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Abstract. In this survey, we will give a short overview of the recent progress
on the multidimensional L2 conjecture. It can also serve as a quick introduction
to the subject.

1. Introduction

The one-dimensional scattering theory for Schrödinger and Dirac operators is
fairly well-understood by now with only a few very difficult problems left. This
progress is mostly due to applying the tools of complex function theory and har-
monic analysis. In multidimensional situation, very little is known.

The multidimensional L2 conjecture was suggested by Barry Simon [28] and it
is as follows.

Conjecture. Consider

H = −∆+ V, x ∈ Rd

where V is real valued potential which satisfies∫
Rd

V 2(x)

1 + |x|d−1
dx < ∞ (1)

Is it true that σac(H) contains the positive half-line and it is of infinite multiplic-
ity there (here and below the symbol σac(H) denotes the absolutely continuous
spectrum of the operator H)?

One might have to require more local regularity from the potential to have H
well-defined [2], e.g., assuming V ∈ L∞(Rd) is already good enough.

This conjecture was completely solved only for d = 1 [3]. Even for the case
|V (x)| . (1 + |x|)−γ , γ = (1−) nothing is known. Below, we will discuss some
cases in which the progress was made. We will also briefly explain the methods and
suggest some open problems. The recent survey [20] contains somewhat different
perspective on the subject.

2. Cayley tree

The material in this section is taken from [4, 5, 29]. Assume that the Cayley
tree B is rooted with the root (the origin) denoted by O, O has two neighbors
and other vertices have one ascendant and two descendants (the actual number of
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descendants is not important but it should be the same for all points X ̸= O). The
set of vertices of the tree is denoted by V(B). For an f ∈ ℓ2(V(B)), define the free
Laplacian by

(H0f)n =
∑

dist(i,n)=1

fi, n ∈ V(B)

One can show rather easily that the spectrum of H0 is purely a.c. on [−2
√
2, 2

√
2].

Assume now that V is a bounded potential on V(B) so that

H = H0 + V

is well-defined. Denote the spectral measure related to delta function at O by σO;
the density of its absolutely continuous part is σ′

O. Take w(λ) = (4π)−1(8− λ2)1/2

and let ρO(λ) = σ′
O(λ)w

−1(λ).
Consider also the probability space on the set of nonintersecting paths in B that

go from the origin to infinity. This space is constructed by assigning the Bernoulli
random variable to each vertex and the outcome of Bernoulli trial (0 or 1) then
corresponds to whether the path (stemming from the origin) goes to the “left” or
to the “right” descendant at the next step. Notice also that (discarding a set of
Lebesgue measure zero) each path is in one-to-one correspondence with a point on
the interval [0, 1] by the binary decomposition of reals. In this way, the “infinity”
for B can be identified with [0, 1]. For any t ∈ [0, 1], we can then define the function
ϕ as

ϕ(t) =

∞∑
n=1

V 2(xn)

where the path {xn} ⊂ V(B) corresponds to t. This function does not have to be
finite at any point t but it is well-defined and is Lebesgue measurable. See [4] for

Theorem 2.1. For any bounded V ,

2
√
2∫

−2
√
2

w(λ) log ρO(λ)dλ ≥ logE

{
exp

[
−1

4

∞∑
n=1

V 2(xn)

]}

= log

1∫
0

exp

(
−ϕ(t)

4

)
dt

where the expectation is taken with respect to all paths {xn} and the probability space

defined above. In particular, if the right hand side is finite, then [−2
√
2, 2

√
2] ⊆

σac(H).

The proof of the theorem is based on the adjusted form of sum rules in the
spirit of Killip-Simon [14]. Higher order sum rules are applied to different classes
of potentials in Kupin [15].

