SZEGO CONDITION, SCATTERING, AND VIBRATION OF KREIN STRINGS

R. BESSONOV, S. DENISOV

ABsTrACT. We give a dynamical characterization of measures on the real line with finite logarithmic
integral. The general case is considered in the setting of evolution groups generated by de Branges
canonical systems. Obtained results are applied to the Dirac operators and Krein strings.
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1. INTRODUCTION

1.1. Nonstationary scattering. In nonstationary scattering theory [61], [71], [87], one studies an
evolution group of unitary operators {U;},cr that act on Hilbert space H. Elements X € H are
called states and the set {U; X }icr is a trajectory of X under the evolution U;. Motivated by physical
heuristics, one sometimes expects that the long-time behavior of U; X, t — 400, is asymptotically
close to that of U?Yy, t — oo, for certain states Y3 € H, which depend on X. Here, {U}icr is
another evolution group of unitary operators that act on the same Hilbert space H. The scattering
operator S defined by S: Y_ +— Y, then recovers the remote future of the process U; X from its past.

For concrete evolution groups U; and UL, proving the existence of the scattering operator might
be a nontrivial problem. In this paper, we address this question in the context of 2 x 2 canonical
Hamiltonian systems on the positive half-axis R, = [0, +00). They provide a convenient framework for
a unifying treatment of classical equations/operators of mathematical physics, such as one-dimensional
Dirac systems, Krein strings, Jacobi matrices, and Schrodinger operators. In fact, any self-adjoint
operator with a simple spectrum can be realized as a canonical Hamiltonian system on R, although
such a realization is often somewhat implicit. We refer to [72] and [74] for an introduction to the
spectral theory of canonical Hamiltonian systems.

A canonical Hamiltonian system is defined by its Hamiltonian, which is a 2 x 2 matrix-valued
function on R, that has the form

H= (21 :) ) H(r) =0, traceH(r)>0, forae 7eRy.
2

The real-valued functions hq, he, h satisfy hi, ha, h € LL (R;). If h = 0 almost everywhere on R, we
say that H is diagonal. Let J = ((1) _01). With each Hamiltonian H one can associate the canonical
system,

JX'(1,2) = 2H(T) X (1, 2). (1.1)
Here, z € C is a spectral parameter and the derivative is taken in 7 € R,. Canonical Hamiltonian
system (1.1) can be considered as a generalized eigenvalue problem Dy X = zX for a self-adjoint
differential operator

Dy: X — Y, Y: JX' =HY,

densely defined on a certain Hilbert space of functions on Ry (we give more details in Section 2.1).
The self-adjoint operator Dy has a simple spectrum. It, therefore, admits a spectral representation
as the multiplication operator by the independent variable in L?(u), with a canonical choice of the
scalar non-negative spectral measure p satisfying

J @) _ o, (1.2)
R

1+ 22

Remarkably, any non-negative Borel measure 1 satisfying (1.2) is a spectral measure of Dy, for some

Hamiltonian H. In particular, the usual Lebesgue measure on R is the spectral measure of Dy, for

the constant Hamiltonian Ho = (§¢) on Ry.

In our paper, we study dynamics of the unitary evolution group U; = e*P* generated by a general
Hamiltonian H by comparing it to the “unperturbed” dynamics governed by U? = e?P#o. The latter
can be easily reduced to the shift operator on L2(R), see Section 5.2. Informally, one of our central
results can be summarized as follows: “scattering for the pair Uy, U takes place if and only if the
spectral measure p of Dy belongs to the Szegd class Sz(R)”. That class consists of Borel non-negative
measures on the real line R whose density with respect to the Lebesgue measure on R has a finite
logarithmic integral:

Sz(R) = {uzwdx+us : J]R ;lgf)l < 400, JRde> —oo}. (1.3)
The Szeg6 class is prominent in complex analysis [49], [51], theory of stationary processes [29], [40],
orthogonal polynomials [77], [78], [80], and statistical physics [22], [79]. We will discuss its appearance
in various aspects of scattering for canonical Hamiltonian systems: propagation of a single wavepacket
(Theorem 2.12 and Theorem 2.23), existence and completeness of wave operators (Theorem 2.27),
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dynamical classification of spectral types (Theorem 2.29 and Theorem 2.31). We also use our previous
work to provide an explicit description of Hamiltonians corresponding to spectral measures in Sz(R)
(Proposition 2.11).

Below we discuss how our general theory, summarized in Section 2, applies to two important classes
of operators: Dirac systems and Krein strings. In these two cases, the connection between Szegd con-
dition on the spectral measure, propagation of the wavepacket, and the existence of the wave operators
becomes particularly transparent. The Dirac systems give rise to locally absolutely continuous Hamil-
tonians H with det’{ = 1 on R, and Krein strings are in one-to-one correspondence with diagonal
Hamiltonians on R;. Some figures demonstrating a numerical simulation of the propagation of waves
can be found in Sections 1.5 and 1.6.

We believe that suitable modifications of Szegé class will appear naturally in other criteria for
scattering in different settings (say, for CMV matrices, Jacobi matrices, Dirac operators with the
positive mass, etc.) if one chooses the unperturbed dynamics properly (see, e.g., [26], [84]).

1.2. Dirac equation. Define ¥ as the solution to the following Cauchy problem for one-dimensional
Dirac equation on the positive half-line Ry = [0, +0):

JU'(1,2) + Q(1)¥(T, 2) = 2V(T, 2), U(0,2) =(3), TeR;:, zeC. (1.4)

Here, again, J = (9 ') and the derivative is taken with respect to 7. The potential Q is 2 x 2

matrix-function with real entries. It is symmetric, has zero trace, and satisfies Q € L] (R;). We will

write () in the form
q Qg2
= ; 1.5
@ <Q2 —Q1) (1.5)

where real-valued functions ¢; and ¢o on R, satisfy ¢1,¢o € LIIOC(R+). For each value of the spectral
parameter z € C, the solution, ¥(-, 2), is a locally absolutely continuous function on R, with values
in C2. It can be considered as the generalized eigenvector of the Dirac operator

Dg: Z— JZ'+QZ. (1.6)
The operator D is a densely defined self-adjoint operator on the Hilbert space

LZ(CQ) = {Z R+ — C2 : HZH%Z(C2) = J;R HZ(T)”%p dr < (X)}
+

Its domain consists of locally absolutely continuous functions Z € L?(C?) that satisfy two conditions:
JZ'+QZ € L*(C?) and {Z(0), (9))c2 = 0. The “free” Dirac operator, corresponding to the potential
@ = 0, will be denoted by D,.

The one-dimensional Dirac operator (1.6) has its origin in relativistic quantum mechanics. For
example, it describes the one-dimensional particle of unit mass moving in a field defined by a po-
tential ¢: Ry — R. That function ¢ is related to ¢; and g2 in (1.5) by ¢1 = cos(2 quds) and
g2 = —sin(2§] qds) (see [83] and page 534 in [39]). In the theory of completely integrable sys-
tems, the Dirac equation appears as a linear self-adjoint problem that is used to solve the nonlinear
Schrodinger equation. See, e.g., [31], Chapter 1 for the inverse scattering approach in the theory of
nonlinear Schrodinger equation, and [1], [21], [59] for more on inverse scattering problems.

For every @ € L{ (R.), there is a unique Borel measure up on R such that (2% + 1)~ € L'(up)
such that the generalized Fourier transform

Fo: Z— % R+<Z(T),\I/(T, Z) 2 dr, z€C, (1.7)
densely defined on smooth functions with compact support, can be extended to a unitary map from
L*(C?) onto L?*(up). That measure is called the main spectral measure of D. For example,
the Lebesgue measure on R is the main spectral measure for the free Dirac operator Dy. We refer
the reader interested in the spectral theory of the one-dimensional Dirac operator to the classical
monograph [64]. It can be also considered as a part of a more general spectral theory of canonical
Hamiltonian systems [20], [70], [72], [74].
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Given a potential Q € L{ (Ry), we let Uy = < and UP = €0 in the context of general
problem discussed in Section 1.1. These are unitary operators on L?(C?) parameterized by t € R.
The unperturbed dynamics U has an explicit form given by formula (4.9) below, we show that it can
be reduced to a shift operator on L?(R) in Section 5.2. Fix a measurable time-independent “phase
function” v on Ry which takes its values on the unit circle T = {z € C: |z| = 1}. Let M,: Z — vZ
denote the multiplication operator on L*(C?) with function . Set UY, = M,U} for t > 0 and

U0, = MUY for t < 0.

Definition. If the following limits
Wi(Dg,D0,7) = lim U U2, (1.8)

exist in the strong operator topology, we will call them the modified wave operators for evolution
groups U; and Up. The standard Méller wave operators correspond to the choice v =1 on R.

Studying wave operators is a classical problem in scattering theory, theory of partial differential
equations, and mathematical physics (see, e.g., Hormander [36], Kato [43], Birman and M. Krein [10],
Lax and Phillips [61], Yafaev [87], etc.). In our paper, we show that wave operators for g, D exist
if and only if the spectral measure pp belongs to Szegé class (1.3). Specifically, we prove the following
two theorems.

Theorem 1.1. Let D be the Dirac operator (1.6) with potential Q € Li (Ry). Assume that for
some measurable function v: Ry — T one of the wave operators Wi (Dg,Do,v) exists. Then, the

main spectral measure pp of D¢ belongs to the Szegd class Sz(R).

The wave operators Wy (Dg, Do, ) are called complete if they are unitary operators from L?(C?)
onto the absolutely continuous subspace Hae(Dg) of Dg.

Theorem 1.2. Let D¢ be the Dirac operator (1.6) with potential Q € L (R;). Assume that the
spectral measure up of ®¢g belongs to the Szegd class Sz(R). Then, the wave operators Wi (Dg, Do, )
exist and are complete for some measurable function ~v: Ry — T. Moreover, one can take v =1 if Q

is anti-diagonal, i.e., ¢ = 0.

In general, one cannot take 7 = 1 in Theorem 1.2 as has been shown in [25] (see discussion after
Theorem 14.7 there and Teplyaev’s work [81]). The wave operators W4 (Do, Do,y) can be used to
describe asymptotics of evolution in the remote future given its behavior in the remote past. In the
setting of Theorem 1.2, the scattering operator

S = W-le—a Wi = Wi(®Qa©077)a

defines a unitary map on L?(C2?). We prove that it does not depend on 7. Our wave operators are
complete and S describes the asymptotic dynamics of a state Z € Hac(®¢) under the evolution U; by

S YZ’, = YZ’Jr, tl&r_&lﬁ HUtZ — U'(yJ,tYZ,J_rHL2((C2) =0. (1.9)

In other words, if U;Z is asymptotically close to US,tYZ,— in the remote past for some Yz _, then U, Z
is asymptotically close to U’?,tYZHr in the remote future, hence Y, ; = SYz _. Moreover, both Yz
and Y _ are in one-to-one correspondence with Z because we have Y + = W;'Z and the operators
Wy are unitary from L?(C?) onto Hac(Dg). Notice that analogs of wave operator and scattering map
can also be defined in the context of classical Hamiltonian mechanics (see, e.g., [13]).

Paraphrasing Theorem 1.1 and Theorem 1.2, we can now say that the scattering phenomenon in
the sense of (1.9) takes place for the Dirac evolution groups U;, U if and only if the main spectral
measure of D¢ lies in the Szegs class Sz(R). That motivates us to introduce the class of potentials

Sz(Dir) = {Q € L{,.(R}): the main spectral measure of D, is in Sz(R)}.
In previous works [6] and [7], we characterized potentials @ € Sz(Dir). That description is summarized

in the following theorem.

Theorem 1.3. Let Q be a potential in L (R, ) and Ny be the solution to the Cauchy problem

loc

IN)(T) + Q(T)No(T) =0,  No(0)=(49), TeR,.
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Then, Q € Sz(Dir) if and only if

> (det Ln+2N5‘(T)NO(T) dr — 4) < 4o0.

n=0

Q=((q) _Oq> or Q=<2 g), (1.10)

then Q € Sz(Dir) if and only if
n+2 n+2
J h(T) dTJ d—T) - 4> < 400, (1.11)

% (o [5G

n=0

where h() = e2% 1) ds - > 0.

If, moreover, Q has the form

Previous works provide sufficient conditions for scattering in Dirac evolution and we will discuss
some of them now. We write Q € LP(R, ) if the entries of a potential @ belong to the space LP(R, ).
The case @ € L'(R;) is classical, the existence and completeness of W (Dg,Dy,1) follow from
the general theorems on trace-class perturbations. Indeed, one can show that the operator (Dg +
i)7! — (Do +4)~! belongs to the trace class S'(L?(C?)) and then use a result of Birman and Krein
(see Theorem 2 in [10] or Theorems XI.8, XI.9 in [71]) which is an extension of the classical Kato-
Rosenblum theorem. In a general setting, the trace class in Birman-Krein theorem cannot be replaced
by any other Schatten class S?(L?(C?)), p > 1. However, for the Dirac equation, the existence of wave
operators was proved under assumptions much weaker than (Dg +i) 1 — (Do +14) "' € SY(L*(C?)).
For example, Christ and Kiselev [15] showed that the wave operators Wi (Dg, Do, 1) exist and are
complete for @ € LP(R),1 < p < 2. The second author covered the borderline case in [24]: he proved
that the wave operators exist and are complete for Q € L?(R,). On LP(R,)-scale, the class L?(R )
is optimal: a well-known result by Pearson [67], when stated for Dirac equation, says that there exists
Q € Nnp=2LP(Ry) for which the Dirac operator ®¢ has empty absolutely continuous spectrum. That
implies Hac(Dg) = {0} and the wave operators do not exist in a “very strong sense”’. Indeed, there
are no isometric operators between L?(C?) and {0} = Hac(Dg)!

