the monic orthogonal ones {Φn(z, σ)} by
requiring

coeff(Φn, n) = 1,

∫ 2π

0
Φn(eiθ, σ)Φm(eiθ, σ) dσ = 0 , m < n,

where coeff(Q, j) denotes the coefficient in front of zj in the polynomial Q.
The original argument by Rakhmanov was based on the following formula for the orthogonal

polynomial that one gets after adding several point masses to a “background” measure at particular
locations on the circle.

Lemma 1.2. (Rakhmanov’s formula, [10]) Let µ be a positive measure on T with infinitely
many growth points and

Kn(ξ, z, µ) =
n∑
j=0

φj(ξ, µ)φj(z, µ)

be the Christoffel-Darboux kernel, i.e.,

P (ξ) = 〈P (z),Kn(ξ, z, µ)〉L2(T,µ), ∀P : degP 6 n .

Then, if {ξj} ∈ T, j = 1, ... ,m, m < n are chosen such that

Kn−1(ξj , ξl, µ) = 0, j 6= l (7)

then

Φn(z, η) = Φn(z, µ)−
m∑
k=1

mkΦn(ξk, µ)

1 +mkKn−1(ξk, ξk, µ)
Kn−1(ξk, z, µ) (8)

where

η = µ+
m∑
k=1

mkδθk , ξk = eiθk , mk > 0 .
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It is known ([10]) that for every ẑ ∈ T, the function Kn−1(ξ, ẑ, µ) has exactly n − 1 different
roots {ξj(ẑ)}, j = 1, . . . , n − 1 and they all lie on T. Moreover, Kn−1(ξi, ξj , µ) = 0 for i 6= j (see
[10]). The limitation that {ξj} must be the roots is quite restrictive and the direct application of
this formula with background dµ = δ(2π)−1dθ yields only logarithmic lower bound in the following
variational problem:

Mn,δ = sup
σ∈Sδ

‖φn(z, σ)‖L∞(T) > C(δ) log n, n > n0(δ) (9)

The straightforward iteration of this “fixed-n, varying σ” construction gave the negative solution
to the original conjecture of Steklov ([10]).

Remark. It is known [12] that for probability measures σ in the Szegő class, i.e., those σ for
which ∫ 2π

0
log σ′dθ > −∞,

we have

exp

(
1

4π

∫
T

log(2πσ′(θ))dθ

)
≤
∣∣∣∣Φn(z, σ)

φn(z, σ)

∣∣∣∣ 6 1, ∀z ∈ C

Thus, for measures in Steklov class, i.e., those satisfying (6), the following estimate holds

√
δ ≤

∣∣∣∣Φn(z, σ)

φn(z, σ)

∣∣∣∣ 6 1, ∀z ∈ C

so, is Φn or φn grow in n, they grow simultaneously.
The upper bound for Mn,δ is easy to obtain

Mn,δ 6 C(δ)
√
n (10)

and the corresponding result for fixed σ ∈ Sδ and n→∞ is contained in the following Lemma.

Lemma 1.3. If σ ∈ Sδ, then

‖φn(z, σ)‖L∞(T) = o(
√
n), n→∞ . (11)

This result follows from, e.g., [8], Theorem 4 (see also [9],[16] for the real-line case).
The gap between log n and

√
n was nearly closed in the second paper by Rakhmanov [11] where

the following bound was obtained:

Mn,δ > C(δ)

√
n

log3 n

under the assumption that δ is small.

In the recent paper [2], the following two Theorems were proved.

Theorem 1.1. ([2]) If δ ∈ (0, 1) is fixed, then

Mn,δ > C(δ)
√
n . (12)

and

Theorem 1.2. ([2]) Let δ∈(0, 1) be fixed. Then, for every positive sequence {βn} : limn→∞ βn = 0,
there is a probability measure σ∗ : dσ∗ = σ∗′dθ, σ∗∈Sδ such that

‖φkn(z, σ∗)‖L∞(T) > βkn
√
kn (13)

for some sequence {kn} ⊂ N.
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These two results completely settle the problem by Steklov on the sharpness of estimates (10)
and (11). The method used in the proof was very different from those of Rakhmanov. In the
current paper, we will show that it can be adjusted to the cover construction by Rakhmanov. This
new modification is interesting in its own as it contains certain cancellation different from the one
used in [2].

The structure of the paper is as follows. The second section contains the explanation of the main
idea used in [2] to prove Theorem 1.1. In the third one, we show how it can be used to cover the
Rakhmanov’s construction.

