
ON THE SIZE OF THE POLYNOMIALS ORTHONORMAL ON THE UNIT CIRCLE

WITH RESPECT TO A MEASURE WHICH IS A SUM OF THE LEBESGUE

MEASURE AND P POINT MASSES.

S. DENISOV

Abstract. For the measures on the unit circle that are equal to the sum of Lebesgue measure and p point

masses, we give an estimate on the size of the corresponding orthonormal polynomials. As a simple corollary

of the method, we obtain a bound for some exponential polynomials.

1. Introduction

Let δ ∈ (0, 1). Define Sδ to be the class of the probability measures σ on the unit circle that
satisfy the following condition:

σ′(θ) ≥ δ/(2π)

for a.e. θ ∈ [−π, π). We denote the n-th orthonormal polynomial by φn(z, σ) and n-th monic
orthogonal polynomial by Φn(z, σ). The problem of Steklov consists in estimating the size of φn for
σ ∈ Sδ. The sharp bounds for ‖φn‖L∞(T) were obtained in [1]. The following variational problem
played an important role in the proof. Consider

Mn,δ = sup
σ∈Sδ

‖φn(z, σ)‖L∞(T) . (1)

In [1], the following estimate was established

Mn,δ ∼ C(δ)
√
n

for fixed δ. Moreover, it was proved that a maximizer exists and that every σ∗ ∈ arg max
σ∈Sδ

‖φn(z, σ)‖L∞(T)

can be written as

σ∗ = δµ/(2π) +
N∑
j=1

mjδ(θ − θj) , (2)

where N ≤ n, dµ = dθ is the Lebesgue measure, mj > 0, and 0 < θ1 < . . . < θN ≤ 2π. No further
information on σ∗ was obtained and that motivated us to study the following variational problem.

Given large n and integer p : p < n/2, we consider the following set of probability measures

Pδ,p = {σ = δµ/(2π) +

p∑
j=1

mjδ(θ − θj)}

and define

M̂n,p = max
σ∈Pδ,p

‖φn(z, σ)‖L∞(T) .

Theorem 1.1. For every κ > 1.5, we have

M̂n,p ≤ C(δ, κ) min{αn,p
√
p, p}, αn,p = logκ(n/p) .
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Remark. Notice that p < αn,p
√
p for p < p̂(n, κ) and

p̂(n, κ) ∼
(

log n
)2κ

.

Corollary 1.1. If N is the number of point masses in (2), then N ∼ n.

The proof of the Theorem is given in the next section. It contains several auxiliary variational
problems. In the third section, we write the dual formulation for one of them and obtain a slight
improvement of the estimate for exponential polynomials discovered recently by Kós [9] and Erdélyi
[6]. The last section contains a discussion about the sharpness of the obtained estimated.

2. Proof of the main Theorem

Proof. (Theorem 1.1) Notice that σ ∈ Pδ,p implies (see [15], formula (2.3.1))
∞∏
j=0

(1− |γj |2) = δ

by the Szegő sum rule. In this formula, {γj} denote the parameters of recursion. Since

Φn = φn

n−1∏
j=0

(1− |γj |2)

1/2

we have
M̂n,p ∼ C(δ) max

σ∈Pδ,p
‖Φn(z, σ)‖L∞(T) ,

and we can consider instead the variational problem for Φn.
Recall the following characterization of the monic orthogonal polynomials

Φn(z, σ) = arg min
{aj}

∫
T

∣∣zn + an−1z
n−1 + . . .+ a1z + a0

∣∣2 dσ ,
which immediately follows from the orthogonality condition. If σ ∈ Pδ,p , then

min
{aj}

∫
T

∣∣zn + an−1z
n−1 + . . .+ a1z + a0

∣∣2 dσ = min
{aj}

∫
T

∣∣1− (an−1z + . . .+ a1z
n−1 + a0z

n
)∣∣2 dσ

= δ + min
{aj}

δ n−1∑
j=0

|aj |2 +

p∑
l=1

ml|1− zlQn−1(zl)|2


where

Qn−1(z) =

n−1∑
j=0

ajz
j , zl = eiθl .