Previous results indicated a connection between the convergence of logarithmic integral of the
spectral measure pp and the existence of wave operators. The first author proved [9] that Szegs
condition is sufficient for the existence of certain modified wave operators and one can show that the
spectral measure belongs to the Szeg6 class Sz(R) for Q € LP(R, ), 1 < p < 2. In higher dimensions,
similar results were obtained in [60], [76], and [27]. The present paper provides the final answer in the
form of a necessary and sufficient condition for Dirac scattering given both in terms of spectral data
(via Theorem 1.1 and Theorem 1.2) and an explicit condition on potential @ (via Theorem 1.3). We
rely on our previous works [6], [7], [9], [25], and, more broadly, on M. Krein’s idea (see [55] and [57]) to
use the theory of polynomials orthogonal on the unit circle when studying problems of spectral theory.
In particular, Lemma 2.19 that appears later in the text has the counterpart known as “Khrushchev’s
theorem” for orthogonal polynomials (see [45] by Khrushchev).

Consider @ = Qq,p of the form (1.10) with ¢ = Si‘;—ga for some «a, 8 € R. That class of potentials,
introduced by von Neumann and Wigner in a different context, was extensively studied in the literature
(see, e.g., [15] for some references). Different values of parameters «, 5 give rise to highly oscillating,
slowly oscillating, periodic, decaying or growing potentials. The scattering problem for such potentials
has been actively studied (see [3], [4], [28], [66], [85]) in the setting of Schridinger equation.

Theorem 1.4. Suppose that a potential Q. 5 € Li (R4) has the form (1.10), where

loc
sin ¢
q(T) = B’ T = 70,
T
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2.5 18

1.5 1

FIGURE 1. The set A = A; U Ay U Az in Theorem 1.4 (filled blue). Pairs (o, 3) € A
correspond to potentials Q. 5 € Sz(Dir).

for some o, f € R and 70 > 0. Then, Qq,p € Sz(Dir) if and only if (o, B) € A1 U Az U A3, where
1
A1 :{(O[,B)ZOLSO, ﬁ—O{> 5}7
1
AZ = {(avﬁ) HeRS (0a1)7 ﬁ > 5};

A= {(@8):a>1, atf> )

The set Ay U As U Az in Theorem 1.4 is open (see Figure 1) which demonstrates the stability of
the scattering phenomenon in parameters o and (.

Most of the results in this paper have a dynamical interpretation. It also appears that some difficult
questions of spectral theory have precise answers in dynamical terms. Here is one example: as the
following theorem shows, the propagation of just one nontrivial state Z under the Dirac evolution
characterizes the absence of the singular continuous spectrum for the corresponding Dirac operator.

Theorem 1.5. Let D¢ be the Dirac operator with potential Q) € Sz(Dir). The singular continuous
spectrum of D¢ s empty if and only if

o1 (T
hm hm TJ HUI‘/Z||%,2(C27[b7t—b])dt:O (112)

b—o+w TH+x 0

for some (and then for every) compactly supported nonzero state Z € L*(C?).

The next theorem shows that in the Szeg case the long-time Dirac evolution of any state Z € L?(C?)
decomposes into three parts: “the bound states part” localized near the origin, the “scattering part”
propagating to infinity with constant velocity, and the “singular continuous part” between them.
These parts correspond to the orthogonal projections PppZ, PacZ, PscZ of Z onto the pure point,
the absolutely continuous, and the singular continuous subspaces of ®g. We provide the dynamical
description of the sizes of these projections (see [18], [46], and [75] for related results) which makes
the connection between spectral type and evolution of wavepacket transparent.
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Theorem 1.6. Let D¢, be the Dirac operator with potential QQ € Sz(Dir). Then, for every Z € L*(C?)
we have

o (T
lim im0 Z e o 4t = [ PonZ ey

bo+w To+xw 0

.
i i 102 ey dt = 1Pl

b+ T+ 0

GJm  lim 10 Z | 2(c2 f—past)) = [PacZlZzc2):

i Jim (U Z] 22 b vy = O-

There is a large amount of literature in which the spectral types and the corresponding subspaces
of an operator were studied in connection to the dynamics it generates. That can be done for very
general setting (see, e.g., the celebrated RAGE theorem [71], Theorem XI.115) or for some standard
operators of mathematical physics (see [17] or [47], where the Schrédinger evolution was considered).
In Theorems 1.5 and 1.6, we focus on Dirac equation and give a complete dynamical description of
classical spectral subspaces in the spirit of RAGE theorem. Again, the Szegé condition on the spectral
measure is central to our analysis as it provides the sharp asymptotics of Uy Py Z which simply does not
hold in the general case. For example, the Dirac equation with constant positive mass has different
dispersion relation (see, e.g., [30]) and the third equality in Theorem 1.6 does not hold for such a
model.

We want to make a few remarks about other existing methods. In [68], p. 406, the scattering
for regular stationary Gaussian sequences has been studied in the case when the spectral measure
of the process is purely absolutely continuous and its density satisfies Szeg6 condition on the unit
circle. That is one example of the general Lax-Phillips approach, in which the so-called representation
theorem (see, e.g., Chapter II in [61]) can be applied to the general unitary groups with both discrete
and continuous time. It provides the abstract scattering operator under the assumption that the
so-called “outgoing” and “incoming” subspaces exist. To define these subspaces for concrete evolution
equations, one usually works with compactly supported perturbations of the canonical operators (e.g.,
Laplacian, Dirac, etc.). Our methods give asymptotics of evolution U;Z on the physical side for a
large class of Z avoiding such strong assumptions on perturbation @ in (1.4). Also, when viewed on
the spectral side, our technique allows the spectral measures to have essentially arbitrary nontrivial
singular parts as long as these measures are in Szegé class.

Another approach to scattering theory is based on proving the large-7 asymptotics of solutions to
(1.4) for Lebesgue almost every spectral parameter z € R. This is an area of active research (see,
e.g., [15], [23], [65], and more recent work [69]).

1.3. String equation. To define the mathematical model of a vibrating string, one starts with pre-
scribing its length L € (0,00] and the non-decreasing right-continuous function M: [0,L) — R..
Given ¢ € [0, L), the number M (§) is interpreted as the mass of the [0, ] piece. Define the Lebesgue-
Stieltjes measure m by m[0,£] = M (§) and write its decomposition into the absolutely continuous and
singular parts: m = mye + mg = pd€ + mg. Usually, the function p is referred to as the density of the
string. Denote M(L—) = limgyr, M(€). We will call the [M, L] pair proper if M and L satisfy the
following conditions

L+ M(L—) =, (1.13)

0< M) <M(L-), VYE€e(0,L). (1.14)
The second condition can be interpreted as the left and the right ends of the string being “heavy”.
The free motion of the vibrating string [M, L] with a given initial displacement ug: [0,L) — R is
described by the solution v = u(&,t) of the string equation

m(f)utt(gat) = uéﬁ(gat)7 (115)
u(&,0) = up(§), £el0,L), teR., (1.16)
u(€,0) = ug(0,¢) = 0. (1.17)
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Under mild assumptions (1.13)—(1.14), m is essentially an arbitrary non-negative Borel measure on
[0, L) and one needs to explain how to understand equation (1.15). In Section 3, we will define the self-
adjoint non-negative operator Sy, the Krein string operator, which corresponds to the pair [M, L].
Then, the Spectral Theorem for Sp; and operator calculus can be used to define the solution u as
follows:
u(-,t) = cos(t\/Sar)uo, ug € L*(m). (1.18)

With this general picture in mind, we mention that if L. = 400, m = pd¢, and p and ug satisfy
additional regularity assumptions, then our solution u coincides with the unique classical solution to
the problem

p(&)utt(&t) :ufi(gvt)a §eRy, te Ry,
that satisfies (1.16) and (1.17). In that case, the value of u(&,t) gives the displacement of the string at
the point £ € [0, L) at the moment ¢ € R where wy is the initial real-valued displacement. Assumption
ut(€,0) = 0 indicates that the initial velocity is equal to zero, and the Neumann boundary condition
ug(0,t) = 0 says that the left end is “loose” (see [2] for some background).

In our setup, function u, the solution to (1.15), will be considered as an element of L*(m) for all
t > 0. For m-measurable function f, we introduce its front as

fe[f] = inf{a € R, : f = 0 m-almost everywhere on [a, L)}

and we will call fv, = fr[u] the wavefront of solution u(-,t) at time t.

Using a classical result by Krein and the Beurling-Malliavin theorem on a multiplier, one can
explicitly compute the wavefront of a wave u with compactly supported initial profile ug. Given a
string [M, L], we define two functions:

13
Tyi(€) = f Vo) ds,  Lug(n) = inf{€ € [0, L) : Tar(€) > n}

for £ € [0,L),n € Ry. In physics literature, the former function is sometimes referred to as eikonal
or optical metric. The subscript “M” above refers to the mass distribution M of a string. Later
in Section 2.2 we use similar functions T, Ly for a canonical Hamiltonian system generated by a
Hamiltonian H.

Theorem 1.7. Let [M, L] be a proper string and let ug € L?(m) be a nonzero compactly supported
initial profile. Assume that t > 0 is such that Ly (Th(frg) +t +¢) < o0 for some € > 0. Then, the
wavefront of the solution u of (1.15) can be found by the formula

fe, = LM(TI\/I(ftO) + t). (1.19)

We say that a Borel measure 0 = vdx + 05 on R} with the density v and the singular part oy
belongs to the Szegé class Sz(Ry ) if (z + 1)~ € L!(0) and

logv(x)
————dr > —0.
R, \/E(./L' + 1)
To each proper string [M, L] one can associate the unique non-negative Borel measure o on R, with
(r +1)7! € L'(0) called the main spectral measure of the string [M, L]. The theorem below

provides a dynamical characterization of the Szegd class Sz(R ).

Theorem 1.8. Let [M, L] be a proper string and let o be its main spectral measure. Then, o € Sz(R.)
if and only if for some (and then for every) monzero compactly supported initial profile uy € L?(m)
and for some (and then for every) £ > 0 we have

limsup | (-, )| L2 (m, [fe,_,.f¢,]) > O- (1.20)
t—+0

Put differently, the result says that the spectral measure of a string [M, L] belongs to Sz(R.) if
and only if the part of wave u near its wavefront does not vanish as t — +oo0.

For the homogeneous string with positive constant density, we have L = +00 and M: £ — poé
where pg > 0. In that case, the propagation of the wave with the initial profile uy has the well-known
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“traveling wave” form given by d’Alembert’s formula:

t —at _1
u(g.p) = WEFOXWEZA oy ez =gt (1.21)
where we extended ug to the whole real line R as an even function. Moreover, if ug € L?(R ), then
—at
u(€,t) = M +o(l), t— 4o, (1.22)

where the remainder “o(1)” is with respect to the L?(R,)-norm. Below, we prove a similar result for
arbitrary strings with spectral measures in the Szegs class. Define

Sz(Str) = {[M, L] : the main spectral measure of [M, L] is in Sz(R)}.
Consider any two measurable sets s(m), Qac(m) € R, that satisfy
Ms(Qac(m)) = [Qs(m)| =0, Qac(m) =Ry \Qs(m), (1.23)

where |E| refers to Lebesgue measure of a set E. In the theorem below, we denote A, = [Las(t —
a), Ly (t +a)] fort =a > 0.

Theorem 1.9. Suppose [M, L] is a proper string in the class Sz(Str). Then, for each ug € L*(m),
there exists G, € L*(R) such that for every a > 0 we have
_1
(& 1) = XQue(m)(§) - P~ T(€)Guo(Tra (§) — 1) +0(1), ¢ — +00, (1.24)
with o(1) in L?*(m,A.+). If, moreover, ug belongs to the absolutely continuous subspace Hac(Shr)
of the Krein string operator Syr, then (1.24) can be strengthened: o(1) now holds with respect to
L?(m)-norm.

The “traveling wave” G,,, in Theorem 1.9 can be explicitly written in terms of uy and Szegé function
of the spectral measure of [M, L], see details in Section 3. Similar results were obtained recently in a
different setting (see [26] and [27]).

The class Sz(Str) can be described purely in terms of string’s length L and mass distribution M.
That characterization was obtained in [6]. Below, we give somewhat more general version which has
already been applied in the theory of quantum graphs (see [53]).

