SPATIAL ASYMPTOTICS OF GREEN’S FUNCTION AND APPLICATIONS

SERGEY A. DENISOV

ABsTrACT. We study the spatial asymptotics of Green’s function for the 1d Schréodinger operator with
operator-valued decaying potential. The bounds on the entropy of the spectral measures are obtained.
They are used to establish the presence of a.c. spectrum.

1. INTRODUCTION AND THE MAIN RESULT

In this note, we revisit the spectral theory of Schrédinger operators with long-range potentials. In
dimension one, the quest for the minimal assumptions on the decay of potential that guarantee the
preservation of absolutely continuous spectrum resulted in the theorem (Deift-Killip [1], see also [13]),
which says:

If Ve L*(R"), then 0ac(—02, + V) = [0,00) where .. denotes a.c. spectrum of the operator with
Dirichlet boundary condition at zero.

In the case of the Dirac equation, an analogous result was obtained by M. Krein already in 1955
(see [15] and [5]). L?-condition is sharp: it is known [14] that V € LP(R*),p > 2 can lead to an empty
a.c. spectrum. In higher dimension, one again is interested in finding the minimal assumptions on the
decay of V in —A 4+ V, z € R?, d > 2 that guarantee “scattering” which can be understood either in the
sense of preservation of a.c. spectrum or as existence of wave operators in Schrédinger dynamics. Some
results were obtained for decaying potentials that oscillate (see [2,17] for their surveys). However, if the
oscillation condition is dropped and no additional smoothness (see, e.g., [16, 18| for various classes of
potentials) is assumed then the identity o,.(—A + V) = [0,0) is not known even for V' obeying fairly
strong constraints, such as |V (z)] < C(1 + |z])717¢,0 < € « 1. Notice that the last assumption is only
slightly weaker than the short-range condition of the classical scattering theory [11]. In this paper, we
make progress on a related problem.

Consider the Hilbert space 3 := @¥_; L>(R") with the inner product defined by

0 0 00
(F,GYgc = f (F,Gydr = )" J FaGndr
0 n—140

where F' = (f1, f2,...),G = (91,92, -..). We define the 1-d Schrédinger operators
(1.1) H=-0+V, HO=_-32 2>0

with Dirichlet boundary condition at the origin and operator-valued potential V. It satisfies V(r) =
V*(r) for a.e. > 0 and ||V € L*[0, ). By the general theory of symmetric operators, H defines the
self-adjoint operator with the domain D(H) = D(H®) = @*_, H3(R"), where HZ(R*) := {f : f, f" €
L?(R*), £(0) = 0} is the standard H?(RT) Sobolev space of functions vanishing at the origin. Denote
the Green’s function of H by G(r, p, z), i.e.,

R.F=(H-2)'F= f G(r,p,z)F(p)dp, F e H.
R+

Welet ze Ct and k = y/z€ {ke C",Imk > 0,Rek > 0}. The Green’s function of unperturbed operator

will be called G(?). Notice that

(1.2) GO (r, p, k?) = ¢ (eikh"—pl _ eik(r+p)> .
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Let u:= Ry F, ¢ := e u. We have —u” + Vu = k*>u+ F, u(0,k) = 0 and
(1.3) — " — 2iky)’ + Vip = Fe 7.

In this note, we develop the perturbative theory which partially controls the spatial asymptotics of u
when F' has compact support, r — 400 and z € C* is taken close to RT. Our analysis allows the direct
study of G(r, p,z) when p is fixed and r — oo but u has a better regularity and we will work with it
instead. The following theorem showcases the typical application of our analysis to the study of spectral

type.
Theorem 1.1. Suppose v > 2,A >0, and V| < A(1 +7)77. Then, RT < 0.c(H).

Later in the text, we can assume that ~ is fixed in the range v € (%, 1). Many constants the reader
encounters in this text depend on v and A but we might not explicitly mention that.

Remark. The proof of the theorem employs elementary properties of subharmonic functions and a
few apriori integral estimates obtained directly from the equation itself. We avoid ODE asymptotical
methods so this technique can potentially be applied to study elliptic partial differential equations and
difference operators on graphs.

The connection between op, the spectral measure of F' € H, and the asymptotics of u at infinity is
revealed in the following lemma.

Lemma 1.1. Suppose T > 1, suppV < [0,T], F € H, and supp F' < [0,1]. Then, op is absolutely
continuous on R™ and

(1.4) op(k?) = kr |y (o0, k)|
forkeRT.