Therefore, if Φn(z, σ) = zn + Q̂n−1(z, σ) and σ ∈ Pδ,p, then

‖Q̂n−1(z, σ)‖22 ≤ ‖Qn−1(z)‖22 + δ−1
p∑
l=1

ml|1− zlQn−1(zl)|2

for every Qn−1 and so, by Cauchy-Schwarz,

‖Φn(z, σ)‖2L∞(T) . 1 + ‖Q̂n−1(z, σ)‖2L∞(T) ≤ 1 + n‖Q̂n−1(z, σ)‖22 ≤

1 + n‖Qn−1(z)‖22 + nδ−1
p∑
l=1

ml|1− zlQn−1(zl)|2
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for every Qn−1.

Since δ ∈ (0, 1) is fixed, it is left to show that

Dn,p = max
{zl},{ml},zl∈T,ml≥0,‖ml‖1=1

min
Qn

(
‖Qn‖22 +

p∑
l=1

ml|1− zlQn(zl)|2
)
. εn,p, εn,p = min{ε′n,p, ε′′n,p}

(3)
with ε′n,p = pα2

n,p/n, ε
′′
n,p = p2/n. That would follow immediately from

max
{zl},{ml},zl∈T,ml≥0,‖ml‖1=1

min
‖Qn‖2≤C

√
εn,p

(
p∑
l=1

ml|1− zlQn(zl)|2
)
. εn,p

with some C. If

I1(n) = min
degQn≤n,‖Qn‖2≤C

√
εn,p

(
p∑
l=1

ml|1− zlQn(zl)|2
)
,

I2(n) = min
degQn+1≤n+1,‖Qn+1‖2≤C

√
εn,p

(
p∑
l=1

ml|1−Qn+1(zl)|2
)
,

then I2(n) ≤ I1(n). Moreover, if I2(n) is reached on a0 + . . .+ an+1z
n+1, then |a0| ≤ C

√
εn,p and

I2(n) =

p∑
l=1

ml|1− a0 − zl(a1 + . . .+ an+1z
n
l )|2 ≥

p∑
l=1

ml

(
−|a0|2 +

1

2

∣∣∣1− zl(a1 + . . .+ an+1z
n
l )
∣∣∣2)

≥ −C2εn,p +
1

2

p∑
l=1

ml|1− zl(a1 + . . .+ an+1z
n
l )|2 ≥ −C2εn,p +

I1(n)

2
.

Since εn,p ∼ εn+1,p, we only need to show that there is some constant C so that
1. If p ≤ p̂ , then

min
‖Qn‖2≤C

√
ε′′n,p

(
p∑
l=1

ml|1−Qn(zl)|2
)
. ε′′n,p (4)

for any choice of {zl}, {ml};
and

2. If p > p̂ , then

min
‖Qn‖2≤C

√
ε′n,p

(
p∑
l=1

ml|1−Qn(zl)|2
)
. ε′n,p (5)

for any choice of {zl}, {ml}.
For the first case, we will show that

min
‖Qn‖2≤C

√
ε′′n,p

(
p∑
l=1

ml|1−Qn(zl)|2
)

= 0 . (6)

This will follow from the analysis of a different minimization problem. Consider

En,p = min
Qn:Qn(zl)=1,∀l=1,...,p

‖Qn‖2 . (7)

We need to prove that

En,p ≤ C
√
ε′′n,p.
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In [10], the following generalization of the Halász result [8] was obtained. It was shown that

min
πm:deg πm≤m,πm(0)=1,πm(1)=0

‖πm‖L∞(T) = cos

(
π

2(m+ 1)

)−(m+1)

.