We will use the following notation. The Cauchy kernel C(z, ξ) is defined as

C(z, ξ) =
ξ + z

ξ − z
, ξ ∈ T .

The function analytic in D = {z : |z| < 1} is called Caratheodory function if its real part is
nonnegative in D. Given a set Ω, χΩ denotes the characteristic function of Ω. If two positive
functions f1(2) are given, we write f1 . f2 if there is an absolute constant C such that

f1 < Cf2

for all values of the argument. We define f1 & f2 similarly. Writing f1 ∼ f2 means f1 . f2 . f1.

2. Method used to prove Theorem 1.1

In this section we explain an idea used in the proof of Theorem 1.1. We start with recalling some
basic facts about the polynomial orthogonal on the unit circle. With any probability measure µ,
which is defined on the unit circle and have infinitely many growth points, one can associate the
orthonormal polynomials of the first and second kind, {φn} and {ψn}, respectively. {φn} satisfy
the following recursions ([12], p. 57) with Schur parameters {γn}:{

φn+1 = ρ−1
n (zφn − γnφ∗n), φ0 = 1

φ∗n+1 = ρ−1
n (φ∗n − γnzφn), φ∗0 = 1

(14)

and {ψn} satisfy the same recursion but with Schur parameters {−γn}, i.e.,{
ψn+1 = ρ−1

n (zψn + γnψ
∗
n), ψ0 = 1

ψ∗n+1 = ρ−1
n (ψ∗n + γnzψn), ψ∗0 = 1

(15)

The coefficient ρn is defined as

ρn =
√

1− |γn|2

The following Bernstein-Szegő approximation is valid:

Lemma 2.1. ([6],[12]) Suppose dµ is a probability measure and {φj} and {ψj} are the corresponding
orthonormal polynomials of the first/second kind, respectively. Then, for any N , the Caratheodory
function

FN (z) =
ψ∗N (z)

φ∗N (z)
=

∫
T
C(z, eiθ)dµN (θ), where dµN (θ) =

dθ

2π|φN (eiθ)|2
=

dθ

2π|φ∗N (eiθ)|2

has the first N Taylor coefficients identical to the Taylor coefficients of the function

F (z) =

∫
T
C(z, eiθ)dµ(θ) .

In particular, the polynomials {φj} and {ψj}, j 6 N are the orthonormal polynomials of the
first/second kind for the measure dµN .

We also need the following Lemma which can be verified directly:
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Lemma 2.2. The polynomial Pn(z) of degree n is the orthonormal polynomial for a probability
measure with infinitely many growth points if and only if

1. Pn(z) has all n zeroes inside D (counting the multiplicities).
2. The normalization conditions∫

T

dθ

2π|Pn(eiθ)|2
= 1 , coeff(Pn, n) > 0

are satisfied.

Proof. Take 2π|Pn(eiθ)|−2dθ itself as a probability measure. The orthogonality is then immediate.
�

We continue with a Lemma which paves the way for constructing the measure giving, in partic-
ular, the optimal bound (12). It is a special case of a solution to the truncated moment’s problem.

Lemma 2.3. Suppose we are given a polynomial φn and Caratheodory function F̃ which satisfy
the following properties

1. φ∗n(z) has no roots in D.
2. Normalization on the size and “rotation”∫

T
|φ∗n(z)|−2dθ = 2π , φ∗n(0) > 0 . (16)

3. F̃ ∈C∞(T), Re F̃ > 0 on T, and

1

2π

∫
T

Re F̃ (eiθ)dθ = 1 . (17)

Denote the Schur parameters given by the probability measures µn and σ̃

dµn =
dθ

2π|φ∗n(eiθ)|2
, dσ̃ = σ̃′dθ =

Re F̃ (eiθ)

2π
dθ,

as {γj} and {γ̃j}, respectively. Then, the probability measure σ, corresponding to Schur coefficients

γ0, . . . , γn−1, γ̃0, γ̃1, . . .

is purely absolutely continuous with the weight given by

σ′ =
4σ̃′

|φn + φ∗n + F̃ (φ∗n − φn)|2
=

2 Re F̃

π|φn + φ∗n + F̃ (φ∗n − φn)|2
. (18)

The polynomial φn is the orthonormal polynomial for σ.

The proof of this Lemma is contained in [2]. We, however, prefer to give its sketch here.