Proof. Under the assumption of the lemma, the so-called absorption principle holds (see, e.g., [6-8] for
the Weyl-Titchmarsh theory of operator-valued Schréodinger operator). In particular, for every interval
I < (0,00) and every positive r, the function u(r,k) = (Rz2F)(r) has continuous extension in & from
Rr1:=1 x (0,1) to the interval I and this u satisfies —u” + Vu = k*>u + F, u(0,k) = 0 for k € Ry ;.
Thus, ¥(r, k) = e u(r, k) is defined as well for k € I and v(r, k) = (00, k) if 7 > T. That explains
why the right-hand side in (1.4) is well-defined. The absorption principle also implies that o is purely
a.c. on RT. Next, we take k € Ry and write —u” + Vu = k2w + F. Take inner product with v and
integrate over [0,T]. Subtracting the resulting identity from its conjugate gives us

(T k), u(T, k) — (u(T k), o' (T, k) = (E* — /«2)10 |u|?dp + (Ry2F, F) — (F, Ry F') .

Due to absorption principle, we can take Imk — 0 in the last formula. This gives (1.4) after we take
into account that u(r, k) = e**"1)(c0, k) for r > T.
O

Remark. One of the key ideas in the proof of Theorem 1.1 is based on the following observation. Taking
the logarithm of the both sides in (1.4) gives log o7 (k?) = log(kn™!) + 2log | (o0, k). The function
log |1 (00, k)| is subharmonic in Ry1 = I x (0,1) for every closed interval I < (0,00). Thus, rough
bounds for log ||1/(00, k)| in Ry,1 can provide the lower bounds for the entropy §,, log 0% (k?)dk, I’ < I by
application of mean-value inequality for subharmonic functions. The uniform control over the logarithmic
integral implies the a.c. spectral type by the standard argument. A serious obstacle we will face is that
the good control of |1(c0, k)| is only possible when Im k is very small. The development of strategy that
overcomes this difficulty was the main motivation to write this note.

Some previous results. In [20], the reader can find an overview of one-dimensional results related to
the topic. The survey papers [2,17] discuss the higher-dimensional case. See also [3,18,19] for more recent
advances. The one-dimensional Schrédinger with operator-valued potential was extensively studied in
the past and a thorough account of the literature can be found in [6-8]. The a.c. spectrum of operator-
valued Schrédinger with decaying potential was studied in the context of hyperbolic pencils in [4]. In
particular, it was established that RT S 0,.(—0%. +tV) for a.e. t € R, provided that the operator-valued
potential V satisfies |V € L2(R*) n L®(RT).



Motivation. To relate (1.1) to multidimensional problems, consider the three-dimensional Schrédinger
operator —A + V, 2 € R3 which allows the representation

B
(1.5) —ag—;5+vwﬁ)

in the spherical coordinates (r,6) € RT x S2. Here, B stands for Laplace-Beltrami operator on S? and the
Dirichlet boundary condition is assumed at the origin. If the higher spherical modes can be neglected,
one considers

P_,.«B
(1.6) H:—ﬁ,—ja +V(r,0)

instead of (1.5), where P¢,~ is an orthogonal projection to the first [r"*] spherical harmonics. Assuming
[V(z)] < C(1+ |z[)~ with v > 2 and choosing & in a suitable way, we reduce (1.6) to the form (1.1).

Structure of the paper. The second section contains some apriori estimates for the solutions to
equation (1.3). In the third section, we give the proof of Theorem 1.1. Some useful estimates on
subharmonic functions are collected in Appendix 1. The second Appendix contains general bounds on
Green’s function.

Notation

e If T is a closed interval on R, c¢; denotes its center and |I| denotes its length. I, stands for the
interval centered at zero with radius r. RT = (0, 0).

e If ¢ is a vector in Hilbert space ¢/?(N), then || denotes its norm. If V is a bounded linear operator
acting in £2(N), then |V denotes its operator norm.

o If I is an closed interval in R™ and 6 > 0, then Ry 5 := I x (0,9).

o If , 1) € £2(N), then (i, 1)) refers to the inner product in ¢?(N).

e For a > 0, we define log, a = max{0,loga}, log_ a = min{0,log a}.

e The symbol C, will indicate a positive constant whose dependence on a parameter o we want to
emphasize. The actual value of this constant can change from one formula to another.

e For two non-negative functions fy (o), we write f1 < f2 if there is an absolute constant C' such that
J1 < Cf; for all values of the arguments of fi(). We define 2 similarly and say that fi ~ f2 if f1 < fo
and fo < fi simultaneously. If the constant C' depends on parameter «, we might write f1 <, fo.

e For the set A ¢ R, we denote A? = {E? : E € A}.

2. TWO SIMPLE ESTIMATES OBTAINED FROM THE EQUATION

In this section, we consider the case when suppV < [0,7] and [V (r)| < A(r + 1)77,y € (3,1). In
later discussion, we will be taking T' = 2", n > ng » 1. Let, e.g., F' be such that

(21) F = (fvoa .- ')a HfHIﬂ(R*) =1, Suppf = [Oa 1]3 f #0.