Theorem 1.10. Let [M, L] be a proper string, and let {n,} be an increasing sequence of positive
numbers such that ¢ < Npy1 — M < co for all n = 0 and some positive c¢1, ca. Then, we have
[M, L] € Sz(Str) if and only if \/p ¢ L'[0,L) and

+%

> (G = &) (M (Enrz) = M) = sz = mn)?) < +o0, (1.25)

n=0

where &, = Ly (nn)-

The Lax-Phillips scattering theory for vibrating strings (see [61] and [37], [38] for connections with
the theory of Kg-spaces, basis property of exponents, and Regge’s problem) usually assumes that the
string is homogeneous on a half-line £ > £, for some &y, which places it in Szegé class, and then the
solution to problem (1.15)-(1.17) is studied in the energy norm |- | g defined by (see, e.g., p. 73 in [37])

1 oC 0
s = 1 U g+ [l dm>.
0 0

In contrast to that setup, we make no such assumptions on the string. We also find it more suitable
to work in the original space L?(m).

We end this section with two examples which are discussed in detail in Section 3.4. In the first
one, the density p = 1 and we study how the properties of the string depend on mg, the singular
component of m. Measure mg describes the “impurities” in the material.

Example 1.11. Let [M, ] be the string with m = d +mg on Ry, and let ug € L*(m) have compact
support, uy # 0. Then,
fr, =fro+t,  t=0.
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FIGURE 2. The upper string has black pieces of length L 3 That string does not

nlog(e+n
belong to the class Sz(Str). The bottom string has black pieces of length m.

It does belong to the class Sz(Str).

If mg(R,) = o0, we have [M, 0] ¢ Sz(Str) and
B Jul, )] 22 (m fie,—a.fe1) = 05
for every a > 0. In the case mg(R) < o0, we have [M, ] € Sz(Str) and

tEIE’ﬁ Hu('at)HLQ(ms,[fttfa,ftt]) =0,

i ul11) = Gy~ Ol g = O
for some G, € L*(R),G,, # 0, and all a > 0.

Example 1.11 shows that the propagation of the wave depends solely on whether mg(R. ) is finite
or not.

In our second example, mg(R.) = 0 and the density p takes two positive values: a and b. So, we

have
a, TEFE,
pl(r) = (1.26)
b, TeRL\E,

for some Lebesgue-measurable set £ € R, . We interpret such strings as those made of two types of
material (see Figure 2).

Example 1.12. The string with mg(R.) = 0 and density p of the form (1.26) lies in Sz(Str) if
and only if either a = b (the string is homogeneous) or one of the sets E, R, \E has finite Lebesgue
measure.

Given that statement, Theorem 1.8 and Theorem 1.9 show that the propagation of the wave depends
only on whether min{|E|, |R;\E|} is finite or not.

The paper has four parts. This introduction is followed by the second section which is focused on
canonical systems. The general results obtained in the second part are applied to Krein strings in
the third section and to Dirac operators in the fourth section. Finally, the Appendix contains some
auxiliary statements and proofs.

1.4. Notation. We use the following notation:
eR, =[0,0),CL ={zeC:Imz>0},C_={2eC:Imz<0}, T={2eC:|z| =1}
e We define the direct and inverse Fourier transforms by:

Py e g Fe) = —— [ fe)ein€ do
fieo) = o= | r@etan, fior = o= | f@entan, cer

e The symbol CZ(R) denotes the set of compactly supported infinitely smooth functions on R.

e The symbol C(R) denotes the set of continuous functions on R.

o We write f € Ll (Ry) is {; | f(2)| dz < oo for every r € (0,0).

e Given a function f € C(R), its support is defined as supp f = {z : f(z) # 0}.

e The symbol C' denotes the absolute constant which can change the value from formula to formula.
e For two non-negative functions f; and fo, we write f; < fo if there is a constant C' such that
f1 < Cfy for all values of the arguments of f; and fo. We define > similarly and say that f; ~ fo
if f1 < f2 and fo < f1 simultaneously. If | f5]| < f4, we will write f3 = O(f4). Given f; and fa, two
real-valued functions defined on R, we write f; = o(f2) when z — +0 if f; = af; for some function
« that satisfies lim,_, o o = 0.
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o If 1 is a non-negative Borel measure on the real line and f, g € L*(u), we denote (f,g),, = SR fgdu.
e We denote f(z*—) = limgq,+ f(x). Similarly, f'(z*—) is the left derivative at point z*.

e Given any measurable set £ € R, the symbol |E| will denote its Lebesgue measure.

e Given a set F € R, the symbol xg stands for the characteristic function of F.

e Suppose o is a non-negative Borel measure on R and o = 0, + 05 is its decomposition into the sum
of absolutely continuous and singular parts. In this paper, Qs(0) and Qac(0) will denote any sets that
satisfy

0s(Qac(0)) = |2%(0)] =0, Qaclo) =R\Qs(0). (1.27)
Analogous notation is used for measures defined on R :
0s(Rac(0)) = |Qs(0)] =0, Qaclo) =R \Qs(0). (1.28)

e For z € C,, the symbol {/z always defines the branch of the root such that {/z > 0, z € R,.
e Given an interval I ¢ R and f € L(I), we write {f); = ﬁ §; f dx for an average of f over I.
e {a,byc> = arb; + azby for vectors a,b € C? with coordinates a;, as and by, by, correspondingly.
e For z > 0, we denote log™ 2 = max(0, log ).
e The entire function f has finite exponential type if type f := limsup,|_, % < +00.
o We denote diag(a,b) = (§9), a,be C.
e Given a matrix A, we denote its transpose by A?.
e Given a function g, we define the corresponding multiplication operator by g as My: f — gf.
e The composition of two functions F' and G will be denoted by F o G.
e Given a non-negative non-decreasing function F' defined on R, , we denote its generalized inverse
as
FUD(z) = inf{y > 0: F(y) = =}
and let FO-Y(z) = 400 if {y > 0: F(y) = x} = &. It can be shown that F(~1) is non-decreasing and
left-continuous on R,. If F is continuous on Ry and F(0) = 0, then F(~Y(z) = min{y > 0: F(y) =
z}, and F(F(=Y(z)) = z provided that F(—Y(z) < +oo.
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1.5. Figure: wave propagation for a string in the non-Szegé case. The first graph shows the
density of the string. For each interval [n,n + 1] = E,, u F,,, F,, carries the density 1, F;, carries the
density 2, and |F,,| ~ 1/a/n + 1. As time increases, only a vanishing portion of the wave (shown in
the red circle) propagates with the maximal speed.

(S TnEa By By By

0 1 2 3 4 5 6 7 8 9 10

FIGURE 3. Wave propagation in the non-Szegé case.
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1.6. Figure: wave propagation for a string in the Szegd case. The first graph shows the density
of the string. For each interval [n,n + 1] = E,, U F,,, E,, carries the density 1, F;, carries the density
2. This time, |F,| ~ 1/(n + 1)2. As time increases, a non-vanishing portion of the wave (shown in the
red circle) propagates with the maximal speed.
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FIGURE 4. Wave propagation in the Szegs case.
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2. CANONICAL HAMILTONIAN SYSTEMS

2.1. Some definitions and known results. We first recall some basics of the theory of canonical
Hamiltonian systems [72], [74]. As we have seen in the Introduction, a Hamiltonian # on the positive
half-axis Ry = [0, +00) is a matrix-valued mapping of the form

(f;; :) , H(r) =0, traceH(r) >0, forae TeR,.
2 +
1

The functions hq, he, h are real-valued and belong to L, .(Ry). If b = 0 almost everywhere on Ry,
we say that H is diagonal. A Hamiltonian H on R, is called singular if

J, l trace H(7) dT = +00. (2.1)
0

A Hamiltonian H is called nontrivial if it is not of the form H = kA where a non-negative function
kisin L{ (Ry) and a constant matrix A > 0 has rank one. The Hilbert space L*(#) is the set of
(equivalence classes of) measurable vector-functions

L*(H) = {X: R, — C?: J:<H(T)X(T),X(T)>C2 dr < +oo}//Ce7“ H, (2.2)

KerH = {X: H(7)X(7) = 0 for almost all 7 € R+},

equipped with the inner product

(X,Y) 203 = LIG-[(T)X(T), Y(T)>cc2 dr.

An open interval I € R. is called indivisible for H if there exists a function x and a nonzero vector
e € R? such that H coincides with the operator f — s(f,e)cze almost everywhere on I, and I is the
maximal open interval (with respect to inclusion) having this property. Let J(#) denote the set of all
indivisible intervals of H, and let

H={XeL*(H): X =z;onleI(H), z;eC*}. (2.3)

Since L?(H) is a set of equivalence classes of functions, we say that X = x; on an interval I if
HX = Har almost everywhere on I.

In this paper, we will only work with Hamiltonians #H that satisfy the following three conditions:

(a) H is singular;
(b) for every r = 0, we have (r, +00) ¢ J(H);
(¢) there is no € > 0 such that H = x(§9) almost everywhere on [0, €] for some function .

Later it will be clear that these assumptions are both convenient and natural for the kind of problems
we consider in this section. We refer to Hamiltonias satisfying (a)-(c) as proper Hamiltonians.

Fix J = (9 3'). With each Hamiltonian A one can associate a self-adjoint differential operator
Dy: X =Y, Y: JX' =HY, (2.4)

defined on a certain dense linear subset of the Hilbert space H we will introduce shortly. Note that if
there are two functions Y7, Y5 such that JX' = HY; = HY3 almost everywhere on R, then Y] = Y5
as elements of H according to (2.2) and (2.3). Under our assumptions on H, the domain of Dy is
given by

X is locally absolutely continuous on R,

domDy =<{ XeH: JX =HY for some Y € H,
(X(0),(9))cz = 0.

In the first line above, “X is locally absolutely continuous” means that there is a locally absolutely
continuous representative of X and then the boundary value X (0) € C? is defined for this representa-
tive. When considered on dom Dy, the operator Dy is in fact a self-adjoint operator densely defined
on H (e.g., check Section 2 of [74]). Our assumption (c) is related to the choice of the boundary
condition (X (0), (?)>cz = 0 (see Theorem 3 in [74]).
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Alternatively, the spectral theory of canonical Hamiltonian systems can be presented in the language
of symmetric linear relations defined on the whole space L?(H), not just on its subspace H. That
approach was pioneered by I. Kats [44]. More details, including historical remarks, can be found
in [62], [72].

A Hamiltonian H on R, generates a canonical system — the differential equation of the form
JO'(1,2) = zH(T)O(T,2), ©(0,2) =(}), TeR,, zeC. (2.5)

As we mentioned in the Introduction, it can be considered as the eigenvalue problem for D4;. Indeed,
if ©(-, z) € dom Dy, then z is a eigenvalue of Dy and (-, z) is an eigenfunction. Since H € L] (R;),
the Cauchy problem (2.5) has the locally absolutely continuous (with respect to 7) solution © for each
z € C. It is also easy to see that for fixed 7 > 0, this solution is an entire C2-valued function with
respect to z. We will use notation ©F and ©~ for its entries:

ot (r,z)
®(T7Z) - (@_(T,Z) . (26)
The Titchmarsh-Weyl transform (or the “generalized Fourier transform”) associated with H is defined
by

jo’s]

X - — | {H(r O(1, )¢ dr, z€C, (2.7)

on the set of elements X € H that have compact support. Clearly, this set is dense in H. For such
X, Wy X is an entire function with respect to z. It is known (see Section 9 in [74] or [86]) that for
every singular Hamiltonian there exists a unique measure p on R such that (1 + 22)~! € L'(p) and
the mapping Wy, is the unitary operator from H onto L?(u1). Note that for z € C and X € dom Dy
with compact support we have

L z 7 L T "(1,2))ce dT
WX = TJ (H(T)X(7),20(T, 2))c2 dT = \/EJO (X(7),JO(1,2))c2 d

f X' (7),0(7, 2)yes dr = Wiy(Dy X). (2.8)

Therefore, the operator Wy, : H — L?(u) diagonalizes Dy and p is the spectral measure for Dy, (see
Section 8 in [74]). That measure u is often called the main spectral measure of Dy or simply the
spectral measure of the Hamiltonian H.

Take r that satisfies
reRy\ (] I (2.9)
I€T(H)
For such r the multiplication operator Y ~ xpo,1Y by the characteristic function of [0, r] acts from
H to H since the multiplication with such xpg ] is consistent with the condition that X = z; on
I € J(H) in (2.3), the definition of H. Consider the space

B, = WyH,, H.={Y € H:esssuppY < [0,r]}. (2.10)

Since Wy is a unitary map, the set B, is a Hilbert space of entire functions with respect to the inner
product

(f1s f2)u f fifadu

inherited from L?(p). It is called the de Branges space generated by the restriction of H to [0,7].
Given an entire function f, we let ff denote the function z — f(z). Then, f = f* if and only if f is
real on the real line R. We can define

E.(2) =07 (r,2) +i0 (r, 2), Ei(r,2) = 0" (r,2) —iO (1, 2), z € C, (2.11)
where the second formula follows from the fact that ©*(r,z) and ©~(r, 2) are real for real z. It is
known (see, e.g., Section 4.3 in [72]) that E, has no roots in the upper half-plane C, and that B,
admits the following description in terms of the Hardy space H?(C,):

f
B, = {en’cire f: Ei e H*(Cy), é— € H2(C+)}. (2.12)
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f |f1? dp = f

An immediate corollary of (2.10) and (2.13) is the following nesting property of subspaces B,.: if
0 < 7 < ry and both r; and ry satisfy (2.9), then we have the isometric inclusion B,, & B,,. In
particular,

Moreover,

dx, feB,. (2.13)

J / 2dx=f fzdm=J|f|2dﬂ, feB.. (2.14)
R Eh R ET2 R '
We say that an entire function E belongs to the Hermite-Biehler class if
|E(2)| > |E(Z)], zeCs. (2.15)
An Hermite-Biehler function F is called regular if
1
———— € H*(Cy). 2.16

For each r > 0, the function E, in (2.11) is known to be a regular Hermite-Biehler function, see
Proposition 6 in [74].