Proof. First, notice that {γ̃j} ∈ `1 by Baxter’s Theorem (see, e.g., [12], Vol.1, Chapter 5). There-
fore, σ is purely absolutely continuous by the same Baxter’s criterion. Define the orthonormal

polynomials of the first/second kind corresponding to measure σ̃ by {φ̃j}, {ψ̃j}. Similarly, let
{φj}, {ψj} be orthonormal polynomials for σ. Since, by construction, µn and σ have identical first
n Schur parameters, φn is n-th orthonormal polynomial for σ.

Let us compute the polynomials φj and ψj , orthonormal with respect to σ, for the indexes j > n.
By (15), the recursion can be rewritten in the following matrix form(

φn+m ψn+m

φ∗n+m −ψ∗n+m

)
=

(
Am Bm

Cm Dm

)(
φn ψn
φ∗n −ψ∗n

)
(19)
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where Am,Bm,Cm,Dm satisfy(
A0 B0

C0 D0

)
=

(
1 0
0 1

)
,(

Am Bm

Cm Dm

)
=

1

ρ̃0 · . . . · ρ̃m−1

(
z −γ̃m−1

−zγ̃m−1 1

)
· . . . ·

(
z −γ̃0

−zγ̃0 1

)
and thus depend only on γ̃0, . . . , γ̃m−1. Moreover, we have(

φ̃m ψ̃m
φ̃∗m −ψ̃∗m

)
=

(
Am Bm

Cm Dm

)(
1 1
1 −1

)
.

Thus, Am = (φ̃m + ψ̃m)/2, Bm=(φ̃m− ψ̃m)/2, Cm = (φ̃∗m− ψ̃∗m)/2, Dm=(φ̃∗m + ψ̃∗m)/2 and their
substitution into (19) yields

2φ∗n+m = φn(φ̃∗m − ψ̃∗m) + φ∗n(φ̃∗m + ψ̃∗m) = φ̃∗m

(
φn + φ∗n + F̃m(φ∗n − φn)

)
(20)

where

F̃m(z) =
ψ̃∗m(z)

φ̃∗m(z)
.

Since {γ̃n}∈`1 and {γn}∈`1, we have ([12], p. 225)

F̃m → F̃ as m→∞ and φ∗j → Π, φ̃∗j → Π̃ as j →∞ .

uniformly on D. The functions Π and Π̃ are the Szegő functions of σ and σ̃, respectively, i.e., they
are the outer functions in D that satisfy

|Π|−2 = 2πσ′, |Π̃|−2 = 2πσ̃′ (21)

on T. In (20), send m→∞ to get

2Π = Π̃
(
φn + φ∗n + F̃ (φ∗n − φn)

)
(22)

and we have (18) after taking the square of absolute values and using (21). �

In [2], to prove (12) with small δ, the polynomial φn and F̃ were chosen to satisfy extra conditions
(see Decoupling Lemma in [2]):

|φn(1)| > C
√
n (23)

and

|φ∗n(z)|+ |F̃ (z)(φ∗n(z)− φn(z))| 6 C
√

Re F̃ (z), z ∈ T (24)

(23) yields the
√
n–growth claimed in Theorem 1.1. The last inequality guarantees that σ belongs

to Steklov class due to (18) and (21). However, as will be made clear in the next section, (24) is
not necessary for polynomials to have large uniform norm.

3. Rakhmanov’s construction via new approach

Our goal in this section is twofold. Firstly, we use the method explained in section 2 to reproduce
Rakhmanov’s polynomial and polynomials with the similar structure that have large uniform norm
and which are orthogonal with respect to a measure in Steklov class. Secondly, we show that the
last condition in the Decoupling Lemma ([2], formula (3.6), or, what is the same, the bound (24)
above) is not really necessary for the orthogonal polynomial to have large uniform norm. Instead,
that can be achieved by a different sort of cancellation which might be of its own interest.
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We start with recalling the construction by Rakhmanov [10]. In Lemma 1.2, take the Lebesgue
measure µ : dµ = dθ/(2π). We have the following expression for the kernel