Let o be the spectral measure of F, i.e.,

dop(E
<RZF7F>3—C: E%(Z)7Z€C\R
Recall that o is a probability measure and that u = R, F. Rewrite equation (1.3) for ¢ as
'w// ] V’lp
2.2 = — = 1.
(2.2) P iop ~igpre T

Lemma 2.1. If I is any closed interval in R, a € (0,1) and k € Ry 7o, then

sup [ (r, k)| < Cr,o exp (2(Im k)_(l_o‘)/a) .

r>0
Proof. Since V(r) = 0 for » > T, ¥(r,k) = ¢(T,k) if »r > T and we can assume that » < T. Be-
cause |ur2p0,50) < Cr(Imk)~" we have [u”|| 210,50y < Cr(Imk)~! from equation —u” + Vu = k*u + F.
Then, |[u]zo[o,0) < Cr(Imk)~! as follows from the standard Sobolev’s embedding. Since ||[¢(r, k)| =
eI k)7 |y (- k)|, this gives us the statement of the lemma because
(Im k)r < (Im k)T < (Im k)~(1—e)/
3



and
(Im k)~ exp((Im k) ~=9/*) < Cy 1 exp(2(Im k) ~(—)/*)

Remark. Notice that this lemma only requires that |[V]| € L®(R") and supp V < [0, T].

Next, we will study ¢(r, k) when r € [T/2,T]. In particular, we will be interested in how | (r, k)|
deviates from [¢(T/2,k)| when r > T/2, k € Ry, and Imk is small. Our basic tool is the following
integral identity.

Lemma 2.2. Let 1 <a <band Rek > 0,Imk > 0, then

Imk
|k

Im &

b b
(2.3) oo, R)I? + f I¥/12dp = (e, ) + @1 = @2 = iz f Vb, bydp

where . .
1 / ? !
Ql = %<w (ba k)v'(/)(b? k)> - ﬁ<w(ba k)aw (ba k;)>
and

Q2 = ﬁ@b/(av k)’ w(% k)> - ﬁ@ﬁ(aa k)7 w/(a" k)> :

Proof. Take inner product of both sides in (2.2) with v and integrate from a to b. Then, take the real
part of the resulting identity. We get

. b . b b
2 - 2 b " _ " . M
o )1 = (a7 + 5 [ oo = o2 [ oo = | Vv,

Integration by parts gives the statement of the lemma. O

Remark. In (2.3), an additional condition V' > 0 immediately provides apriori estimate on S;O [ 2dp
with essentially no assumptions on the decay of V.

The following lemma is straightforward.
Lemma 2.3. Let Y and A be two (*(N)-valued functions defined on [a,0) that satisfy |V, |Y’||, | Al €
L?[a,®) and

i

Y_ZkY/+A’ Imk >0.
Then,

K11 Al £2[a.00) K11 Al £2[a.00)
24 Y| Lo S — Y < —F—.
( ) H HL [a,OO) ~ m ) H ”L?[a,oo) ~ Imk

Proof. We have Y/ = —2ikY + 2ikA. If ¥ is defined by ¥ := ¢?*"Y | then ¥ = —2ik S:O A(s)e?*sds . In
the end, one has

0
Y = —Zik:e_z““"J- A(s)e*Rsds .
T
Applying the convolution bounds, we get our lemma. [l

If T > 1, we arrange for two positive numbers L7 and £7 such that ¢ < Lp, £p := T'=27+2%1 and
y 1

Lp = T7 179 where §; is a positive parameter (e.g., take 6; = 3 — 3). Its choice is possible since
v E (%, 1). Given any closed interval I — R*, define the set

PCI,T = R],]_ @) {k : KT < Imk < LT}
We will refer to PCy 1 as the zone of perfect control. The reader will see that this name is justified from
the next two results.

Lemma 2.4. For k € PCr 1/, we have
(2.5) [O(T K)? = [o(T/2,k)P(1 +er), er <C/T™

where 51 > 0.