Therefore, taking the product of p polynomials of degree m = n/p (we can assume without loss of
generality that p divides n) with zeroes at {zl}, l = 1, . . . , p, we construct Pn, degPn = n, such that
Pn(zl) = 0, l = 1, . . . , p, Pn(0) = 1, and

‖Pn‖L∞(T) ≤
[
cos

(
πp

2(n+ p)

)]−(p+n)

.

Letting Qn = 1− Pn, we get
Qn(zl) = 1, l = 1, . . . , p

and

‖Qn‖22 = 2π − 2

∫
RePndθ +

∫
|Pn|2dθ =

∫
|Pn|2dθ − 2π

by the Mean Value Theorem for harmonic functions. Thus,

‖Qn‖22 ≤ 2π

([
cos

(
πp

2(n+ p)

)]−2(p+n)

− 1

)
and

En,p ≤

(
2π

([
cos

(
πp

2(n+ p)

)]−2(p+n)

− 1

))1/2

= ζn,p . (8)

Notice that our construction does not guarantee that this estimate is sharp.
If n→∞ and p = o(

√
n), then

ζ2
n,p ≤ Ĉ

p2

n
, Ĉ > π3/2 (9)

for n > n0(Ĉ) and (6) is proved.
We are left to consider p > p̂ and prove (5). Recall the following simple Lemma attributed to

Havin.

Lemma 2.1. Let measurable E ⊆ T and 0 < τ � 1. Then, there is a function f ∈ H∞(D) such
that

|f(z)− 1| ≤ τ, z ∈ E; ‖f‖H∞(D) ≤ 2; (10)

and
‖f‖2H2(D) . |E|(1 + | log τ |2) .

Proof. Take φ = χE(θ) and define

f(eiθ) = 1− exp
(

(φ(θ) + iφ̃(θ)) log τ
)
,

where φ̃ is the harmonic conjugate. Since Φ = φ + iφ̃ defines the function analytic in D, f is the
boundary value of the function analytic in D. The estimates (10) are satisfied by construction.
Then,

|f | ≤ 1 + τ, z ∈ E
and

|f | = |1− eiφ̃ log τ | . min{1, | log τ | · |φ̃|}, eiθ ∈ Ec.
Therefore

‖f‖22 . |E|+ | log τ |2‖φ̃‖22 = |E|(1 + | log τ |2)
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since ‖φ̃‖2 = ‖φ‖2. �(
Had we tried to find the analytic function, not a polynomial, that would give an estimate (5),

we would have taken E = ∪pj=1[θj − 1/n, θj + 1/n] and τ = βn,p
√
p/n. Then, taking f from the

Lemma above, we have

‖f‖22 .
p

n

(
1 + log2

(
βn,p

√
p/n

))
.
p

n

(
log

n

p

)2

= β2
n,p

p

n
= τ2 ,

if we let βn,p = log(n/p). This would have allowed us to take κ in the formulation of the Theorem
1.1 equal to 1. However, we need to produce a polynomial of order ∼ n and for this purpose we

will need to modify the construction a bit.
)

Take E = ∪pj=1Ij where Ij = [θj − µ, θj + µ], and µ > 1/n will be adjusted later. Taking

τ = αn,p
√
p/n, we use the Lemma to construct f which satisfies

‖f‖22 . pµ(1 + | log τ |2) .
p

n
α2
n,p; |1− f(z)| ≤ τ, z ∈ E

provided that

µ . n−1

(
log

n

p

)2(κ−1)

We make the following choice

µ = n−1

(
log

n

p

)2(κ−1)

.

The function f ∈ H2(D) and we take Qn = f ∗Fn , where Fn is defined as follows. Given arbitrary
γ ∈ (0, 1), consider an even function g(x) such that ĝ(ω), its Fourier transform, is supported on
(−1, 1) and (see, e.g., [14])

ĝ(0) = 1, |g(x)| . e−|x|γ , γ < 1.

Let gn(x) = ng(nx) and define

Fn(x) =
∑
j∈Z

gn(x− 2jπ) .