Using description (2.12) of the space B, and formula (2.2), it is easy to check (see Theorem 4.4
in [72]) that the Hilbert space B, has a reproducing kernel at each point \ € C:

1 E,(2)E,(\) — E}(2)EF())
" 27i z— A ’
The latter means that kg, » € B, and (f, kg, .A), = f(A) for every f € B,.

zeC. (2.17)

2.2. The Krein-de Branges theorem and front of the wave. Let a proper Hamiltonian H be
given. In the context of the general problem considered in Section 1.1, we define the unitary group
U; = ¢"*P# for all t € R using the Spectral Theorem. In the current subsection, we study evolution
U:; X when the element X € H has compact support. For F' € H, we define the front of F' as follows

fe[F]=inf{ > 0: H(7)F(7) =0 for a.e. 7> {}.

If X € H and has compact support, we will refer to the number ft[U; X] as the wavefront of wave
function U; X

The next theorem gives the formula for the wavefront in terms of two auxiliary functions T (7)
and Ly (n). For 7, € R, they are defined as follows

:JOT«/detH(s)ds, Lu(m) =TSV =it {r>0: To(r) =0} (2.18)

Ly, is the generalized inverse of Ty and, if n > 0 and the set {r > 0 : Ty (7) = n} is empty, we
let Ly(n) = +oo. The latter can happen only if \/detH € L'(R,). Notice that Ty (L3 (n)) = n
provided that n > 0 and Ly (n) < 4. Moreover, when det H > 0 almost everywhere on R, we have
L3 (Tx(7)) = 7 for each 7 > 0. Informally, for every 79 > 0, the quantity T3(7) is equal to the time
it takes for a wave e**P* X to travel from 0 to the point 7g.

Later in the text, an element X € H is called real if the both components of X are real-valued.

Theorem 2.1. Let X € H be a real compactly supported element, Ty (fe[X]) = a, a > 0. Assume
that t € R\{0} is such that there is € > 0 such that Ly (|t| + a +€) < 0. Then,

fe[Ue X] = Ly(Jt] + a), F[(Up + U_¢)X] = Ly(|t] + a). (2.19)
In particular, we have

Ty (fe[UX]) = [t] +a,  Tu(fe[(Ur + U=)X]) = [t| + a,
for every t € R.

To obtain Theorem 2.1, we will need a few results from complex analysis. Recall that § denotes
the inverse Fourier transform of a function g as defined in Section 1.4. For the proof of the following
theorem, see Section 4.2 in [29] or Theorem A.6 in [25].
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Theorem 2.2 (Krein-Wiener theorem). Let i be a measure on R such that (1+22)~1 € L'(u). Then,
€ Sz(R) if and only if the set of functions

Eo,) =1{7: g€ CL(R), suppg < (0,00)}
is not dense in L*(u).

The next result was announced by M. Krein in [56] and was proved independently by de Branges [19].
A short proof by Romanov can be found in Section 6 of [74], see also Section 5 in [8].

Theorem 2.3 (Direct Krein-de Branges theorem on exponential type). For every r that satisfies (2.9),
the entire functions in the space B, defined by (2.10) have the first order and a finite exponential type.
Moreover,
Ty (r) = max{type f, f € B.} = type E,, = lim log | v (iy)|
y—+0 Y
for the Hermite-Biehler function E,. in (2.11) generating B,..

, (2.20)

The following result is folklore. See Appendix II in [9] for its proof.

Theorem 2.4 (Inverse Krein-de Branges theorem on exponential type). Let u be a measure on R
such that (1 +22)~! € L*(u) and b > 0. If the set

gb = {.\é gE€ C}(R)? suppg & (_b7 b)} (221)
is not dense in L?(u), then the completion of & with respect to the inner product of L?(u) coincides
with B, for r = Ly (D).

The next theorem is a prominent result in complex analysis.

Theorem 2.5 (Beurling-Malliavin theorem on multiplier). Let E be an entire function of a finite
exponential type such that
log™ | E(z)]
JR 22 +1
Then, there is an entire function ¢ of an arbitrarily small exponential type such that ¢ is not identically
equal to zero and (1 + |E|)p is bounded when restricted to the real line.

dz < oo. (2.22)

The reader can find the proof of Theorem 2.5 on p. 397 of [49]. We will need the following corollary.

Corollary 2.6. Let E be an entire function of a finite exponential type such that (2.22) holds. Then,
for every § > 0 there exists a function gs € Es such that it is not identically equal to zero and (1+|E|)p
is bounded when restricted to the real line.

Proof. From the Beurling-Malliavin theorem we know that there is entire ¢, not identically equal to
zero, such that its type is at most ¢ and (1+ |E|)¢ € L*(R). Consider any function h, not identically
equal to zero, defined on the real line, and whose Fourier transform is smooth and is supported on
the interval [—d/4,9/4]. Then, h is in fact defined on C, is entire and has type at most g. Moreover,
type(hy) < g and (1 + |E|)ph € L*(R), which implies ph € L*(R). By Paley-Wiener theorem (see

p. 30 in [51]), we get that
5/2

o (@)h(z) = f RE)CEdE,  weR,

—5/2
with some k € L?[—§/2,6/2]. Then, we can take gs = ph?. Indeed, gs € & as follows from the
properties of convolution. Finally, (1 + |E|)gs € L*(R), as required.

We use Corollary 2.6 to obtain the following result which will be needed later in the proof of an
“individual Krein-de Branges theorem” (Proposition 2.10).

Proposition 2.7. Let H be a proper Hamiltonian on R, and let u be its spectral measure. Assume
that for some positive b and e, we have Ly (b+¢€) < 00. Let B denote the set of all entire functions of
exponential type at most b that belong to L2(|ELH(b+€)|’2 dx) when restricted to the real line. Then,
B = By, for ro =limsyo Ly (b +0). In particular, we have B S Br, (14<)-

To obtain this proposition, we will need the following two lemmas.
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Lemma 2.8. Let H be a proper Hamiltonian on Ry and let p be its spectral measure. Assume that
for some b > 0 we have Ly (b) < co. Then, & < Br,, ) -

Proof. Let f € &. Notice that 85 = &. Thus, by (2.12) we only need to check that f/Er, ) €
H?(C.). By definition,

b
f(z) = Jib h(s)e'* ds, zeC,

where h € C7(R) and supph S (—b,b). Recall that Ey, ;) is a regular Hermite-Biehler function,
that is, (2.15) and (2.16) hold. Consider the Smirnov-Nevanlinna factorization (see Corollary 5.6
in Chapter 2 of [34] for more details on the inner-outer factorization of functions in the Hardy and

Nevanlinna classes):
1

(Z + i)ELH(b)
Here [ is some inner function and O is an outer factor, O € H?*(C, ). Since

=10.

1
m has no zeroes

and is continuous on R, the function I has the form I = €’* for some c € R . Note that
log |O(@ 1
lim log [O(iy)] = lim —f log |O(z)| — Y 5 dz =0, (2.23)
y—+0 Y y—=>+L TY Jr Tty
by the Lebesgue dominated convergence theorem. Then, Theorem 2.3 implies

log |EL,, ) (iy)]

b=To(Ln (b)) =

y—+w Y
1 i )V E ;
_ iy 0810y + DB, ()]
Y—>+L0 Yy
1 ) .
— i @O _
Y=+ Y
Thus, m = O iS in HQ(C+). On the Other hand,
) 2b ) 2b eisz
(2 + i)t f() = (z+i)J h(s — b)ei™* ds = —(z—i—i)J (s —b)5 ds
0 0 (74
is a bounded analytic function in C,. Therefore, the function ELi(b) = (zlf)ilgf;zi@ is a product
of a function in H?(C,) and a bounded analytic function in C,. Thus, f/Ey, ) € H*(C,) and the
lemma follows. O

Lemma 2.9. Let H be a proper Hamiltonian on R, and let p be its spectral measure. Assume that for
some positive b and ¢, we have Ly (b + ¢) < 0. Then, the set B of all entire functions of exponential
type at most b that belong to L*(|Ey,, b1y % dx) is not dense in L*(|Ep,, b4)| 2 d).

Proof. Since the function Ey, (5. is regular (that is, (2.16) holds), we have
f log™ |EL,, (b+e)(2)]
R .CCQ + 1
By the Corollary 2.6, for every § > 0 there exists an entire function gs € &5 such that Ep, ,1¢)9s €
L*(R). Choose ¢ = §. For every f € B, we can write

dr < oo.

fgs : (ELH(b+€)g5) € L2(R)

ErLsb+e)
by our assumption. Since fgsis an entire function of exponential type at most b+4, it belongs to Paley-
Wiener class PW,,.5 by Paley-Wiener theorem. Then, fg3 € Eyyes2 by properties of convolution and
so g2B < Eyyey2- Notice that Br,, (v4e/2) S Br,, (b+¢) and this inclusion is proper. Moreover, the space
Bl (b+e/2) is closed in L2(|Ep,, (b4e)| % dz) norm by (2.14). Hence, Lemma 2.8 and the assumption
Ly (b+¢) < oo imply that g2B < B, (b+e/2) and that g2B is not dense in L2(|ELH(Z,+E)|*2 dx). Tt
follows that there exists a function h € L2(|Ey,,(y1-)| 2 dx) such that

jR G IR EL, o] 2dz =0
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for every f € B. Since g3h belongs to L*(|EpL,, (p+)| % dx), B is not dense in L?(|EL,, (p4o)| 2 dz). O

Proof of Proposition 2.7. Given Lemma 2.9, the proof of Proposition 2.7 is a standard application of
the so-called “Markov-Riesz-Pollard trick” (in the terminology of Koosis, see Chapter VI.A, pages 155—
156 in [51]) and the de Branges ordering theorem. We sketch the argument and refer the reader to
the proof of Theorem 2.4 given in Appendix II of [9] for details (which, in turn, repeats arguments
from Section 5.2 of [11]). By Lemma 2.9, the set B is not dense in L*(|Ep,, p4+)|7% dx). Therefore,
there exists a function h € L?(|Ep,, (p4-)| ™% dz) such that

x) — f(\)——
J;R %h(z”ﬁ%%(lﬂrs) ($)|72 dr =0, NeC,

for every f € B. That important identity allows us to prove after some work that for every n > 0
there exists a constant c,, depending on 7 but not on f € B and z € C, such that

|f(2)| < 077||f”L2(|ELH(b+s)\_2 dm)e(b+n)|z‘~

It follows that the point evaluation functional z — f(z) is a bounded map on the linear space B
with the norm inherited from L2(|ELH(Z,+E)|*2 dz). In particular, this implies that any sequence of
functions in B whose restrictions to the real line converge in L*(|Ep,, 54)| * dz), actually converges
on the whole C to an entire function of exponential type at most b and that function belongs to
L*(|EL, (b+)| "% dz). It follows that B is a Hilbert space of entire functions with respect to the
L*(|EL, (b4e)| 7% dz)-inner product. Moreover, B satisfies the “axiomatic” description of de Branges
spaces summarized in the following properties:

(A1) whenever f is in the space and has a non-real zero w, the function % f is in the space and
has the same norm as f;

(A2) for every non-real number w, the evaluation functional f — f(w) is continuous;

(A3) the function f* belongs to the space whenever f belongs to the space and it always has the
same norm as f.