Proof. We introduce M := sup,..r, [¢(r, k)| . Let k € Ry 1. Applying Lemma 2.3 to (2.2) on the interval
[T'/2,00), one has
T0.5—'y

Lo <OM—.
Hw HL [T/2,00) I \/m

Hence,
9 TO.S—'y
sup Qi) < CrM -
a,b>T/2 Imk
By the same Lemma 2.3,
TO.Sf'y

! <CiM
197 22,00y < CrM = —
Taking supremum in b > T/2 in (2.3) and letting a = T/2, we get
T0.57'y T172'y
) 2

M? — |(T/2, k)| < Cr((Im k)T r—=
(M2 = [(T/2, )| < Cr (Im k)T + — I
Thus, one has
T05—y  l=2v
2 _ 2 < 1=y TN s,
RO M= WI2RP s er), e < C(mRT + T ) <G

for given k. Now, we can take b = T,a = T/2 in (2.3) and use the bound on M to get the desired
statement. (]

We just saw that the ||[¢(r, k)| does not change much in r when r € [T/2,T] and k is fixed in the zone
of perfect control. Next, we set up the iteration scheme which will play the key role in the proof of the
main result. Suppose T, = 2", n = ng where ng is a large parameter which will be fixed later. Given
Vi VI<AL+7r)77,y> 2, welet

(2.7) Vi) =V X Hay =HO + Vi), ¥ i=e * Ry 2 F,

where function F' has been chosen in the beginning of this section and R, . := (H,) — 2)~1. The next
lemma estimates 1, (00, k) in the (n — 1)-th zone of perfect control.

Lemma 2.5. Let I be an closed interval in RT. Ifk € PCrr,_,, then
[¢n (0, )| = [on—1(0, E)|(1 + €,), e, < CrT,
where d9 1S a positive parameter.

Proof. Recall that ¢, (T}, k) = 1;(00, k) for every j. By the previous lemma, it is enough to show that
(2.8) [ (T /2, k)| = [¥on—1(o0, k)| (1 + O(T,, )

where k € PCrr, , and d3 is a positive fixed number independent of n. To do that, we will use
Lemma 5.2. Recall that H(,y = Hy,—1) +V - X[1,,_,,7,,] and
Ry 2 ' = Rin—1y k2 F — Riny 12 (V- X101 1) Rin—1) 02 F -
Multiply the both sides with e~**" and recall the definition of t,, in (2.7). Since ¥, _1(r, k) = ¥,_1 (0, k)
for r € [T},—1,0) and k is in the zone of perfect control, we can apply Lemma 5.2 to Ry 2. This yields
T

(29)  [¢n(T0/2,k) = Yn1(0,K)| < Cllpna(o0, k)] | - BT el =0 d)p
Tn-1
< O (k) o1 (0, k)| < O~ 2 1 (o0, K)])
because k € PCy 1, ,. Putting together (2.8) and (2.9) gives the desired result. O

3. ITERATION AND THE PROOF OF THE MAIN THEOREM
Recall that F' is chosen to satisfy (2.1). First, we need an auxiliary lemma.

Lemma 3.1. Suppose |[V| € L®(R") and 1, is defined as in (2.7). Then,

sup f 4 (00, & + iy)|?dx < oo, inf f log ||1n (0, = + iy)Hde > —0
/ 0<y<1];

0<y<1
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for every closed interval I — R™T.

Proof. Since V|, is compactly supported, 1, (o0, k) has continuous extension to any closed interval on
the real line, and 1, # 0. It is also analytic in k in every rectangle Ry ; so the lemma follows from, e.g.,
the mean-value estimate for subharmonic function log |4, (00, k)|. O

To begin the iterative process which will be the key to the proof of our main result, we start with
taking I, any closed interval in R™. Then, for this I, we choose ng € N, a fixed large parameter whose
dependence on I will be specified later, and define two numbers A,,, and B,,, as follows

(3.1) Ap, = sup J %, (00, 2 + iy)Hde, B,, := sup J log |9, (00, z + iy)|dx .
0<y<LTn0 I O<y<L‘,TnO I

From the last lemma, one knows that A,, < co and B,,, > —oo for every ng. Next, we define the sequence
of intervals {I,,y},n = ng by conditions

(3.2) Ingy =1, c1,, = cr, Uiyl = -1y — 27
and 7, = T;7Y, where 0 < v < 0.01(—y+1+6;) s0 £,, = TJ717% « 7, = T, ¥, see Figure 1. Notice that
D= D 2~ G2
n=ng nzngo
and limy,, o0 27" = 0. Therefore, if I is given, we can always arrange for ng large enough that L7, <1

and that there is f(no):

(33) Cj(nw =y, I(no) C D I(n), n})ig}oc |I\I(n0)| — 0.
n=no
LTnfl
ng—l
Clin_1y = Clyy f(no) I, I(n—l)

Figure 1: R[(n_l)’Tn_l and Rl<n),Tn

Let us collect what we already know about the sequence {t,,} below:

¢ Rough upper bound, Lemma 2.1:
(3.4) [6n (o0, k)| < C(I' @) exp (2(m k) =/} | ke Ry,

where I’ can be chosen as any open interval in R™ that contains I(ny) = I. The parameter « is related
toyby a=144d —~.

e The first step: by construction, A,, and B, are defined for every ng.

e Estimate in the zone of perfect control, Lemma 2.5: if k € PC(I,T,_1), then
(3.5) [9n (00, B)| = [thn—1(0, K)[(1 + €,), e | < CrT, %

¢ Uniform bounds on the real line, formula (1.4): for every I’ € R*, we get

(3.6) sup | [en(o0, k)|?dk < Cpr.

nzng JJI’



To control 4y, (o0, k) in Ry, £, , one can use apriori estimates (3.4), (3.6) along with (3.5). To
interpolate the bounds on ¥, (00, k) from the zone of perfect control all the way to Ry, .cr,, we will use
a few estimates on the subharmonic functions that are collected and proved in the Appendix for reader’s
convenience. Our immediate goal is to prove the following lemma.