For this 2π-periodic function, we have F̂n(l) = ĝ(l/n) by the Poisson summation formula and so Qn
is a polynomial of degree at most n. Let us show now that it satisfies the bounds similar to those that
hold for f . We trivially have ‖Qn‖2 . ‖f‖2 and it is left to check that |Qn(zj)−1| . τ, j = 1, . . . , p.

Notice that

|Fn(x)| . n
∑
j

e−n
γ |x−2πj|γ . ne−n

γ
+ ne−n

γ |x|γ , |x| � 1 .

From the Lemma, we get

|f(z)| ≤ 2, z ∈ T
and

|f(z)− 1| ≤ τ, z ∈ E. (11)

First, notice that ∣∣∣f ∗ Fn∣∣∣ . ‖Fn‖1 . 1, z ∈ T.

Second, since
∫
T Fn(θ)dθ = 1, one can write∣∣∣∣∫ Fn(θj − θ)f(θ)dθ − 1

∣∣∣∣ =

∣∣∣∣∫ (f(θj − θ)− 1))Fn(θ)dθ

∣∣∣∣
5



.

∣∣∣∣∣
∫
|θ|>µ

|Fn(θ)|dθ

∣∣∣∣∣+

∣∣∣∣∣
∫
|θ|<µ

|Fn(θ)| · |f(θj − θ)− 1)|dθ

∣∣∣∣∣ . (12)

The last integral is bounded by Cτ due to (11) and the choice of E. The first term in (12) is
bounded by

ne−n
γ
+

∫ ∞
nµ

e−ξ
γ
dξ . e−(nµ)γ (nµ)1−γ = e−(log(n/p))2(κ−1)γ

(log(n/p))2(κ−1)(1−γ) < Cτ = C

√
p

n
logκ

(
n

p

)
provided that 2(κ− 1)γ = 1 and C is large. Since γ can be chosen as an arbitrary number smaller
than 1, we have κ > 1.5.

�

Remark. One can repeat the argument used for the comparison of I1 and I2 to show that

Dn,p ∼ D′n+1,p, D′n,p = max
{zl},{ml},zl∈T,ml≥0,‖ml‖1=1

min
Qn

(
‖Qn‖22 +

p∑
l=1

ml|1−Qn(zl)|2
)
. (13)

The following formula attributed to Geronimus [7] needs to be mentioned.

Lemma 2.2. (Geronimus, [7]) Consider σt = (1− t)σ + tδ(θ) where t ∈ (0, 1). Then,

Φn(z, σt) = Φn(z, σ)− tΦn(1, σ)Kn−1(1, z, σ)

1− t+ tKn−1(1, 1, σ)
. (14)

When p = 1, this Lemma gives an explicit formula whose analysis confirms the estimate we
obtained above. However, if p is large, its recursive application is complicated. Instead, the
application of the Theorem 1.1 to this formula gives the following corollary.

Lemma 2.3. If σ ∈ Pδ,p and p < n/2, then

sup
z1,z2∈T

∣∣∣∣φn(z1, σ)Kn−1(z1, z2, σ)

1 +Kn−1(z1, z1, σ)

∣∣∣∣ . min{αn,p
√
p, p} .

In the case when p ≤ n and {zj} ⊆ {11/n}, Rakhmanov [13] wrote the exact formula for Φn(z, σ)
which implies

‖φn(z, σ)‖L∞(T) . log n

for an arbitrary distribution of masses and this bound is saturated for some {mj} and {zj}.

3. The Dual Problem and some inequalities for Exponential Polynomials

Let us start with the following standard Lemma from Linear Algebra.

Lemma 3.1. Suppose p < n and a linear A : Cn → Cp is surjective. Given fixed v ∈ Cp, consider
the following variational problem: minAt=v ‖t‖2. Then, the minimizer t∗ (pseudo-inverse) is unique
and

‖t∗‖2 = sup
x∈Cp,A∗x 6=0

|〈x, v〉|
‖A∗x‖2

.