Notice that ϕ is always nonnegative, therefore the right hand side is bounded
away from −∞ iff V ∈ ℓ2 with a positive probability. This is the true multi-
dimensional L2 condition. The simple application of Jensen’s inequality then im-
mediately implies that the estimate∫

ϕ(t)dt =
∞∑

n=0

2−n
∑

dist(X,O)=n

V 2(X) < ∞
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guarantees [−2
√
2, 2

√
2] ⊆ σac(H). The last condition is precisely the analogue of

(1) for the Cayley tree. Indeed, the factor 2n is the “area” of the sphere of radius
n in B and is exactly the counterpart of |x|d−1 in the same formula.

3. Slowly decaying oscillating potentials

There are two different methods to handle this case.

1. Asymptotics of Green’s function for the complex values of spectral
parameter.

For simplicity, take d = 3 and assume that V is supported on the ball of radius
ρ around the origin. Consider the resolvent Rz = (H − z)−1, z ∈ C+ and denote
its integral kernel by Gz(x, y). The approach suggested in [6] requires the careful
analysis of the asymptotical behavior of Gz(x, y) when z ∈ C+, y ∈ R3 are fixed
and x → ∞ in some direction. To be more precise, we compare Gz(x, y) to the
unperturbed Green’s function

G0
z(x, y) =

exp(ik|x− y|)
4π|x− y|

, z = k2

in the following way. Take any f(x) ∈ L2(R3) with a compact support and define
u = Rzf . As V is compactly supported, we have

u(x, k) =
exp(ikr)

r
(A(k, θ) + ō(1)) ,

∂u(x, k)

∂r
= ik

exp(ikr)

r
(A(k, θ) + ō(1)) ,

r = |x|, θ =
x

|x|
, |x| → ∞

(Sommerfeld′s radiation conditions)

(2)
Let us call A an amplitude. Clearly, its analysis boils down to computing the
asymptotics for Gz(x, y). The amplitude A(k, θ) has the following properties (see
[6])

1. A(k, θ) is a vector-valued function analytic in k ∈ {Im k > 0,Re k > 0}.
2. The absorption principle holds, i.e. A(k, θ) has a continuous extension to

the positive half-line.
3. For the boundary value of the resolvent, we have

Im(R+
k2f, f) = k∥A(k, θ)∥2L2(Σ), k > 0. Therefore,

σ′
f (E) = kπ−1∥A(k, θ)∥2L2(Σ), E = k2 (3)

where σf (E) is the spectral measure of f .

The last formula is the crucial one. The key observation made in [6] is that the
function log ∥A(k, θ)∥L2(Σ) is subharmonic in k ∈ {Im k ≥ 0,Re k > 0}. Thus,
provided that some rough estimates (uniform in ρ) are available for ∥A(k, θ)∥L2(Σ)

away from real axis, one can use the mean-value formula to get∫
I

log σ′
f (E)dE > C (4)

for any interval I ⊂ R+. Then, as C is ρ–independent, one can extend this estimate
to the class of potentials that are not necessarily compactly supported. This requires
using the lower-semicontinuity of the entropy [14]. Estimate (4) yields σ′

f (E) > 0
for a.e. E > 0 and the statement on the a.c. spectrum easily follows.
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The technical part is to obtain the estimates on the amplitude A. This can be
done by the perturbation theory technique. The typical result [6] one can obtain
this way is

Theorem 3.1. Let Q(x) be a C1(R3) vector-field in R3 and

|Q(x)| < C

1 + |x|0.5+ε
, |div Q(x)| < C

1 + |x|0.5+ε
, ε > 0

Then, H = −∆+ div Q has an a.c. spectrum that fills R+.

The decay of potential here is nearly optimal but an additional oscillatory be-
havior is also needed. If one does not assume some sort of oscillation, then the
whole method breaks down. We will say more about that later.