Lemma 3.2. For every closed interval J € RT, we have the estimates

(3.7 limsup sup J [t (00, & + iy)|*dz < o
n—0 O<y<Lr, JJ
and
(3.8) n(0,z+iy) > < Cy (L+y '+ (Lr, —y)™"), zed, 0<y<ALng,.

Proof. We start with any interval I and define the sequence {I(,} as before in (3.2). For each n > ny,
one lets
Ap:=  sup f (00, 2 + iy)|2d
O<y<Lr, JI(n)
We will control how A, changes when n is increased by one. Given n — 1 and A,_1, the goal is to
estimate A,. To do that, we apply (3.5) and write

br, 1 <y<Lr, by, <y<Lr,

n—1

sw [ e tipPdr< ey s [ i+ iy)Pds
I(nfl) I(n—l)

<A, 1(1+€)2.
Next, we apply (3.4), (3.6), and Lemma 4.3 with x = (1 — a)/a,§ ~ 7,61 ~ L,

n—17

€ =l _, to get

n—1

O<y<tr,

sup J [¢0n (0, 2 + i) ||Pde < Cp + O(Tn*‘;“(l +Cp+A,_1)), d,>0.
1Y)

In the end, we have
A, < maX{Cp +O(T;7%4(1+ Cp + Ap_1)), Ano1 (1 + O(Tgs))}
with positive 64 and d5. That is supplemented by fixing A,,. The previous bound yields
Ap < Ay (14 O(T)) + O(T,;,™)
and A, < CrA,, . Consequently,

(3.9 limsup sup ﬁ |4 (00, 2 + iy)|?dz < oo
i

n—0 0<y<Lr, Iy

~

Due to (3.3), we can start with any .J, choose I that contains it and then ng so large that I(,,) contains
J too. That will give us the first statement of the lemma. Now, the bound (3.8) follows from (4.8). O

Lemma 3.3. For every closed interval J < RT, we have an estimate

(3.10) lim inff log ||ty (00, k) |dk > —o0.
n—aoo J
Proof. As in the previous proof, we define
B, := inf f log |9 (0, z + iy)|dx .
O<y<Lr, I

We will control how B,, changes when n is increased by one. Given B,_; and the previous lemma, we
want to estimate B,. To control log [, (o0, + iy)| in the upper part of Ry, r,, we use estimates in
PC(I;,—1,T,-1). Applying (3.5), one has

(3.11) inf f log | (0, z + iy)|dx =
I(n—1)

éTn_l <y<Llr,

O)+  inf f log [¢n_1(o0, 7 + iy)|dz > O(€.) + Bo_1.
I(n—1)

by, <y<Lr,

and

br, <y<LrT, br, <y<Lr,

inf J log [ (o0, z + iy)|dz = O(e;,) + inf f log [¢n—1(00, z + iy)||dz .
Iin) I(n)

7



Notice that for the chosen range of y we have

| ol inlde = | tog (e + i)l - | log [thn—1(0, 2 + iy) | da
I(ny In_1y Ttn—1)\I(n)
and
_J log [tn_1(o0, 2 + iy)|dz > —f log, [¥n_1(c0,z + iy)|da.
I(nfl)\l(n) I(nfl)\I(n)
Then,

1
| log., [ (0,2 + iy)|de <1 73
I—1)\I(n)

as follows from the estimate log, ¢ < [t|, Cauchy-Schwarz inequality, (3.7), and the bound [I(,,)\I(;,—1)| <
Tn. In the end, we get

br, <y<Lr,

inf f log [t (90, & + iy)|dz = Byt + O(r) + O(e.) .
Iin)

To control the integral for the smaller values of y, i.e., when y < ¢7, ,, we apply Lemma 4.4 with
€1 =Lr,,62 =20y, , and § ~ 7,. The base of smaller rectangle is I(,,y and the base of the larger one is

I(;,—1y. Given Lemma 3.2, we can write

O<y<ZT I(nfl)

n—1

inf f log [ (o0, 2 + iy)|dz > (1 + O(T-%)) f log (o0, 2 + 2ifr, )|dz — O(T07).
I(n)

with positive §g and d7. For the integral on the right-hand side, apply (3.11). In the end, one has
Bn = (14 O(T;%))B,_1 + O(T; %), & > 0,09 > 0.