Proof. We can assume that v 6= 0. Since Cn = kerA ⊕ ranA∗, any solution to At = v can be
written as t = t∗+ ξ where ξ is arbitrary in kerA and t∗ ∈ ranA∗. The Pythagorean theorem then
implies that t∗ is the pseudo-inverse. If t∗ = A∗η, then

AA∗η = v

gives
‖t∗‖22 = 〈AA∗η, η〉 = 〈v, η〉 .
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Dividing by ‖A∗η‖2, we have

‖t∗‖2 =
|〈η, v〉|
‖A∗η‖2

≤ sup
x∈Cp,A∗x 6=0

|〈x, v〉|
‖A∗x‖2

.

On the other hand,

|〈x, v〉|
‖A∗x‖2

=
|〈x,At∗〉|
‖A∗x‖2

=
|〈A∗x, t∗〉|
‖A∗x‖2

≤ ‖t∗‖2

by Cauchy-Schwarz. �

For given points {θj}, j = 1, . . . , p, take A as follows:

A : t = {tl} ∈ Cn+1 →

{
n+1∑
l=1

tle
iθj(l−1)

}
j=1,...,p

∈ Cp .

For En,p, defined in (7), we can write

E2
n,p = 2π‖t∗‖22

where v = (1, . . . , 1). The inequality (8) and the previous Lemma give∣∣∣∣∣∣
p∑
j=1

xj

∣∣∣∣∣∣
2

≤
ζ2
n,p

2π

n∑
l=0

∣∣∣∣∣∣
p∑
j=1

xje
iθj l

∣∣∣∣∣∣
2

.

Now, given λ1 < . . . < λp, define the following exponential polynomial

T (x) =

p∑
j=1

xje
iλjx

we get

|T (0)|2 ≤
ζ2
n,p

2π

n∑
l=0

|T (l/n)|2 ,

where θj = λj/n and n is large enough for {θj} ∈ T. If, for fixed p and {λj}, we take n→∞, then

|T (0)|2 ≤ π2

4
p2‖T‖2L2[0,1]

thanks to (9). Thus, we have

Lemma 3.2. If λ1 < . . . < λp are arbitrary p real numbers and T (x) =
∑p

j=1 xje
iλjx , then

|T (0)| ≤ πp

2
‖T‖L2[0,1] .

Many interesting estimates for the exponential sums and its derivatives were recently obtained in
[9, 6] (see also [2, 3, 4, 11, 12]). Our estimate has a better constant π/2 if compared to the bounds
in [9, 6]. We believe that the duality argument can be used to replace π/2 by the optimal constant
1 after the analysis of orthogonal polynomials for measures with Fisher-Hartwig singularities [5].
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4. Sharpness of some results

We do not know whether the estimates obtained in Theorem 1.1 are sharp. However, we can
discuss other results mentioned in the proofs above.

First, notice that the lemma by Havin is essentially sharp. Indeed, suppose we can find f ∈
H∞(D) such that ∫

T
|f |2 ≤ ε, |1− f | ≤

√
ε on θ ∈ I, |I| ∼ ε .

Take P = 1− f2. We have

P (0) = (2π)−1

∫
T
Pdθ = 1 +O(ε) .

By the subharmonicity of log |P (z)|, we get

O(ε) = log |P (0)| ≤ (2π)−1

∫
T

log |P (θ)|dθ = J1 + J2

J1 = (2π)−1

∫
T

log+ |P (θ)|dθ, J2 = (2π)−1

∫
T

log− |P (θ)|dθ

Since log+ x ≤ x− 1, x > 1, we have by triangle’s inequality

J1 .
∫
|P |>1

(|1− f2| − 1)dθ ≤
∫
|P |>1

|f |2dθ . ε

For J2,

J2 ≤
∫
I

log− |1− f2|dθ ∼ |I| log ε ∼ ε log ε

and this gives contradiction as ε→ 0.