2. Method of Laptev-Naboko-Safronov.
This very elegant approach was suggested in [17] and was later developed in

subsequent publications [20, 21, 22, 23, 24, 13, 25, 16]. We will again give only a
sketch of the idea. Rewriting the operator in the spherical coordinates we have

H ∼ − d2

dr2
− B

r2
+ V (r, θ)

where B is Laplace-Beltrami on the unit sphere. Now, let us treat this as a one-
dimensional operator with operator-valued potential

Q = −B

r2
+ V (r, θ)

Denote the projection to the first spherical harmonic by P0. The idea of [17] is to
write P0(H − z)−1P0 as

− d2

dr2
+Q(z)

with nonlocal potential Q(z) and then apply the one-dimensional technique to this
operator. For example, the following result can be obtained this way

Theorem 3.2. Let d ≥ 3 and V (x) be such that

1. lim|x|→∞ V (x) = 0

2. V ∈ Ld+1(Rd+1)
3. The Fourier transform of V is well-defined around the origin as L2

loc func-
tion, i.e. ∫

|ξ|<δ

|V̂ (ξ)|2dξ < ∞

for some δ > 0.

Then, σac(H) = R+.

Notice that the second condition on V is satisfied for, e.g., |V (x)| < C(|x| +
1)−γ , γ > d/(d+1). However, the third condition implies that V either decays fast
or oscillates. The substantial problem with this method is that one needs good
bounds on the discrete negative spectrum, e.g. Lieb-Thirring estimates. However,
the needed estimates can be obtained only under rather strict assumptions on the
decay of potential. In section 6, we will explain how this difficulty can be overcome.
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4. Nontrivial WKB correction

The method of asymptotical analysis of Green’s function explained in the previ-
ous section can also be used in two different situations: when Vθ is short-range and
when V is sparse.

In [19], the following result was obtained.

Theorem 4.1. Let d = 3 and

|V (x)|+ |x| · |∇′V (x)| . (1 + |x|)−0.5−

where ∇′V = ∇V ·(x/|x|)⊥ is the angular part of the gradient of V . Then, σac(H) =
R+.

The method employed is essentially the same as the one used in [6] with one
exception: the Green’s function asymptotics contains the well-known WKB-type
correction:

Gz(x, y) ∼
1

4π|x− y|
exp

(
ik|x− y|+ 1

2ik

∫ |x|

0

V (x̂s)ds

)
(5)

as |x| → ∞ and x̂ = x/|x|. This correction becomes a unimodular factor when
k ∈ R and so the main arguments of [6] go through.

In the paper [7], quite a different situation was considered. Take the sequence Rn

to be very sparse (e.g., Rn+1 > e2Rn ,∀n) and consider the potential V supported
on the concentric three-dimensional shells Σn with radii Rn and width ∼ 1.

Theorem 4.2. Assume that |V (x)| < vn if x ∈ Σn and vn ∈ ℓ2(N), then σac(H) =
R+.

The method is again based on the calculation of the asymptotics of Green’s
function for the fixed complex k. This asymptotics involves new and nontrivial
WKB factor which is not unimodular for real k but it is sufficiently regular to
apply the same technique.

The WKB correction obtained so far in the literature was always a quite explicit
multiplier. That, however, does not seem to be the case in general. First of all,
in spite of many attempts, no results on the asymptotics of the Green’s function
was ever obtained for complex k as long as the only condition assumed of V is
the slow decay: |V (x)| . (|x| + 1)−1+. The possible explanation is the following.
Consider Gk2(x, 0) for real k as a function of x̂ = x/|x| by going to the spherical
coordinates. As |x| → ∞, the contribution to the L2–norm of this function coming
from the higher angular modes (i.e. the modes of order |x|α, α > 0.5) is likely
to be more and more pronounced. If one makes k complex, this phenomenon
can hardly disappear but the waves corresponding to different angular frequencies
have different Lyapunov exponents even in the free case so their contributions are
all mixed up in the Fourier sum for Gk2(x, 0) making establishing any asymptotics
nearly impossible. That questions the applicability of the method of [6] and perhaps
the Green function analysis for real k is needed. The analysis for real k performed
in [1, 18], however, was never sufficient to handle the optimal case V ∈ L2(R+) and
so the prognosis for the resolution of the full L2 conjecture is rather negative.

What is the WKB correction to Green’s function for real k if there is any asymp-
totics at all? We do not know yet but there is one special case when the correction
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to the asymptotics of the evolution group eitH was computed. That was done in
[8].