Notice that B satisfies an additional property: the function z — w belongs to B for every f € B
and A € C. In other words, B is the so-called regular de Branges space isometrically embedded in
LQ(|ELH(Z,+5)|*2 dz). The same is true for every space B, r € R+\U1e3(7{) I. Then, the de Branges
ordering theorem for regular spaces states that for every r = 0 we have either B € B, or B, € B. Take
ro as in the statement of the proposition. Comparing the maximal exponential types of functions in
B and By, b+ for positive ¢’ and using Theorem 2.3, we get

B < ﬂ BLH(b+€/) = W’H (ﬂ HLH(bJrE/)) = W’HHTO = BT'(J'
e’>0 e’'>0

On the other hand, for every f € B,,, we have f € L*(|EL, e)|7% dz) by (2.14) and type f <

Ty (ro) = b by (2.20). Hence, B,, < B and the result follows. O

Proposition 2.10. If X € H has compact support, then Wy X is an entire function of finite expo-
nential type which can be computed by the formula
fe[X]

type Wy X = Ty (ft[X]) = J det H(T) dr. (2.24)

0

Proof. Take an element X € H with compact support. The definition of YWy shows that Wy X is an
entire function. By Theorem 2.3, Wy X has first order and is of finite exponential type. Moreover, by
Theorem 2.3, we have type Wy X < Ty (fe[X]). To prove that this inequality is in fact equality, assume
that type Wy X < Ty(fe[X]). Then, there is a number r < fe[X] such that type Wy X < Ty (r) <
Ty (fe[X]) and Ly (Tx(r)) = r. Consider the space B of all entire functions f of exponential type
at most type Wy X such that f belongs to L*(|[EL,, (1, ()| 2 dx) = L*(|E,.|"%dz). Proposition 2.7
shows that B S B, (1, (r)) = Br. Since Wy X € B by construction, it follows that X belongs to
W, 'B, = H,. The latter contradicts that 7 < ft[X] and so (2.24) holds. O

Now, we are ready to prove Theorem 2.1.
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Proof of Theorem 2.1. We will do the proof for U; X, the argument for (U; + U_;)X is identical.
Consider a real compactly supported element X € H and set f = WxX. Since X is real, f is an
entire function taking real values on R and so f = f*. From (2.24), one has type f = Ty (ft[X]) = a.
We claim that function f is of a bounded type both in the lower and upper half-planes C.. Indeed, if
we put E(z) = ©1(ft[X], 2) + 1O (ft[X], 2), then F is an entire function of bounded type in C, and
it has no zeroes there (see Theorem 4.19 in [72]). Similarly, E* is an entire functions of bounded type
in C_ without zeroes in C_. From (2.12), we get f/E € H>(C,) and f/E* € H?(C_). Since functions
in H?(C4) have bounded type in C, the product f = E - (f/E) = E*- (f/E") has bounded type in
C4+ as well and the claim is proved. For every entire function which is of bounded type in both C,
and C_, its exponential type can be computed by the formula

type f = lim sup 28 max(lf (@)l 1f (=)D (2.25)

y—>+x Y

(we sketch the proof of that known identity in Section 5.3). In our case, |f(iy)| = |f(—iy)| and
the same formula gives type(e’*f) = |t| + a. By our assumption, there exists ¢ > 0 such that
Ly (Jt| + a + €) < 0o. Then, by Proposition 2.7, the set of all entire functions of exponential type at
most [¢|+a that belong to L2(|Ep,, (j¢+a+)| > dz) coincides with B, where r = 5%1(1)%20 Ly (Jt]|+a+9).

Note that by (2.14) we have

ztz
[t g [0,
ELH(\t\+a+e ELH |t\+a+s)( )

It follows that e™*f € B,. Let Y € H, be such that Wy Y = e*? f. By the Spectral Theorem, we have
Wy (U; X) = e*® f and that function is an element of L?(u). Therefore, we have Wy (U; X) = Wy Y
in L?(u), and hence U; X = Y belongs to H,. In particular, there exists a compactly supported
representative of U; X in L*(H) and we have Wy (U, X)(z) = €' f(2) everywhere in C. Then,

type Wy (U X) = type(eitzf) = |t| + a.

The formula (2.24) gives Ty (fe[U:X]) = |t| + a. Hence, Ly([|t| + a) < fe[U;X] by the definition of
function Ly (n). If the solution 7 to the equation Ty (7) = |¢| + a is unique, then we immediately have
fe[U:X] =7 = Ly(|t] + a). In the general case, for every ¢t # 0 we can find a sequence ¢, such that
t, — t, |tn] < |t| and the equation T (7) = |t,| + a has unique solution for each n (here we use the
fact that ¢ # 0). Notice that, by the Spectral Theorem,

Jim Uy, X = UaX| g2y = Jim [(6% = ¢%) fl g = 0.

Since fe[Uy, X] = Ly (|tn| + a) < Ly(|t| + a), we obtain fe[U;X] < Ly(|t| + a). Hence, ft[U:X] =
Ly (Jt| + @) and the proof is finished. O

2.3. Spectral measures in Szegd class and their dynamical characterization. Recall that a
measure 4 = w dz + pus on R with the absolutely continuous part w dz and the singular part us belongs
to the Szegd class Sz(R) if (22 + 1)~ € L'(u) and

1
[ B > o
R T +].

Since (22 + 1)~! € L*(p), the last condition is in fact equivalent to 1%2% € L'(R). We now define a
class of Hamiltonians as follows

Sz(CS) = { % : H is proper and its main spectral measure is in Sz(R)}.

The class Sz(CS) was characterized in [7] (for Dirac and Schrédinger operators, similar results were
obtained in [25] and [48]). Assuming that v/det H ¢ L'(R.), we define

= Zf: (det JLH(H-H) H(r)dr — 4) . (2.26)

(n)
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It can be shown that all terms in this series are non-negative. In particular, I%('H) € Ry v {+w} is
well-defined but could be +00, in general. In [7], we proved that

H € Sz(CS) e Vdet H ¢ L'(Ry) and K(H) < +oo. (2.27)

The partition in (2.26) does not have to be done over the integer lattice {0, 1,2,...}. In fact, we have
the following result.

Proposition 2.11. Consider any monotonically increasing sequence 0 = oy < a1 < g < ... of real
numbers {a,} such that 0 < C1 < ap+1 — o < Cy for all m. Then,

&© Ly (ant2)
H € Sz(CS) & VdetH ¢ L'(R,) and Z (detf H(7)dr — (apy2 — an)2> < 400.
n=0 Ly (an)
(2.28)

For completeness, we give the proof of this result in Section 5.1.

Recall our convention to write Ly (n) = +oo for some 1 > 0 if there is no 7 > 0 such that Ty (1) = n.
In the following theorem, we regard [+00, +00] as the empty set. We also use notation [Y|z2(z,s)
for the norm of a function xsY in L?(H) on R, where x5 denotes the characteristic function of a
measurable set S € R.. Our next result gives a dynamical characterization of Sz(CS). In particular,
it says that the property H € Sz(CS) can be established by observing the dynamics of U; X near its
wavefront for any compactly supported X which is not identically equal to zero.

We will need the following notation: given three parameters ¢, s, £ that satisfy s, ¢ > 0 and |t|+s—¢ >
0, we define Ay ¢ = [Ly([t] + 5 — £), Ly (|t] + 5)].

Theorem 2.12. Let H be a proper Hamiltonian. Suppose H is in the class Sz(CS) and X is any real
compactly supported element in H not identically equal to zero. Define a = Ty (ft[X]). Then, we have

lggilgf ”UtX”LQ(H,A,_;,aJ) >0 (2.29)
for all £ > 0. Conversely, suppose there is X € H and a := Ty(ft[X]) < 400, such that one of the

following two conditions holds

limsup |Us X | z2(3,4,..,) > 0, limsup U+ X|r2(3,4,..,) >0, (2.30)
t—4+o0 t—4+w

for some £ > 0. Then, H is in the class Sz(CS).

Remark 2.13. Combining this result with Theorem 2.23 below, one can conclude that condition
H € Sz(C8S) actually implies that the limits limy+o |Ur X| 123, ., ,) evist and are positive for every
£ >0 as long as X is real-valued.

Proof. Suppose that the first bound in (2.30) holds for some X € H with compact support. Each
component of X can be written as a sum of its real and imaginary parts X = Xg +iX;, so

0 < limsup |Us X |2 (3,0,.0.,) < limsup U Xg|L2(3,0,..,) + imsup [U X[ 222,400
t—+x t—+o t—+x

Thus, we can assume that X is, e.g., real without loss of generality. Then, \/detH ¢ L'(R,) since
otherwise Ay ., = J for large t. Theorem 2.1 implies
ll’lf{”UtX — Z”LQ(’H) : SuppZ c [O, L’H(t +a— 6)]} = HUtXHLZ(H,ALa,t)'
By the Spectral Theorem, it means that the function f = Wy X satisfies
lim sup ( inf e f — u||L2(u)> >0, r=Lyt+a—1),
t—+4o0 \UEB,

where r > 0 and B, is defined by (2.10). Theorem 2.4 claims that B, coincides with the closure in
L?(p) of the linear manifold &, ¢ defined by (2.21). It follows that

lim sup (inf{||e_i(a_£)f”f — R2(uy s h € LY(R), he CP(R), supph S (=2(t + a — E),O)}) > 0.

t—o>+a¢

The infimum above is a non-increasing function in ¢, hence

inf{[le 407 f — h| 120, he LY(R), h e CX(R), supph S (—0,0)} > 0.



22 R. BESSONOV, S. DENISOV

Now, Theorem 2.2 implies ;1 € Sz(IR) and, therefore, H € Sz(CS). Similarly, limsup [|U; X| z2(3,a,.. ) >
t——0 "
0 gives H € Sz(CS).

Conversely, suppose that H € Sz(CS). Then, p € Sz(R). Arguing by contradiction, let X be a real
compactly supported element in H such that Ty (f¢[X]) = a, a > 0, and either

liminf |V X 12000, =0 or  lminf [UX | p2¢a,.,,) =0 (2.31)

for some ¢ > 0. Assume that the first limit is zero, the other case can be handled similarly. Consider
the function f = Wy X and denote g = e~#¢=0%f Using Theorem 2.1 as in the first part of the
proof, we obtain

(2.31) = liminf ( 'ng et f — UL2(M)> =0, r=Lyt+a—-1"),
59678

t—4w u

and

inf{|lg — Al 2(u): b€ LX(R), he CF(R), supph S (—0,0)} = 0. (2.32)
Recall the decomposition of 4 = wdz + pus of p into the absolutely continuous and singular parts.
Now we use assumption p € Sz(R). Let O be an outer function in C_ such that |O]?> = w almost
everywhere on R in the sense of non-tangential boundary values. Then, (2.32) gives

inf{|gO — hO|2(x) : h € L (R), he CF(R), supph S (—,0)} = 0.

That implies, in particular, that gO, when restricted to the real line, is L?(R) function whose Fourier
transform is supported on the negative half-line. In the proof of Theorem 2.1, we showed that f is of a
bounded type in C_ and C, and that f = ff. Then, gO is also of bounded type there and, therefore,
it is in fact an element of H?(C_). Similarly to (2.23), the function O satisfies

log |O(—i 1

i 810G ij log |0(2)| L da = 0
y—+0 Y y—=>+x TY Jp z+y

by the Lebesgue dominated convergence theorem. The same argument applies to the outer factor

of gO in its Smirnov-Nevanlinna factorization. As a consequence, if gO = I - Oy is the inner-outer
factorization of ¢gO in C_, we have

1 iy 1 » » low [T(—iy) - iy
limsupw = lim sup o8 |9(=iy)O(=iy)| = lim sup og |1(=iy) - Or(=y)| <0, (2.33)
y=+% Y Y+ Yy y—>+D0 Y

due to the fact that [I| <1 on C_. On the other hand, we have

1 —1 1 —1
limsupM = —a+€+limsupw = —a+ { + type f, (2.34)
y—+w0 Yy y—+o0 Yy

because f is an entire function of bounded type in both C and C_, f = f*, and hence we can use
Lemma 5.1. However type f = Ty (ft[X]) = a by (2.24), and we have got a contradiction of (2.33) and
(2.34) if £ > 0. Thus, for p € Sz(R) we always have liminf;, o, [U; X ||p2(3,4,., ) > 0. Analogously,
one can show that liminf; , . [|U_+X|z2(3,4,, ) is equal to

inf{Hei(ail)wf - hHLQ(u) the Ll(R)7 ’}\L € C;[ (R)a Supp/ﬁ < (Oa OO)}>
for f = Wy X, which implies liminf; ,, o [|U_+X||p2(3,4a,.,,) > 0 for every 1 € Sz(R). d
We have the following two corollaries.

Corollary 2.14. Let H be a proper Hamiltonian. Suppose H is not in the class Sz(CS). Then, we
have

Jim UK pe0a00 = 0. Ane = [La((t] = b). Laa(lt] + )] (2.35)
for allb> 0 and all X € H.
Remark 2.15. If Ly([t|—b) = +oo for some t and b in the formula for Ay, then |UyX||p2(3,A, ,) =0
by definition.
Proof of Corollary 2.14. Arguing by contradiction, suppose there is some X € H and b > 0 such
that, e.g.,

limsup U X | 23,4, ) > 0. (2.36)

t—40
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Given an arbitrary € > 0, there is X, € H such that
|X = Xcl2eny <6, Tu(fe[Xc]) = ac < 400,
Choosing ¢ such that £ < & limsup,_, , . U X[ L2(34,0,.,), We get

litm sup HUtXe||L2(H,A,,,,,) >0, (2.37)

— 4+
since Uy preserves the norm L?(H). By Theorem 2.1, ft[U; X.] < Ly (|t| + ac). Now, we apply the
second part of the Theorem 2.12 to X.. Given a. and b, we can find ! so large that (2.37) yields

lim sup HUtXEHL?(H,Az,aE,t) >0
t—+w0

and, therefore, p € Sz(R) which gives a contradiction. The case when ¢ — —oo can be handled
similarly. O

Corollary 2.16. Let H be a proper Hamiltonian. Suppose H is in the class Sz(CS) and X € H is
any real compactly supported element not identically equal to zero. Define a = Ty (ft[X]). Then, we
have

liminf Uy + U)X 12 (34,8,,0.0) > 0, (2.38)

for all £ > 0. Conversely, suppose there is X € H, a real compactly supported element, such that

lim sup [|(Ur + U)X | 2(1,0,.0.) > 0, (2.39)
—+30

for some ¢ > 0 and, again, a = Ty (ft[X]). Then, H is in the class Sz(CS).