Kn−1(ξ, z, µ) =
n−1∑
j=0

ξ̄jzj =
(zξ̄)n − 1

zξ̄ − 1

Given two parameters ε, (0 < ε < 1) and m, (m < n − 1), we add the mass mk = εm−1 to each of

the points ξk = ei2πk/n, k = 0, . . . ,m− 1. Then Lemma 1.2 gives

Φn(z, µ) = zn − εm−1

1 + εnm−1

m−1∑
j=0

(
(ξj)

n−1zn−1 + . . .+ ξjz + 1
)

and therefore

Φ∗n(z, µ) = 1− εm−1

1 + εnm−1
(d1z + d2z

2 + . . .+ dnz
n) (25)

dl =
m−1∑
j=0

ξn−lj =
m−1∑
j=0

ξ−lj , l = 1, . . . , n

Thus, if n is even and m = n/2, we have

dn = m, dl =
(−1)l − 1

e−i2πl/n − 1
, l = 1, . . . , n− 1 (26)

and dn−l = dl, l = 1, . . . , n− 1. Then,

Φ∗n − Φn =

(
1 + 3ε

1 + 2ε

)
(1− zn), ‖Φ∗n − Φn‖L∞(T) < C (27)

Since

e−i2πl/n − 1 = −i2πl
n

+O

(
l2

n2

)
, l < 0.01n, (28)

it is clear that ‖Φn‖L∞(T) ∼ 1+ ε log n and this growth occurs around the points z = 1 and z = −1.
The choice of {mj} can be rather arbitrary and does not have to be given by equal mass distribution
to provide the logarithmic growth. Since ‖η‖ = 1 + ε and η′ = (2π)−1, the normalized measure
η/‖η‖ ∈ Sδ, δ = (1 + ε)−1

‖φn(z, η/‖η‖)‖L∞(T) ∼ 1 + ε lnn

This argument proves (9).
The next theorem is the main result of the paper. It is not new (see, e.g., [1]). However, we give

a different proof. In particular, it explains how the polynomial of the structure similar to (25) can
be obtained by the method described in the previous section.

Theorem 3.1. For every ε ∈ (0, 1), there is σ = σ′dθ:∫ 2π

0
dσ = 1, |σ′(θ)− (2π)−1| . ε

and

‖φn(z, σ)‖L∞(T) ∼ ε log n

Proof. We will consider an analytic polynomial Mn of degree n− 1 satisfying two conditions∫ 2π

0
ReMn(eiθ)dθ = 0, ‖ReMn(eiθ)‖L∞(T) < C, ‖ ImMn(eiθ)‖L∞(T) ∼ log n (29)
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This Mn is easy to find. Consider l(θ) = χ0<θ<π − χπ<θ<2π and take

L(z) = C(l) =
1

2π

∫ 2π

0
C(z, eiθ)l(eiθ)dθ =

1

2π

∫ 2π

0

eiθ + z

eiθ − z
l(eiθ)dθ

ReC is the Poisson kernel so ReL(eiθ) = l(θ), θ 6= 0, π. Then, we take Mn = Fn ∗ L, where Fn
is the Fejer kernel. Since Fn is real, nonnegative trigonometric polynomial of degree n − 1 and
‖Fn‖L1[0,2π] = 1, we have

|ReMn| = |Fn ∗ l| 6 1, z ∈ T;

∫ 2π

0
ReMn(eiθ)dθ = 0, Mn(0) = 0

The logarithmic growth of Mn around the points θ = 0 and θ = π is a standard exercise, e.g.,

| ImMn(eiθ)| ∼ log n, |θ| < Cn−1 (30)

with arbitrary large fixed C. Now, take a small positive ε and define

F̃ = 1− 2εMn, Dn = Mn + b, φ∗n = a(1 + ε(Dn +D∗n)) (31)

where a and b are positive parameters to be chosen later so that all conditions of the Lemma 2.3
are satisfied. We have

φn = a(zn + ε(Dn +D∗n))(
Notice that φ∗n−φn = a(1− zn) and compare it with (27).

)
Since Dn(0) = b and degDn = n− 1,

we have D∗n(0) = 0 and then φ∗n(0) = a(1 + εb) > 0. Let us check other normalization conditions
for these functions.

Re F̃ (eiθ) = 1 +O(ε) > 0,

∫ 2π

0
Re F̃ (eiθ)dθ = 2π (32)

Choose b such that ReDn ∈ [C1, C2] with C1 > 0. For example, if b = 2, then ReDn ∈ [1, 3]. We
can write

1 + ε(Dn +D∗n) = Dn

(
ε(1 + ei(nθ−2Θn)) +D−1

n

)
, z = eiθ ∈ T

where Θn = argDn. Notice that Dn is zero free in D since it has positive real part on T. Since

Re
(

1 + ei(nθ−2Θn)
)
> 0, ReD−1

n =
ReDn

|Dn|2
> 0

we have that φ∗n is zero free in D. Then, for z ∈ T,

|1 + ε(Dn +D∗n)| > |ReDn|
|Dn|

∼ |Dn|−1

and ∫ 2π

0
|1 + ε(Dn +D∗n)|−2dθ .