Assume that d = 3 and V satisfies the following conditions
Conditions A:

|V | . r−γ ,

∣∣∣∣∂V∂r
∣∣∣∣ . r−1−γ ,

∣∣∣∣∂2V

∂r2

∣∣∣∣ . r−1−2γ , V (x) ∈ C2(R3), r = |x|

and

1/2 < γ < 1 (6)

The standard by now Mourre estimates immediately show that the spectrum
is purely a.c. on the positive half-line. The question is what is the long-time
asymptotics of eitH? Well, the answer is not easy as we will see and it requires
quite a bit of notation. Let, again, B be the Laplace-Beltrami operator on the unit
sphere Σ. Consider the following evolution equation:

ikyτ (τ, θ) =
(By)(τ, θ)

τ2
+ V (τ, θ)y(τ, θ), τ > 0 (7)

where k ∈ R\{0}, V (τ, θ) = V (τ ·θ) is the potential written in spherical coordinates,
and the function y(τ, θ) ∈ L2(Σ) for any τ > 0. We introduce U(k, τ0, τ)f , the
solution of (7) satisfying an initial condition U(k, τ0, τ0)f = f where τ, τ0 > 0 and
f ∈ L2(Σ). For any f ∈ L2(Σ), denote

W (k, τ)f = U(k, 1, τ)f (8)

and consider the following operator

[E(t)f ](x) = (2it)−3/2 exp
(
i|x|2/(4t)

)
·W (|x|/t, |x|)

[
f̂(|x|/(2t)θ)

]
(x̂)

f ∈ L2(R3). In this formula, the last factor is defined by (8) where k = |x|/t,
τ = |x|, and the function on the sphere is given by the restriction of the Fourier
transform of f to the sphere of radius |x|/(2t).

Theorem 4.3. Assume that V satisfies Conditions A. Then, for any f ∈ L2(R3),
the following limits (modified wave operators) exist

W±f = lim
t→±∞

exp(iHt)E(t)f

If V is short-range then W can be dropped in the definition of E and the state-
ment of the theorem will still be correct. If V is long-range but the gradient is
short-range, then one can show that W has the standard multiplicative WKB cor-
rection in large τ asymptotics similar to the one present in (5). In general, the Wf
factor can not be simplified much and so the WKB correction happens to be given
by a very complicated evolution equation.

One should expect that in the case when |V (x)| < C(1+ |x|)−γ , γ ∈ (0.5, 1) even
more complicated evolution equation appears both in the spatial asymptotics of the
Green’s function and in the long-time asymptotics of eitH . Meanwhile, proving this
seems to be a monumental task as the statement like that even in one-dimensional
case holds not for all k ̸= 0 but rather for Lebesgue a.e. k.
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5. Ito’s stochastic equation and modified Harmonic measure

The resolution of L2 conjecture for the Cayley tree suggests that may be con-
dition (1) can be relaxed. Although the above discussion might have somewhat
sobering effect on the reader, one can hope to at least try to exploit the idea of
introducing the right space of paths. One step in this direction was made in [22]
where the Laptev-Naboko-Safronov method was adjusted to the case when poten-
tial is small in the cone. Further progress was made in the paper [9]. Recall that
for the Cayley tree one can very naturally introduce the probability space of paths
escaping to infinity. Then, one knows that if the potential is small (ℓ2 or is just zero)
with positive probability, then the a.c. spectrum is present. What is an analog of
this probability space in the Euclidean case?

Consider the Lipschitz vector field

p(x) =

(
I ′ν(|x|)
Iν(|x|)

− ν|x|−1

)
· x

|x|
, ν = (d− 2)/2 (9)

where Iν denotes the modified Bessel function. Then, fix any point x0 ∈ Rd and
define the following stochastic process

dXt = p(Xt)dt+ dBt, X0 = x0 (10)

with the drift given by p. The solution to this diffusion process exists and all
trajectories are continuous and escape to infinity almost surely. The next result is
from [9].