Consequently liminf,, ,, B, > —oo and thus liminf, SI( ) log |4 (00, z)|dz > —o0. Since

J log ||[¢n (00, z)|dz = J log_ ||ty (00, 2)||dx + f log, |tn (0, x)|dx
I(n) I(n) I

)
and (3.6) guarantees that limsup,,_, ., SI( ) log, |9 (0,z)|dx < o, we have

lim iorolf f“ log_ |tn (0, z)|dx = lim iOIclff log_ [t (00, k)| dk > —o0.
" g ",

The reasoning given at the end of the proof of the previous lemma can be used again to deduce (3.10). O

The last two results provide the crucial estimates for |4, (00, k)| when Imk € (0, L1, ). They control
the behavior of |[(Ry) x2F)(r)| for large r without giving precise asymptotics for (R, x2F)(r). That,
however, is enough to prove Theorem 1.1.

Proof of Theorem 1.1. Take any closed interval J < R* and recall that Viny =V - Xr<1,. Define
0(n),F, the spectral measure of F' relative to H,) = HO 4 Vin)- The spectral measure of F' relative to
H is op. Then, the previous lemma yields

n—0o0

lim inf JAQ log o(,y p(E)dE > —0.

Since lim, o [|Rn),.F — R.F|sc = 0, z € C*, we get 0(,),p — op in the weak(*) sense. Hence,
(see [12], section 5),

J log opdE > —0
A2

which implies that A? supports a.c. spectrum of the original H. Since A was arbitrary, we get the
statement of the theorem. O

4. APPENDIX 1: SOME ESTIMATES ON SUBHARMONIC FUNCTIONS

For the reader’s convenience, we collect some elementary estimates on subharmonic functions in this
appendix. Start with the estimates for the subharmonic function of a thin isosceles trapezoid. We
denote this trapezoid by T7 g where the height is €, the side angles at the lower base are both equal
to /B, and the projection of the upper base to the real line is a given interval I < R. First, we
will need some estimates on the harmonic measure of that trapezoid. It is instructive to start with

8



giving the exact formula for harmonic measure of the infinite tube which is “infinitely long” rectangle. If
Cyle :={k:0 <Imk < €}, then the density of harmonic measure on its lower side is
1 sin(rely)

4.1 L) = — teR, k= iy € Cyl .
(4.1) wi(t) 2¢ cosh(me=1(z —t)) — cos(me~ly)’ &% rrwecty

That formula can be verified directly. Let I' := 0T ;.3 = I't U ... U T4, where I'y is an upper base, I'y
the lower base, I's the left leg, and ['y the right leg of the trapezoid. Denote the harmonic measure at
point k by wy.

Lemma 4.1. Suppose the 'y = [0, 2] and the positive parameters 8,€,0 are chosen such that > 2,8 ~
l,e<d® «l,k=z+iye R(s52-5),05¢, and & € T'. Then, the derivative of harmonic measure in the
corresponding trapezoid with respect to its arclength satisfies

—2

4.2 = el I(ey < €y
( ) 5 s+eely, Wk(f) ~ COSh(W€71($ — 8)) )
4. = I / < -y
( 3) € s € Ly, wk(g) W((S-l’)2+y2) )
i (wt)ﬁily
(4.4) ¢ =t/ eT;, wi(§) < Cﬁm7
(4.5) E=2+t!B ey x <1 wi,(€) < CaytP~1.
Proof. See Figure 2.
IR}
Iy Iy
€
/8 % T2 /8
0 ) 1 2—96 2

Figure 2, e < 62 « 1

Recall the following monotonicity property of harmonic measure. If Q; < Qo and E < 00 n 09y,
then wg 0, (F) < wi,0,(F) for k € Q1 ( [10], p. 36) where wy o denotes harmonic measure at point k
relative to the domain 2. This monotonicity helps us get the required upper bounds by comparing to
harmonic measure of an angle, an infinite cylinder, or a half-plane. We obtain (4.2) by comparing with
infinite cylinder and (4.3) by comparing with the upper half-plane. The other two formulas are deduced
by making a comparison with an infinite angle. ]

Remark. The estimates in the upper part of rectangle can be obtained in a similar way.
We will need the following result later. Recall that I, denotes the interval on the real line with radius

r centered at the origin.