Lemma 4.1. Consider p < n/2 and spread p point {θj}, j = 1, . . . , p evenly on the whole interval
[−π, π]. Assume that T is a trigonometric polynomial, such that

deg T = n, |T (θj)| ∼ 1, j = 1, . . . , p .

Then,

‖T‖2 &
√
p

n
.

Proof. The proof is by contradiction. Assume that

‖T‖22 ≤ εp/n ,
where ε is small. Let Ij be an interval centered at θj of length 2π/p (so [−π, π] = ∪pj=1Ij and {Ij}
are disjoint). We have

p∑
j=1

∫
Ij

|T |2dθ ≤ εp/n .

Therefore, there is a subset S ⊆ {1, . . . , p} so that

|S| > p/2, ∀j ∈ S :

∫
Ij

|T |2dθ ≤ 2ε/n .

Consider j ∈ S and assume without loss of generality that T (θj) = 1. We have∫
Ij

|T |2dθ ≤ 2ε/n .

Therefore, by a simple contradiction argument, there is a point θ∗j ∈ Ij such that |T (θ∗j )| < 1/2 and

|θj − θ∗j | ≤ 8ε/n .
8



Then, the Cauchy-Schwarz inequality yields

1/2 < |T (θj)− T (θ∗j )| =

∣∣∣∣∣
∫ θ∗j

θj

T ′(θ)dθ

∣∣∣∣∣ ≤ |θj − θ∗j |1/2
(∫

Ij

|T ′|2dθ

)1/2

and ∫
Ij

|T ′|2dθ > n

32ε
.

Summing over S gives ∫ π

−π
|T ′|2dθ ≥

∑
j∈S

∫
Ij

|T ′|2dθ > n|S|
32 ε

≥ np

64 ε
.

On the other hand, for every trigonometric polynomial of degree n, we have

‖T ′‖22 ≤ n2‖T‖22 ,
which gives

np

64ε
≤ εpn .

That leads to contradiction for ε < 1/8. �

The last Lemma implies that

Dn,p > C(δ)p/n .

Open problem. Can one improve αn,p in the Theorem 1.1?

In the regime when p is fixed and n→∞, we can show that the multiple p2 in the estimate

Dn,p . p
2/n .

is sharp.

Lemma 4.2. Given any fixed p, we have(
nDn,p

)
∼ p2, n > n̂(p)

Proof. We only need to prove one direction. We assume the opposite. By (13), this can be written
as

lim inf
n→∞

(
nD′n,p

)
≤ Λ(p), Λ(p) = o(p2), p→∞

Take mj = 1/p. The points {θj} will be chosen later. By our assumption, there is a subsequence
{n} such that there exists a polynomial Qn satisfying the properties:

p∑
j=1

|1−Qn(zj)|2 < C
pΛ(p)

n
, ‖Qn‖22 < C

Λ(p)

n

for n > n̂(p). Denote δj = 1−Qn(zj), j = 1, . . . , p and fix them. Then, we have

min
deg rn≤n,rn(zj)=1+δj

‖rn‖22 < C
Λ(p)

n
.

Then, applying the dual formulation, we get inequality∣∣∣∣∣∣
p∑
j=1

xj(1− δj)

∣∣∣∣∣∣
2

≤ CΛ(p)

n

n∑
l=0

∣∣∣∣∣∣
p∑
j=1

xje
iθj l

∣∣∣∣∣∣
2

.

9



Now, let θj = λj/n where λ1 < . . . < λp are arbitrary. Fix {xj} and {λj} and send n→∞. Since
limn→∞ δj = 0 for each j = 1, . . . , p, we get

|T (0)|2 < CΛ(p)‖T‖2L2[0,1], for every T (x) =

p∑
j=1

xje
iλjx .

However, it was proved in [6] (see also the remark after Theorem 7.71.1 in [16]) that

sup
deg T≤p

|T (0)|
‖T‖L2[0,1]

≥ Cp

and this gives a contradiction for large p. �
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