Theorem 5.1. Assume that V is continuous nonnegative bounded function and

Ex0

exp
−

∞∫
0

V (Xτ )dτ

 > 0

for some x0. Then, R+ ⊆ σac(H).

The positivity of the expectation means that with positive probability we have
V (Xt) ∈ L1(R+). The application of Jensen’s inequality immediately yields that∫

R

V (x)

|x|d−1 + 1
dx < ∞

implies the preservation of the a.c. spectrum. The method used to prove theo-
rem 5.1 is again more or less rephrasing of the one from [4] but the language is
probabilistic.

The question now is how to compute those probabilities. The reasonable sim-
plification here is to assume that V is supported on some complicated set (say, a
countable collection of balls) and then study when is the probability to hit this set
smaller than one. This problem was addressed by introducing the suitable poten-
tial theory and by proving the estimates on the modified Harmonic measure. The
interesting aspect of this analysis is in relating the geometric properties of support
of V to the scattering properties of the medium. For more details, the reader is
referred to [9].
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6. Hyperbolic Schrödinger pencils

Consider the Schrödinger operator

Hλ = −∆+ λV

with the coupling constant λ and decaying V . The study of its resolvent

Rz = (Hλ − k2)−1, z = k2

is often complicated by the presence of the negative discrete spectrum for Hλ. For
example, proving the sum rules requires the Lieb-Thirring bounds.

In [10], the following idea was suggested. Instead of inverting the operatorH−k2,
let us try to invert P (k) = −∆ + kµV − k2, where µ is a fixed constant. In
other words, we make the coupling constant momentum-dependent: λ = kµ. The
operator P (k) is a hyperbolic pencil and P (k) is invertible for all k ∈ C+. The
function P−1(k) is analytic there and so one has no problem with poles. The study
of the Green’s function for P−1(k) is more straightforward and this Green function
(call it Mk(x, y, µ)) agrees with the Schrödinger Green’s function as long as the
potential V is compactly supported:

Gk2(x, y, kµ) = Mk(x, y, µ)

The Fubini theorem then allows to translate results obtained for the Schrödinger
pencil to the results for the original Schrödinger operator. This idea greatly expands
the class of potentials that can be treated but the results hold only for generic
coupling constant. Below we list three theorems that can be obtained this way.
The first two are taken from [10] and they assume d = 3, the third one is from [11].

Theorem 6.1. Assume
V (x) = div Q(x)

where the smooth vector field Q(x) satisfies

Q(x), |DQ(x)| ∈ L∞(R3),

∫
R3

|Q(x)|2

|x|2 + 1
dx < ∞

Then for a.e. λ, R+ ⊆ σac(Hλ).

This theorem, in contrast to theorem 3.1, does not assume the pointwise decay
of V and the result obtained is sharp in terms of the decay of Q.

Theorem 6.2. Assume V (x) is bounded and
∞∫
1

r|v(r)|2dr < ∞

for v(r) = sup|x|=r |V (x)|. Then for a.e. λ, σac(Hλ) = R+.

This result is interesting in that it covers the case when the nontrivial WKB
correction to the Green’s function asymptotics can be present. However, there is
no any need to establish it over specific direction as only the estimate on the angular
average of Green function∫

|x|=r

|Mk(x, 0, µ)|2dσx ∼ e2 Im kr

is used. In this case, the oscillation of Mk(x, 0, µ) in the angular variable is rather
weak and this is what makes the analysis possible.
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Yet another result can illustrate the power of this technique

Theorem 6.3. Assume that V is continuous bounded function and

Ex0

exp
−

∞∫
0

|V (Xτ )|dτ

 > 0

for some x0. Then, R+ ⊆ σac(Hλ) for a.e. λ.

As one can see a rather unnatural requirement of V to be nonnegative present
in theorem 5.1 is now removed.

In several recent publication, the idea of making the coupling constant momen-
tum dependent was applied in combination with other interesting techniques, see
e.g. [26, 27].