Lemma 4.2. Suppose the positive parameters ea, €1, 6 satisfy 2es < €1 < 62 « 1 and let wy, be a harmonic
measure for Ry ;... Then, for k = x +iey, we have

(4.6) sup
|€]<1-6

| ot —1| s @t
1

Proof. The required density of harmonic measure can be written via harmonic measure of infinite cylinder
through proper extension from I7,5 to R. The resulting formula shows that the contribution from the
left and righ sides of rectangle are exponentially small and the desired density can be well approximated
by the density of harmonic measure of the infinite cylinder. Then, we use formula (4.1) to obtain required
bound. O



Lemma 4.3. Suppose the positive parameters €1, ex and § satisfy 2es < €1 < 62 « 1. Assume that h is
(%(N)-valued function holomorphic in Ry, 1, continuous in Ry, 1, and

(4.7) IA(k)] < Cyexp(Ca(Im k)™ ), ke Ryyq, 1<k, & ~ 1.

Then, we have

(4.8) |h(z +iy)|> < Cu (1 +y A+ (e —y) " 'B),
149

A f Ih(0)|2dt, B f IA(t + ier)|2dt
I —1-6

provided that k = x + iy € R[H5 1. Moreover,
2

1
(4.9) sup J |h(x + iy)|Pde < A+ Creze; (A + B + 7).
~1

O<y<es

Proof. See Figure 3.

r+
€1
.k €2
7/(2K) —(1+9) —1 0 1 1496 /(2kK)
Figure 3

We can assume h #£ 0. Let k =z + iy € Rluével' Consider the isosceles trapezoid T7, s x/(2r)-
2
Denote its upper base by I't and its lower base by I'". We write the mean-value inequality for subhar-

monic function 2log, |h| and use the estimate (4.4) on the density of harmonic measure on the legs to
get

21og, ()] <2 [ log [hldy < Cryd ™12 +
T 1y 5.e1,7/(20)
2 j log, [wh(€)de < Cy +2 j log, [l (€)de
r'+ull'— +ul—

where we applied the given estimates on || along with €; < §2. Define Q(k) = max{1, |h|} and notice
that log @ = log, @ = 0 so

w v
log @ < C, +J (log Q*)wy,(§)de < C + (log @*)dp, p:= rlpoure o wklp- o -
r+our- r+our- Hwk|rfur+ ||

Taking the exponential of both sides and using Jensen’s inequality

exp <J10gfdu> < deu, lpe =1

f Q2 (€)de
rr—ul'+

lwr|p- o |

we get

Q* < C,

For considered k, we have |wg|p-r+]| ~ 1. Thus,
-1

2
Ty
P [
o (—z)2+y?

146 et —
@ P+ [ e hle + e P

149
<k 140 <y1 HhHQdf—f—(q—y)’IJ y h(f—l—iel)zd{) .

I -1
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To obtain (4.9), we take k € Ry, , and apply the mean-value inequality to subharmonic function |[h(k)|?

inside the domain RIl+ s,e1- The symbol F}L 5 .c, Will stand for an upper base of this rectangle. Then,
2 1+5°

@) P [ wPaasre [ P [ @,

I s rf
1+5161 1+§ I+5,el

2 1 5
To estimate the first term, we use (4.8). That gives

0.5€¢1 . . .%'yt

° - - zy(e —t) -3
1+t A4+ (e —t)'B) | ————2— | dt S, (A+ B +€1)yerd
Jya (@ =078) (G ) o5+ e

as follows from (4.8) and the estimates for the harmonic measure of rectangle. For the last term in the
right hand side of (4.10), one employs the bound on harmonic measure to write

143 o2
2 7 2 ) 2 ‘Y
(4.11) O N L 3

r 1-3
I 5. 2
1+401

Next, we integrate (4.10) in x € I;. Integration of (4.11) yields

1+3 —2
2 : (2 €17y -1
L e fars [ e i) ([ s ) de < By

I, 5€1 —1-3
144

The second term on the right-hand side of (4.10) contributes

f f B2 (€)de dmf Wk (f w;(@dg) dz < | |h)2de
I I, . s I .5 I I3

1+5 1+5
where the estimate .
’ Ty
w S T 5 5
was used. Combining the bounds, we get (4.9) after our assumption €; < 62 is taken into account. [

Lemma 4.4. Suppose the positive parameters e1,€2 and § are chosen such that e < €1|logey], e < §2
and § < 1. Assume that £*(N)-valued function h is holomorphic in Ry, ,.,, h € C(Rr,,.e), h #0,

W := sup J |h(z +iy)|*dz, [h(E)?P<Lly ' +(a—-y)™"), k=x+iyeRy, e, L>2.
Iits

O<y<e
Then, we have

inf L - Tog|lhfe +y)lde > (1+ Oleae™)) (f

log |h i€9)||dx —
O<y<ez/2 L og |[h(z + iez)||dx 77)»

In| < C<6261_1<W0.5 + |log L| + |log 61|> + (5W)o.5) '

Proof. Tt is enough to prove

(4.12) f log [h(z)|dz = (1 + O(eseh)) (J log [h(z + ies) |dz — n) .