Proof. Suppose (2.39) holds. If H ¢ Sz(CS), then
Jm [UeX [ regea,,,0 = im [U—X] 220180, =0

by the previous theorem. Since H(Ut + Uft)X”Lz(’H,,ALa,f,) < ”UtXHLz(’H,Ae,a,t) + HU*tX”LQ(H,AZ,QJﬁ
we get a contradiction. Conversely, suppose

liminf [(Uy + U)X | 22(30,2,,0,0) = 0 (2.40)

for some ¢ > 0. Again, consider the function f = Wy X and denote g = e~ #“=0%f  As in the proof
of Theorem 2.12, we have

lim inf ( inf [le"®f — (u— eimf)HLz(”)) =0.

t—>+0 \ueB,

That gives (2.32) and the rest of the argument repeats the proof of the Theorem 2.12. O

2.4. Long-time asymptotics of the evolution in Szegd case: preliminaries. In the rest of the
section, we are going to study the long-time behavior of the group U; = eP*. To this end, we need
to do some additional work first. In this subsection, we collect all necessary definitions and auxiliary
results. In many places, the presentation follows [6], [7] and [9], where one can find more details and

references. Let ‘H be a singular Hamiltonian on R, and let ® = (g_r) be the solution of the Cauchy

problem J®'(7,z) = zHP(7,2), ®(0,2) = (}), 7 € R4, z € C. Recall that © = <9+) solves the same

differential equation but satisfies different boundary condition: ©(0, z) = (). The Titchmarsh-Weyl
function of any singular Hamiltonian #, which is not equal to x ( $) a.e. on R} for some function ,
is defined by
-
m(z) = lim 2(r2)

. 241
o0 @7(7_, Z) ) ZE€E (C+ ( )

That function is analytic and takes C, into its closure C,. The Herglotz representation of m has the
form

m(z) = 1 JR ( ! x ) du(z) +boz +ag, z2€Cy, (2.42)

r—2z 2241
where p is called the main spectral measure of H, by = 0, and ag € R. Given proper H, define H,,.
by 7 — H(r +r) for every r > 0. Let m,., i, by, a,- denote the Titchmarsh-Weyl function of H,., its
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spectral measure, and the coefficients in the Herglotz representation (2.42) for m,.. Define

. 1 duy(x
Iy (r) = Imm,.(i) = ;JR xgb—i(-l) + by,

Ry (r) = Rem,.(i) = a,,
1 J‘ log w,-(x)

;R ‘T2+1

TIn(r) = dx,

where p, = w, dz + p,s. Using Lemma 2.2 in [6], one can show that Ry is identically zero if the
Hamiltonian A is diagonal. The quantity Ky (r) = logZy(r) — Ju(r), v = 0 is called the entropy
function of H. Jensen’s inequality gives K3 (r) = 0 for all » > 0 and we have K4(0) < oo if and only
if 4 € Sz(R). In [9], it was proved that p € Sz(R) implies Ky (r) < co for every r € R;. Moreover, the
function K4 is absolutely continuous, non-increasing, lim, .. Ky = 0, and

1K |2t () = K2(0), (2.43)
see Lemma 2.3 and Lemma 2.4 in [9]. We will need an auxiliary matrix-function G
' 0 VIu )’ 0 UNTx ) .
For # = ("' ), the formula
- - Iyh —Ryhi +h
G 1y G 1 _ HIV1 HIV1
( )H (_Rﬂhl +h (’R%_[hl — 2Ry h + ha) /Ty

holds. It was proved in Lemma 2.4 of [9], that for every H whose spectral measure is in the Szegs
class Sz(R), the function Ky satisfies

K4, = 28/det H — trace(G—1)*HG L. (2.45)
Recall that © = @(T,NZ) is the solution of the Cauchy problem (2.5). Define O(r,z) = G(1)O(, 2),
E.(2) = ©%(1,2) +i07(7, 2), and E¥(z) = O (7,2) —iO~ (7, 2).
Lemma 2.17. We have
Eo(2)B-(N) — BE (=) EE(\) = Bo(2)B-(\) — B
forallz, A e C, 7 =2 0.

EE=]
—~
183
~—
o]l
RE=4
—~
>
N

Proof. Take z, A\ e C, 7 > 0. We have

E-(2)E-(\) — EE(2)EE(N) = <((1) _01>

() )
6=(r.2)) \&-(r0) /.,
_ o <G*(T)JG(T) (gig; 2) , (SfEZ: §;>>C .

For every 7 > 0, the matrix G(7) has real entries and unit determinant which gives G*(7)JG(7) = J.
Thus, we have

() B () — B EE(N) = —2i <J (gtg;; g) | (gig; i;) >C2 — B (VB () — EE(2) (V)

and that proves the statement. O

Since E; is Hermite-Biehler function, taking z = A in the last lemma implies that E. is Hermite-

Biehler function as well, and hence it has no zeroes in C,. Define . € T such that aTET(i) > 0 and
put
Py (2) = are ™R (), PE(2) = a e FE (2), zeC, 7320. (2.46)
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As in Section 4 of [9], we call P, and ]57’.“ the regularized Krein’s orthogonal entire functions
generated by u. To some extent, introduction of these functions will allow us to use ideas of the theory
of polynomials orthogonal on the unit circle, see, e.g., Lemma 2.19 below. Both &*,®~, ©%, and ©~
are entire functions of finite exponential type (see, e.g., Lemma 17 in [74]) so P, and P} have finite
exponential type as well. Their basic properties were studied in the papers [7], [9] and we discuss
some of them now. From the definition, it is immediate that P satisfies relation |Pf (z)] = |E.(z)|
for € R. Therefore, by Theorem 1.3 in [9] we have

D -2
lim J. | log | P7 (x)L logw(@)l 1, _ o, (2.47)
To®L Jp 2+ 1
The formula (2.17) and the Lemma 2.17 yield
1 E.(2)E,(\) — EE(2)EE (N
kg, A\(2) = —5— (2)E: (V) = B7 (=) Er( )7 zeC. (2.48)

271 zZ—A

Consider now the “shifted” Hilbert space ¢7#(7)2B_. From (2.48), we conclude that its reproducing
kernel at A € C is given by

_eTOEN B (o) B, (V) — B (2) L)
A

KT’A(Z) 211 z—

: (2.49)

L B ()PEQ) = Por(2) Por (V)
2mi Zz— A '
In the case when det H = 1, the following result was obtained in Lemma 4.1 of [9] where the expression
for a; was found in terms of 7y, and Ry.

Lemma 2.18. For every T > 0, the function 152*7 is outer in C.

Proof. Recall that F, is a Hermite-Biehler function. By definition, it can be written as
B (Ry +i(Zy +1)) — EE(Ry +i(Zy — 1))

E, = 2.50
S (2.50)
E. B Ry +i(Ty — 1)
R T D1l - =7 —=
= 2iVIn ( i+ ))( Er Ry + (T + 1 ))
The formula (2.20) says
log |E- (%
type £, = lim sup M =Ty (7).
yo+x Y
Since Ty > 0 and |E%/E,;| < 1in C,, we get |(Ry +i(Zy — 1))/(Ry +i(Ty + 1)) < 1 and
log | E, (i
tim sup “2EE- ] _ 0y (2.51)
y—+oC Yy

The formula (2.50) shows that E, is a linear combination of E, and E?, two functions of exponential
type Ty (7), and so its exponential type is at most T4 (7). Thus, identity (2.51) gives type E, = Ty /(7).

Recall again that ET is Hermite-Biehler function. If it has no roots in C_, then ET = Ce Tu(n)z
with some nonzero constant C. Hence, ISQ*T is a positive constant and we are done. If E, does have a
root in C_, we call it A and argue as follows. Since E,()\) = 0, we also have Py, ()) = 0 by definition.
Formula (2.49) takes the form

| B B0
Koa(2) = - 270 : z—i\ '

Function K 5(z) is a reproducing kernel of e (MZB_ at point X. Thus, K, x belongs to this space
and, by (2.12), K 5 = T2 E_g with some g € Ho(C,). The function E, is of bounded type in
C4. Hence, K, 5 is also of bounded type there. We know that JBQ*T is entire and has no roots in C

(2.52)

because F. is Hermite-Biehler and has no roots there. Hence, Smirnov-Nevanlinna factorization of
K, 5 can be written as K, 5 = {e'“*0O, where { € T is a constant, c € R, and O is outer. Since

L log|O(iy)
Yy—>+x y

=0,
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we also have ’ N
. log | K- 5 ()| _ log | P (iy)|
—c = limsup ——————— = limsup ————+

Yy—>+%0 Yy Y=+ Y

=0,

where (2.51), (2.52), and the definition of 132”; have been used. Since ¢ = 0, we get K, 5 = {O and

the formula (2.52) along with normalization ﬁQ*T(i) > 0 prove the lemma. O

Given a measure y = wdx + s in Sz(R), we denote by D,, its Szeg6 function:

D,u(2) = exp (; JR 1ogm< ! m ) dx) . zeC,. (2.53)

r—z x2+1
In other words, D,, is the outer function in C; such that D, (i) > 0 and |D,|* = w almost everywhere
on the real line R in the sense of non-tangential boundary values.
The following lemma will play a key role later on.

Lemma 2.19. Let p = wdx + ps be a measure in Sz(R), and let ]37, ZST* be its reqularized Krein’s
orthogonal entire functions. Then,

N _ -1
lim P¥(z) = D, (2), (2.54)
lim P.(z) =0, (2.55)
uniformly on compacts in C,, and
p* 2
lim Mdus(x) =0, (2.56)

Tox Jg 1241
J|PT”‘($)—D,71($)|2
R 72 +1

lim
T

w(z)dx = 0. (2.57)

Proof. Formula (2.47) gives (2.54) after comparing the multiplicative representations for outer
functions P* and D;l. Let B, be defined by (2.10). The standard variational property of the
reproducing kernel yields

(FIENY

[22(u) = sup{[f(N)|: f e Tz Iflz2 ey < 1} (2.58)
We claim that K xlz2(,) is non-decreasing in 7 € Ry. To prove it, we first notice that the space

€*Br,,, by coincides with the completion in L?(u) of the set €&, for every fixed b > 0 according to
Theorem 2.4. It follows that

KL, myallzz(u) = sup{|f(N)]: f €&, || fllrz < 1} (2.59)

Since €128, C e22&,, if by < by, we have

1KLLz () < I Lo o) Al L2 () (2.60)
provided that 0 < b; < by. Now, take arbitrary positive 7 > 0 and let b = Ty(7). We have
Br S (Vewo Bro(ore) S MNeso closrz() Evte with the last inclusion following from Theorem 2.4. Hence,
eT(MZB. c (M oclospag, (ei®+92E,,.). From (2.58), (2.59), and (2.60), we get |Kr[r2(n <
|£2(w)- Finally, if we have 71 < 7 for which T%(71) = Ty (m2) = b, then B;, & B,

infeo | KLy, (b4e)n
and (2.58) yields

HK‘H,/\”LQ(#) S ”KTz,)\ ‘LZ(,u)
in that situation too. Putting together all cases, we get our claim. Therefore, |K; x[z2(,) is non-
decreasing in 7 € R,. In particular, we have

S K ralzzo = B 1Kz alz2go-

By the Krein-Wiener theorem (combine formulas (9.9), (9.13), and (9.14) in [25]), we have

. LD,
2 _ o
O R ™ U

where the convergence is uniform on compact sets in C,.. Since K  is a reproducing kernel, one has

1B = 1P (VP
Ar Tm \

K a(M1720) = Kra(A) = (2.61)
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for every 7 > 0. It follows that
o LB OOR = 1Py ()P 1D
7o 4T Im A L2 ™ 47 ImA

holds locally uniformly in C,. Combined with (2.54), that implies (2.55). From (2.47) and Jensen’s
inequality, we get

1 = lim exp <1 JR log (| () Pu(x) dx) < limsup L[ 1P dp(z). (2.63)

(2.62)

. 2 ;
= Thjg HKT,AHLz(H) = blgg HKLH(b)aA

T—90 T 5172+1 T T JR $2+1

On the other hand, one can write

P 1 | PrPE(i)
TR FRRRRT=T0TE IR
1 P*Px(i) — P.P,(i) N P.(G)| | P
_ 1 |[PrPr(i) - PoP.(i) Pi)| | Pt (2.64)
P20l R P =IO M B
Relations (2.54) and (2.55) yield lim,_, 1o |]57(z)/]3j‘(z)| = 0. We also have
= o~ =2
P*P*(i) — P, P-(i . 472
lim sup — k10 . (0 C2 lim sup ~L||KT/2,Z’|2L2(M)
T | P (i)[2 T+ 1 T |PE(i)[?
(1)
D (V2 _ | D (7)|2
9 i IEROP 1P OF _
PP

That identity, along with (2.64), yields P*/(z + i) € L*(u) and limsup._,, |P*/(x + i)HQLz(M) S
Moreover, the inequality in (2.63) is, in fact, equality, and we get

[ PP
Next, we claim that R
L[ Pr@Du®) | s

Given the properties of 15;", this is nearly obvious. However, in the next few lines, we give rigorous proof
of that. Indeed, as showed in Lemma 2.18 above, P is outer in C. Then, the function P*D,/(z +1)
lies in N, (C,) and has non-tangential boundary values in L?(R) thanks to the following bound

J

Hence, ﬁjDu/(Z +1i) is in N4 (C4) n L3(R) = H?(C.) (see the discussion after Theorem 5.4 in [34]
concerning the last equality of sets). Therefore, the function f defined by
1—z

f(&) = P¥(2)Du(2), zeC., €= o

belongs to the Hardy space H?(D) in the open unit disk I as established in Chapter VI.C in [50].
The mean-value formula for functions in H?(D) yields

L se®yao = ().