Remark. It is well-known that the analysis of the one-dimensional Schrödinger
operator is more technically involved than the analysis of, say, Dirac operator or the
Krein system. In fact, the one-dimensional differential equation for the Schrödinger
pencil considered above happens to be identical to the Dirac operator (and auto-
matically to the Krein system). So, it is not so unexpected that in multidimensional
case this trick makes analysis simpler.

The following question is quite natural in view of the results listed above.
Question. Assume V decays in some way. How does the a.c. spectrum of Hλ

as a set depend on the value of λ when λ ̸= 0. That boils down to studying the
dependence of

Fλ(z) = Im⟨(Hλ − z)−1f, f⟩
on λ around the regular points z ∈ R+. For the one-dimensional case, the analysis
in [1] reveals that for V ∈ Lp, p < 2 there is a λ-independent set of energies of the
full Lebesgue measure which supports the a.c. spectrum of Hλ.

7. Possible directions

The L2 conjecture the way it is stated does not say much about, say, Schrödinger
dynamics so it is possible that there are some soft analysis arguments that can nail
it. The good example of the soft analysis is the so-called sum rules for the Jacobi
matrices [14]. More in-depth approach, in our opinion, is to try to control some
quantities relevant for scattering: the Green’s function, evolution group, etc. That,
most likely, will require application of hard analysis methods. In this section, we
will try to explain what kind of technical difficulties one stumbles upon when trying
to address these questions.

Some special evolution equations seem to provide an adequate model for under-
standing of what is going on and one very important example of these equations is
(for d = 2)

iut(t, θ, k) = k
∂2
θθu(t, θ, k)

(t+ 1)2
+ V (t, θ)u(t, θ, k), u(0, θ, k) = u0(θ) (11)

where |V (t, θ)| . (1+t)−γ , γ ∈ (0.5, 1) and k and V are real. This equation appears
(check (7)) in the WKB correction for the dynamics of eitH and it is likely to be
the right correction for the spatial asymptotics of the Green’s function.

What can be said about the solution u(t, θ, k) as t → ∞? The L2-norm ∥u∥L2(T)
is preserved in time but how about the growth of Sobolev norms? The conjecture
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stated in [12] is that generically in k we should have

∥u(t, θ, k)∥H1(T) . t, t → ∞

thus the transfer of the L2 norm to higher modes happens in a controlled way and
that prevents the resonance formation.

Another important quantity to study is how concentrated the function u(t, θ, k)
can be in the θ variable. That can be controlled by quantities like

I1 = ∥u(t, θ, k)∥Lp(T), p > 2;

or

I2 =

∫
T
log |u(t, θ, k)|dθ

or

I3(δ) = inf
|Ω|>δ

∫
Ω

|u(t, θ, k)|2dθ

One might guess that for typical k one has: I1 is bounded in t and/or I2 > −C
and/or I3(δ) > Cδ as long as δ > 0.

What is the technical difficulty in the analysis of (11)? Notice first that by going
on the Fourier side in θ one gets the infinite system of ODE’s coupled to each other
through V̂ . The differential operator will become the diagonal one and the gaps
between the eigenvalues will decrease in t. This deterioration of the gaps is the key
signature of the multidimensional case. It necessitates handling increasing number
of frequencies at once and this is the hardest part of the analysis. One should notice
that the evolution equation with only two frequencies interacting with each other,
e.g.

iXt =

[
0 V (t)

V (t) k

]
X, X(0, k) = I

can be handled by Harmonic analysis methods developed in [1, 18]. Anyhow, the
equation (11) is poorly understood and its analysis is very complicated. Some
progress was made in [12] but there is clearly a long way to go.

Conclusion. We hope that this survey makes a good point that the wave propa-
gation through the medium with slowly decaying potential is an interesting physical
phenomenon with WKB correction given by evolution equation. The phenomenon
of resonances appearing for some energies becomes far more complicated in mul-
tidimensional case and the oscillatory behavior of Green’s function is just another
manifestation of that.

Based on the literature published in the last five years, it appears that the group
of people actively working on the problem is rather small so hopefully this review
will attract more interest to this beautiful subject.
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