11,5 Il
Take k =  + ies, x € I; and apply the mean-value inequality to the subharmonic function log |h| within
Ry se,- WedefineI'y = {k:Rek € I145,Imk =€}, Ty ={k:Imke (0,e1),k€ 0Ry, 5., }, 3= {k:
Rek € I145,Imk = 0} . Check Figure 4.

11



€1

k
€2
5 -1 5 0 1
Figure 4: €5 « 1 < 62 « 1
We get
(4.13) f log |h||dwy, = log ||h(z + ie2)| — By — Ea,
I's
where

B =J log, |hldws, Es =f log., |hldw. .
1]

2
One applies the given estimates on h and the estimates on a harmonic measure to bound Fy(s):

osh(re; (z — €))

Now, we integrate (4.13) in « over I; and recall that I's = I145. That gives

-2
J Eyds < J log, [A(€ + i) U a9y dx) de < Whyer?.
I Iiys I £))

, cosh(mey " (v —

J f log |h||dwy, | dz = J log || A <J wkdm) d¢ <
I, Iiis I s I

<uwai»j bwww+0@qwﬁ'l%wwm+j b&}lg,%m>%<
I_5 I_5 Ii45\I1—5 Iy

-2
- . €
By < (|log L| + | log ea])*cfes, aSJ tog, (€ + ien)| - s e
Iiys

Then,

(1+ O(e2e7 1)) f log ||h|dx + C’egel_lwé +C log, || d¢

I_s I s\I1-s

after we use the bound (4.6) from Lemma 4.2. Finally,
f log., [h]dé < C(e)WO5505
Iiys\1-s

by Cauchy-Schwarz inequality. Combining obtained estimates, we get the statement of the lemma. [

5. APPENDIX 2: ROUGH BOUNDS ON GREEN’S FUNCTION

We need the following standard bounds “a la Combes-Thomas” (see, e.g., [9]) for Green’s function
G(r,p,k?) of H = H©® 4 V. In this section, we assume that I is a fixed closed interval in R* and
ke RI,l-

Lemma 5.1. Suppose ||V|| 0 ®+) < 0. Then, we have
(5.1) |G(r,p, k)| < Cpe05tmWlr=s
for all k € Rry,Imk > Cr|V| oo @+) with some C; > 0 and C} > 0.

Proof. This is immediate from the analysis of perturbation identity for the Green’s kernel G:

Gumw%=0@wmx%fwa@v¢¢%vwagmw%@.
0
12



Multiply the both sides by e?-5ImK)lr=rl and apply the contraction mapping principle in L® (RT x RY).
We use (1.2) to get

0
(OBl [ e ml =8y (¢)]~0Sm DI dg < IV n ey (I )
0
and (5.1) follows provided Im &k > Cr| V|| +) with suitable Cf. O

Finally, we can focus on the lemma we need in the main text.

Lemma 5.2. Let |[V| < A(1+7)77, H = HO+V, ke Ry 1, where I is a closed interval in R*, v € (0,1),
and T > 1. Then, there are positive T-independent constants C,C1 and ¢ such that

|G (r, p, k)| < Ce=cmklr=rl
forImk > CiT77,05T <r <T, and 0.5T <p <T.

Proof. Define H' = —02, +V - Xr>17- By the previous lemma, the corresponding Green’s kernel G’
satisfies the bound

(5:2) |G (r,p, k)| < CemO3mblr=rl

if Imk > C1T~7. Next, we again write the second resolvent identity
T
G(Ta Py k2) = G/(Ta Py k2) - G(Ta g, kz)v(g)Gl(gv Py k2)d£ .
0
For the first term, we use (5.2). To estimate the second one, we apply a general bound: for every h € K,
one has HRk2 h”L°°(R+) < C(HR;& hHLQ(RJr) + H(Rk2 h)”HLZ(]R+)) < CI))\(IID k‘)_l HhHL2(R+) which follows from
Sobolev’s embedding, the equation for Ry2h, and the Spectral Theorem. Then, since r, p € [0.5T, T], one

deduces
4T 4T :
G(r, &, KV ()G (&, p, k?)dE| < Cra(Imk)™! f e~ M PlE=rlge ) < Cp\(Imk) 201 MmIT
0 0

Since Imk > C;T~7 and 7 € (0,1), we have (Im k)~ 2e=01ImK)T  Ce=er(Imk)T with positive ¢;. The
result now follows because e~¢1(IMMT < g—c(mk)lp=rl with positive ¢ provided that 0.57 < r,p < T. O
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