∫ 2π

0
|Dn|2dθ . 1 (33)

since ‖Dn‖L2(T) . b+ ‖L‖L2(T) . 1. On the other hand,

‖
(

1 + ε(Dn +D∗n)
)
− 1‖L2(T) ≤ 2ε‖Dn‖L2(T) . ε

and so ‖1 + ε(Dn +D∗n)‖L2(T) =
√

2π +O(ε). From Cauchy-Schwarz inequality, we get

2π ≤ ‖1 + ε(Dn +D∗n)‖L2(T)‖
(
1 + ε(Dn +D∗n)

)−1‖L2(T)

and so
2π√

2π +O(ε)
≤ ‖
(
1 + ε(Dn +D∗n)

)−1‖L2(T) . 1
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Let us choose a so that ∫ 2π

0
|φ∗n|−2dθ = 2π

which implies a ∼ 1. We satisfied all conditions of the Lemma 2.3. Consider the formula (18). We
can write

φn + φ∗n + F̃ (φ∗n − φn) = 2φ∗n − 2εMn(φ∗n − φn) = (34)

2φ∗n − 2aε(Mn −Mnz
n) = 2a

(
(1 + ε(Dn +D∗n))− ε(Mn −Mnz

n)
)

=

2a
(

(1 + ε(Dn +D∗n))− ε(Mn − (Mn +Mn −Mn)zn)
)

= 2a
(

1 + εb(1 + zn) + 2εzn ReMn

)
Let us control the deviation of σ′ from the constant. We get

2πσ′ = 4(2a)−2 · Re F̃ · |1 +O(ε)|−2 = a−2(1 +O(ε)) · |1 +O(ε)|−2

where we used |ReMn| 6 1 and (32). Since a ∼ 1, we have that the deviation of 2πσ′ from a−2 is
at most Cε. Since σ is a probability measure, this implies a = 1 + O(ε). We are left to show that
‖φn‖L∞(T) ∼ log n. By construction, it is sufficient to prove

‖Mn + znMn‖L∞(T) ∼ log n

Indeed,

|Mn(z̃n) + z̃ nnMn(z̃n)| ∼ log n, z̃n = eiπ/n

as follows from (30). �

Remark. Our analysis covers the polynomial (25) constructed by Rakhmanov too. If d0 = m,
we can rewrite (25) as

Φ∗n = 1 +
ε

1 + εnm−1
− εm−1

1 + εnm−1
(d0 + d1z + d2z

2 + . . .+ dnz
n) (35)

= 1 +
ε

1 + 2ε
− ε(b+ bzn +Mn +M∗n)

with

b =
1

1 + 2ε
, Mn =

m−1

2(1 + 2ε)
(d1z + d2z

2 + . . .+ dn−1z
n−1)

The straightforward analysis shows that (26) implies (29). The formula (35) differs from (31), in
essence, only by the negative sign and the normalization factor. Different sign makes checking
conditions (1) and (2) in the Lemma 2.3 harder when compared to the argument in the proof of
Theorem 3.1. However, in this particular case, this can be done directly by analyzing the polynomial
d0 + d1z + . . .+ dnz

n around points z = 1 and z = −1. Indeed, we have∣∣∣∣∣∣
N∑
j=1

sin(jθ)

j

∣∣∣∣∣∣ < C

uniformly over θ and N . Then (28),(26), and (25) imply Re Φ∗n = 1 +O(ε), z ∈ T. Therefore,∫ 2π

0
|Φ∗n(eiθ)|−2dθ < C1

and the opposite estimate ∫ 2π

0
|Φ∗n(eiθ)|−2dθ > C2 > 0
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follows from the analysis of Φ∗n away from z = ±1, i.e., on the arcs z = eiθ, ε < |θ| < π − ε. Now,
we can normalize Φ∗n and define φ∗n = aΦ∗n so that∫ 2π

0
|φ∗n(eiθ)|−2dθ = 2π

For the constant a, we then have a ∼ 1. Next, to check that φ∗n corresponds to a Steklov measure,

one only needs to modify the choice of F̃ by changing the sign in front of ε:

F̃ = 1 + CεMn

and repeating (34) with properly chosen C.

Remark. As one can see from the proof of Theorem 3.1, the different sort of cancellation has
been used to show the Steklov condition of the measure. In particular, the estimate (24) is violated
as φ∗n − φn = a(1− zn) does not provide the strong cancellation around z = 1.
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