2 0

- 2
P () Du(a)
T+

M d (2:65)

do < R w(x) < oo

eD

That gives (2.66), when written in terms of z.
Having proved (2.66), we can write

1 [ |P}(z) - D' (x)? o _ L[ |PH@)Dy()? Se (D) (i
- JR o) |D, ()| do = - JR il dr +1—2Re(PF(i)D,(1)). (2.67)
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Notice now that

L[ |Pf(2)Dyu(a)? L[ [PF) | ()2
- | B P g 2| I (@) = d
f z2+1 x+7r R x2+1 Ha() = Tl 2241 Hiw)

and the right-hand side converges to 1 when 7 — o by (2.65). Then,
lim (1 - 2Re(]57*(i)Du(i))) =1

T

by (2.54). Thus, (2.67) yields
: 1 [ |PH@) = Dy (@) 2 | ()2
0 < limsup (WJR x2+l1L |Dy(x)| de + - Ridus(x) = 0.

T—®0 241
Therefore, (2.56) and (2.57) follow. O
The next lemma is an immediate consequence of the Spectral Theorem.

Lemma 2.20. Let H be a proper Hamiltonian on Ry. If X € dom Dy and f = Wy X, then (z+1i)f €
L?(p).

The Lemmas 2.21 and 2.22 below are not new. We give their proofs for the reader’s convenience.

Lemma 2.21. Let H be a proper Hamiltonian on Ry . Then, the set of compactly supported elements
in dom Dy, which we denote by dom. Dy, is dense in H.

Proof. Consider the linear manifold of functions X € H for which there is L € R\ Urez(y) I such
that X can be written as follows

X(r) = {JSTLH(S)Y(S) ds, 7<L

, YeH: suppY C[0,L], (Y,(} =0.
0, o1 pp [0, L], (Y, (o))z2(3)

In the proof of Theorem 3 in [74], it was showed that if Xy € H is orthogonal to that linear manifold,

then HXy = 0 almost everywhere on R, (we apply Theorem 3 of [74] to Hamiltonians H that do

not coincide with those that are equal to () on some interval [0,¢], since we study only such

Hamiltonians in our paper). That implies this manifold is dense in H. On the other hand, every X
in that manifold has compact support and

(X(0), (9 ez =<JX(0),7 (§ ez = (Y, (§))r23) = 0.
Therefore, X is a compactly supported element in dom Dy. The lemma follows. O
Let H be a proper Hamiltonian on R, and let H be the Hilbert space generated by H. On
compactly supported functions X € L?(H), define
X > —J {H(T O(1, 2))ce dr, z€eC. (2.68)

Note that WH coincides with Wy on H. Denote by Py the orthogonal projector in L?(H) to H.
The orthogonal complement L?(H) @ H consists of functions X that satisfy the following conditions:
X =0on Ry\Upeyp I and

LK(T)<X(T), erycz dr =0, H(1) = k(7):, eryezer, Tel, Te3(H),

where e; € R?, |les|gz = 1, and k > 0 a.e. on each I. It follows that Py : L*(H) — H coincides with
the operator

Y {X(T), 7€ R\ Useaia I . (X (7). enee dr

ey crxrer, T € Uresgny 1 §;r(T)dr
Indeed, this operator is linear, vanishes on L?(H)© H, and acts as an identity on H because x;(er +
et) = xrer in L*(H) for every vector e € C? orthogonal to e;. As a consequence, if r € R\ UIEJ(H) I
and supp X < [0, 7], then supp Py X < [0,7]. We use this observation in the formula (2.69) below.

Lemma 2.22. Let H be a proper Hamiltonian on R, and let u be its spectral measure. We have
Wy Wy = Py and [Wy X | 12 < | X 230) for every X € L*(H).
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Proof. Consider X € L*(H) such that supp X < [0, 7], where r is not in the interior of an indivisible
interval (that is, r € R4\ UIEj(H) I). Then, taking any z € C, we have

WuX)(2) = (Xv@('az))L2(H) = (XaX[O,T]G("Z))LQ(’H)'
If I is an indivisible interval, we have H(7) = k(7)(:, e;)c2es with some vector ey € R?, |les|gz = 1 for
7 € I. Equation JO'(7, 2) = zr(7){O(T, 2), er)czer, T € I implies ©'(1, 2) = —zr(7){O(T, 2), eryc2 Jer,
7 € I. Since {Jer,erycz = 0, we have (©'(1,z),er)c2 = 0, and hence {O(r, z),er)c2 is constant in
7 on I. That gives x[0,10(+,2) € H for every z in a sense that ©(r, z) is constant on each I when
considered as an element of L?(#) defined in (2.2). Thus, we have

(X, X10,10C, 2)) 23y = (P X, X[0,10( 2)) L2y = WP X)(2). (2.69)
That gives HW’HX”Lz(#) < | X p2(3) and W;LIVNVHX = Py X. The set of X we considered is dense in
L?(H) and the operator Wy is unitary. Therefore, the lemma is true for all X € L?(H). O

2.5. Long-time asymptotics of the evolution in Szegé case: the main result. Recall that
we study the evolution U; X when X € H and t — +o00. We will describe U;X in terms of the
“free” evolution UPYx + of some states Yx 1+ € L?(Ho) as t — +o0, where U} is generated by “free”
Hamiltonian Ho = (} §) on R;. Note that Uy, U act on different Hilbert spaces and an identification
is needed to relate the “perturbed” and “free” dynamics governed by U; and U, respectively. First,
we observe that given a pair of real compactly supported states X € H, Y € L?(Ho) such that
Ty (fe[X]) = a and ft[Y] = a for some a > 0, the Theorem 2.1 yields

Fe[UeX] = Lag(|t] + a) = e[ (UY)(Tr(-)],  teR\{0}.

Thus, when ¢ varies in the interval (0,ty), the wavefronts of U; X and (UPY)(T%(-)) simultaneously
propagate from Ly (a) to Ly (to +a). That provides an intuition how to map UYY into L?(H). First,
we introduce the non-negative matrix-function H,:

Ha(r) = (det H(T))

1

2

H(7), 7:detH(r) >0,

0, 7 :det H(r) = 0.
Then,
od ey = 4 (4 M) HT3(@), 7 derH(r) > 0, (2.70)
0, 7:detH(r) = 0.

It is instructive to note that det H,(7) = 1 for every 7 that satisfies det H(7) > 0. Second, we fix a
measurable function v: R, — T. Finally, for every t € R and Y € L?(H,), define
~ 2 () (UY)(T: t=0
POy {wmi F(DWUPY)(Tu(r), : 21)
V() He* (DUPY)(Tu(7)), <0

The role of the “phase function” 7 will become clear in Theorem 2.23 below. Given definition (2.71),
we get several important properties of the evolution U27t:

(A) the dynamics [1%}/ has an explicit expression in terms of Y, H, ~;

Indeed, that follows from the explicit formula for UY which we obtain in Lemma 2.25 below.
(B) if fr[X] = fe[Y (T ()] for some compactly supported real states X € H, Y € L*(H,), then

fe[09,Y] = fr[U:X],  teR\{0}.
That is the direct consequence of Theorem 2.1.

(C) The map ﬁg,t is an isometry:
103 Y 1220y = 1Y 2345
The last relation comes from a change of variables:

1T9.0Y 1320y = fR Ty (D)UY )T (7)), (UPY W Tr(7)) o dT = NUPY (22340 = 1Y 172300
+

where T3, = v/det H is the derivative of the locally absolutely continuous function 77%.
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(D) The map ﬁ,(y)ﬁt sends L?(H,) into H.
Indeed, for every Y € L?(H,) we have ﬁfy’,tY = 0 on each indivisible interval. Therefore, Ran ﬁ,?,t CH.

We aim to prove the following result.

Theorem 2.23. Let H be a Hamiltonian of class Sz(CS). Then, there exists a function v: R, — T
such that the following assertion holds. For every X € H, there are unique Yx 1 € L*(Ho) such that
for every b > 0, we have

Jim (U X~ U0 Yx xlr2.0,,) =0, (2.72)

where Ny y = [Ly([t| = b), Ly (]t] +b)]. These Yx 1+ can be computed by the formulas
YX,+ = Wﬁ;(fﬁu ' XQBC(/L))7 YX,* = W;[;(fDu : XQBC(/L))? (273)

where f = Wy X and Qac(i) is a subset of R such that |R\Qac(1)| = ps(Qac(pt)) = 0. Moreover, if
‘H is diagonal, then one can take v =1 on R,.

Remark 2.24. In Theorem 2.23, we do not assume that X has compact support or belongs to the
absolutely continuous subspace of Dy .

We start with providing an explicit formula for the evolution Ul. Let Dy, be the self-adjoint
operator on L%(Ho) = L?*(C?) corresponding to Ho. We have UP = e¥P#o. The main spectral
measure of Dy, is equal to the Lebesgue measure on R and

y1 7') cos(‘rf)
(WHD \/* J, ya 'r) 7sin('ri)> Csz, S (C,

U1

for every compactly supported function ¥ = (y
2

) in L2(C?) = L*(H,). Recall that h denotes the

Fourier transform of a function h € L?(R).

Lemma 2.25. Let he L?>(R) and Y = <zl> € L2(Ho) be defined by Wy, ,Y = h. Eztend y; to all of
2
R as an even function and yo as an odd function. Then, for everyt e R and 7 € Ry, we have

(U0Y)(7) = %B(T —4) <_12> + %ﬁ(—(f +1)) C) (2.74)
_1 ( yi(r —t) + (7 +1) )) L (i(y2(7 —t) —ya(7 + t))) , (2.75)

2 \—ilyr(r = 1) =y (7 +¢) Y2o(T — 1) + y2(7 + 1)

where the integrals are understood in L?(R)-sense. In particular, we have

UI)(r) = J5h(r=1)- (1) +oD), UU)r) = Jghi—r+0-()+ol).  (270)
when t — 400 and o(1) is understood in L?(H,)-sense.
Proof. We claim that

1 .
i(t—T)x (1. i{t+7)z (1 2
OI)) = 5oz | @ de (1) + 5= | SO (D, @

where the integrals are understood in L?(IR)-sense. To prove (2.77), we first assume that h € L*(R) n
L?(R). Denote the right-hand side of (2.77) by Z;. Notice that the integrals in the right-hand side
of (2.77) converge absolutely. We only need to check that the images of U’Y and Z; under Wy,
coincide. Indeed,

Wiy, (UPY)(5) =€"*h(s) = — lim j J =2 () de dr

2T row

. cos( ’T'S i(t—7)z

27'( 71LH} (J < — sin( >(C2 J h d.’E dT)
7 1 COb(TS i(t+7)w

+ o rh_)n} (L <( i ) ) —Sln(Ts) >(C2 J h( )dl‘ dT)

:(W'Hozt)(s)a
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for almost all s € R where the limits are understood in the L?(R)-sense. Since L}(R) n L?(R) is dense
in L?(R), we can extend (2.77) to all of L?(R) by continuity. The formula (2.74) is immediate from
(2 77) if we use the notation for Fourier transform. Finally, taking ¢ = 0 in (2.74) gives y1 (1) = (h(T)

h(=7)) /N2, y2(T) = —Z(h(T) — ( 7))/+/2 and the formula (2.75) follows. Since lim_, ||h( (r+
)| z2®,) = 0, we get the first limit in (2.76). The second one can be proved similarly. O

Remark 2.26. In Section 5.2, we show that the dynamics U can be easily reduced to the shift operator
on the real line.

Proof of Theorem 2.23. FEzistence of Yx .

From Lemma 2.21, we know that the set dom. Dy is dense in H. We start the proof by considering
X € dom.Dy. Recall that b > 0 is a number and xa,, denotes the characteristic function of the
interval Ay ;. Put f = Wy X. By the Spectral Theorem, for every t € R and A € C we have

1 _
Wi (xa,, U X)(A) = —= CH(T)U X (7), O(7, A) )2 dr,
VT A,
1 _
= ﬁ(Ut)Q XAb,t@('7)\))L2(H)
= (" f, kg N L2 () (2.78)
where
1 - 1 _
kpn, a(x) = %WH(XAMG(-,A)) = R (H(T)O(T, A), O(T, x) )2 dT, zeR. (2.79)

We are going to study the asymptotic behavior of (2.78) when ¢ — +00 using representation (2.79).
Let G be the matrix function from (2.44). Fix 7 € Ay, and set

1 1
Gi=(L4L1), U= 5G*G1 (§), ¥p= 5G*lG1 (9). (2.80)
Recall that P, 13;“, o, are defined in (2.46). On the real line R, we have

E +E! = Ty (T) _ s
1 1 E e H -1 OzTPQT
©=a (E“) =304 <Eﬁ) 5 GG <a71527>’

21

= G T PR ) 4 o, TH(DTPE @, (2.81)
We continue by getting the estimates on |¥yz2(3,a,,) and V2| 12,4, ). Note that
AHY 1, Tyee + AH T2, Uo)er = (HGTIG1(§),GT G (§))ex + (HGTIG1(]), GTIG1(]))e
= trace GF(G™Y)*HG ' Gy = 2trace(G™)*HG™!
due to the fact that G1G¥ = 2(}9). Using this calculation and relation (2.45), we get

ZH\IJlH%Q(H,Ab,t) + QHLIJQH%Q(’H,AE,,Q = J; trace (Gil)*HGil dr
b,t

= Kl +2 j Vet H dr,

because Ky is a non-increasing function. Note that if |¢| > b, we have SA Ndet H dr = Ty (L (Jt] +
b)) — Ty (L ([t] = b)) = (|t| + b) — (|t| — b) = 2b. Thus, for such ¢ we have
2172000, + 2092072000, ) < 1K1z, +20- (2.82)

Next, we study the inner product (2.78) using (2.79). We need some auxiliary bounds first. By
Lemma 2.20, we have (z +i)f € L*(u). Relations (2.56) and (2.57), along with Cauchy-Schwarz
inequality, imply that

U |f(2)P3, (a |d#s> (f |f(z +1) us> ( RWWS) -0,

and that
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( | r@Ps e - zw>|dx)2< ( | |f|2(x2+1)wd:v> ( 'Px‘fl'wd> o,

when 7 — 0. Since H € Sz(CS), we get lim,_,, Ly(s) = +o0. Thus, recalling that u = |D,,|? dz+ s,
one has

lim ( j e 0=TH0% () B () dp(x) — j =T507 f(2) D, (x >dx) =0 (2.83)

t—
uniformly in 7 € A, ;. Similarly, (z + i) f € L?(p), relations (2.56), (2.57) and the Riemann-Lebesgue
lemma imply

lim | e £(2)PE (2) du(z) = lim | T2 1) D (z) dw = 0, (2.84)

t—>+0 Jp t—=>+% Jp

uniformly with respect to 7 € A, ;. That follows from the inclusion fD,, € L'(R) which is immediate
from our assumptions on f and the bound

(L)' (] ) (ens )<

Taking into account (2.78) and (2.81), we see that Wy (xa, U X)(A) equals

(eimf’ k#,Ab,mA)Lg(u)

1 j @) | DO, Ol dr daa)

j L € f(2)(H(T)O (1, ), O(r, M)es dr du(x)

j L e F(@)CH(r) [, T Br ], O(r, \yes dr diu(a)
£ f 1 f(2)CH(T)[ar e T BE W3], ©(7, Ny dr dp(a)
T IR JA

1 ) . _
= ,J (aT J elt=TnM)e P dx) (H(T)®1,0(7, M) dr + R(t, \),
T JAy R
where R(t, /\) =R (t, )\) + Rg(t, /\),

1 ) I _
RN = [ ([ O Py aute) - [ T D e ) (007 1)
b,t

and
Ra(t, ) = f ar ( f it Tr(T)e f]%”;du> ()W, 0(7, \)) dr.
Ap ¢ R

Observe that by (2.83) and (284) both Ry(t,\) and Rz (¢, A) can be represented in the form

Rio(t,\) = (CH(T)12(t,7), O, A) Y dr = Wiy (Db etb1.2)(N),

1
NN
where 1 2(t,-) = k1,2(t,-)¥1 2 for some functions xy (¢, ) such that lim;, 1 |k12(t, )|z, ,) = 0.
Estimate (2.82) shows that the quantities ||Wy2]z2(3 4, ,) are uniformly bounded with respect to
t € Ry, hence lim; o [¥12(¢, ) 22(3,a,,) = 0- Therefore, we have lim; o, |R(Z,*)|z2() = 0 by
Lemma 2.22. Summarizing, we see that

~ [QrXA,,
= i
Wi (xa,, Ui X) WH( SN

as t — +o0 with o(1) in L?(u) (the function under Wy depends on 7). Applying W' and using
Lemma 2.22, we get

(xa U X)(r) = Py (

=T £(\D,(z) dx - G~ (7 )(L)) +o(1),

aTXAb,t

z(t Ty (1)) - 1 o ‘
), f (@) D) da - G- <>(Z))+<1>, (2.85)
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with o(1) in H. Similar reasoning gives

(xar Ui X)(r) = Py (

when ¢t — —oo.

aTXAbyf,

21 Jr

TR () D, () dar - G () (! >) +o(1),

Having established this asymptotics, we want to relate the integral in the right-hand side of (2.85)
to the free evolution one finds in (2.72). To this end, we first define Yx € L*(Ho) by the relation
WioYx+ = fDy + Xau.(w (later, we might be dropping the factor xq,.(.) for shorthand). Since
(z +14)f € L*(p) by Lemma 2.20, we have fD, € L*(R) n L?*(R) and property (D) shows that
)(Awﬁ,?’th,Jr can be considered as an element of H for every choice of the phase function v. To
understand this function better, we notice that (2.77) implies

(U7 Yx 4 ) (T (7)) = W D, da - (2 T Dy de - (1), (2.86)

1
NG J =) NG J
where the integrals converge absolutely. Riemann-Lebesgue lemma gives

lim | %D f()D, (z) dz =0 (2.87)

t—>+0 R

uniformly with respect to 7 € R.. Next, we indicate how the phase function ~ is chosen in (2.72). For
a.e. 7 =0, we have H(7) > 0 and det G(7) = 1 so Lemma 5.2 allows us to choose ¢(7) € [0,27) such
that

H(T)G (T )Eg)(lT) 0. (2.88)

That ¢ is Lebesgue-measurable. Observe that for u € [0, 27) we have
e (1) =(cosu+isinu) (L) =%_, (L) =3"(4).

We can then choose measurable 7 so that |y(7)] =1 on Ry and

( )Zw(lq—) (—lz) =07 (—lz) ) (289)
- y(1) = e ), (2.90)

Note also that for the rotation matrix Y, from Lemma 5.2 we can use the definition of ¥ and ¥, in
(2.80) to get
TJE’ ] X205, G S0 (D) 20 < 4191 23,0 4) + 412 12030, 04 1) (2.91)
u€[0,27
where the right-hand side is uniformly bounded by (2.82). Then, (2.86), (2.87), and (2.91) imply

’Y(T)XAb,t 1(t TH

AP G S (U ) (T (7)) = V%D, de - GNP, (1) + o),

2\/7 e

(2 80) al XAb t i(t—,l’H( ))x fi (; T —
e D dx * 7 ’
2\/— " w ( ) ( ) O( )

(2.92)
with o(1) in L?(#H) as t — +oco. Combining this with (2.85), we obtain
X (NUX(7) = P (10X, (NG IS (U ) (Tu(7)) >0, b +o0,  (2.93)
in H. Similarly, for the same choice of v and Yx _ defined by Wy Yx — = fD, - xa.. we have
AL (1) =ar (1),
by taking conjugation of (2.89) and
X, (NUX (1) = Prr (70X, (DG S (U Y ) (Tu () =0, ¢ = —oo,

in H. Consider the set A), = Ay n {7: detH(7) = 0} and denote A}, = Ay \AY,. Recall the
formula (2.92) and note that

HXAgth_l (711) ||2L2(’H) = 4”\111”%/2(H,A2J)'
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Similarly to (2.82), we have
20 gy < Wiliriag+2 [ | VaetHdr = [y loasg
bt

which tends to zero as ¢ — +oo thanks to (2.43). Together with (2.85) this yields

tli)lil@ ”XA(l:,t . UtXHH =0. (294)

We also have [[xag, - U Yx.+|m = 0 by the definition of UY.. From (2.93), it is now clear that the
relation R

1U:X — UL Yx ]l 22(34,20.0) = O, t — +oo, (2.95)
is equivalent to the relation

|Prr (vxa,, G 'S, (U Yx 2 )(Tn()) — fjto,'yYX,-&-”L?(H,Ag,t) -0, t— +oo.

Since ﬁg,yYX’Jr belongs to H by the definition of Tj’g,y, we have PHI_'NIEWYX7+ = ﬁgﬁ{YX7+. Moreover,
one gets |PuY|r2.a; ) = [Y|r2(3,4; ) for every Y € L?(H), because the operator Y Xa;, Y is

the orthogonal projector in L2(H) onto a subspace in H. Therefore, (2.95) will follow if we prove
VG (U ) (T () — ¥/ det HH 2 (UL Y 1) (T (D) 2y, ) = O,
as t — +o00. Similarly, R
10X —UP Yx —l2(,8,) = 0, t— —00,
follows from
WG 'S, U Yx, ) (Tu(-) = AVdet HH 2 (U Y, ) (Tu ()22 ey ) — O,
as t — —oo. Since |y| =1 on Ry, we only need to prove

IGT' SN (UPYx ) (Th(+) — Vdet HH_%(UEYX,i)(TH('))||L2(H,A;m) -0, (2.96)

where ¢ — +oo. Noting that [ X|r2(3.a; ) = ||\/77X||L2(H0,Ag ,)» We see that the norm in (2.96) is
equal to

o= GG = Vet HHT2) (U Y, ) (To () |20,
= [[VHG'2! — et H] (U Y, 1) (T (-

))”Lz(Hg,Ag’t)'
Thus, (2.96) can be rewritten further in the form

[[V = Vdet V(U Y1) (T 0, (2.97)

))HLZ(HO»AL,JL) -

where the matrix-function V' is defined by V = \/’ﬁG_lZ;l. Recall that V' > 0 by the choice of ¢ we
made in (2.88). For each 7 € Ay, let e1(7) and e(7) denote the orthonormal eigenvectors of V/(7)
corresponding to the eigenvalues \;(7) and \2(7). Then, for every vector e = cye1(7) + cze2(7) in C?,
we have

[(V = Vdet V)e|g: = (M (1) = VA(T)Ae(7))?[er|* + (a(7) = v/ A (1) A2 (7))
< (A7) = A2(7))? el 22,
due to the fact that
(a = Vab)? + (b= Vab)? = (a+b)(va— VB)® < (Va+ VBA(va — VB)? = (a—b)2.
On the other hand,
(M (1) = Xa(7))? = trace(V?) — 2det V.
Since V? = V*V, we can write trace V? = trace(X,(G™!)*HG'E7") = trace((G™")*HG ™). So,
(A (1) = A2(7))? = trace((G™H*HG ™) — 2v/det H = —KY,

as follows from (2.45). Since UPYx 4+ € L™ (Ho), dist(0,A},) — oo, and K, € L'(Ry), we see that
(2.97) holds. Hence, Yx + satisfy (2.72).
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Now, consider the case where X € H is an arbitrary element (that is, we do not assume now that
X € dom. D). Lemma 2.21 allows us to find X,, € dom, Dy such that

X = lim X,

n—w
and this limit is in L?(#)-norm. Let Yx,, + be the corresponding elements of L?(Ho): if f,, = Wy (X)),
then Yx, 4 := Wil (faDy - X0ue(u)» Y, = Wit (faDyu - X@ue(u))> and
IYx, +l22(10) = IWro (Vx4 ) 2Ry = |1Fn D - X0ue(w) lL2®) < [ fnlzzeuy = 1 Xnl20)-

A similar relation holds for Yx, _. Since {X,,} converges to X, the sequence f,, converges to f = Wy X
in L?(p). In particular, (fr—f)Dp Xaue(u) — 0 and (fn—f)Dyu- Xguo(u) — 0 in L2(R). The sequences
{Yx, +} converge and we denote Yx + = lim, ., Yx, +. In fact, Yx 4 = Wﬁ;(fﬁu * XQue(n)) and
Yx_ = Wﬁi (fDy - XQuo(n)), Which proves (2.73). Moreover, for each ¢ we have

109, (Vx,.+) = U2 (Yx ) 7230y = Yxot = Y 1723009

by (C). Now, given that (2.72) holds for every X,,, we can extend (2.72) to all X by the standard
approximation argument.

Uniqueness of Yx .

We will prove uniqueness of Yx , the argument for Yx _ is similar. Suppose that Yx ; and ?X,Jr
both satisfy (2.72) for some X € H. Denote Y = Yx 4 — Yx ; and let h be such that Wy, Yy = h.
We have

Jim (50 Yolagea, =0 Aue = [Lait] =), Ll + )],

for every b > 0. By Lemma 2.25, we have

1~ 1~

Uto}/o:ﬁh(T_t)'(ji)+72h(_(7+t))'(%)' (2.98)

Then,
Ly (t+b) R R R R
Jm - det H(7)(|h(Tp (1) =) +h(=(Tr(7) +1) [+ T2 (1) =) = (= (T3 () +1))|*) d7 = 0,
- Loy (t—b
and, after changing variables,
t+b ) b
0= tEIRL . |h(s —t)|*ds = J_b |h(a)]” da.

Since b is arbitrary, we get h =0 ae. onR. Hence, h = 0 a.e. which gives Yy = 0 and so Yx 4 is
defined uniquely by X.

To complete the proof, it remains to check that ., = 1 and G(7) > 0 for every 7 € R, in the
case when # is diagonal. Then, v(7) = 1 as well by (2.90). We have Ry(7) = 0, 7 € R4, for
any diagonal Hamiltonian #, see Lemma 2.2 in [6]. Then, G(7) is a diagonal matrix with positive
entries for every 7 € R, in particular, G(7) > 0. Suppose for a moment that detH = 1 almost
everywhere on Ry. Then, formula (42) in [9] for z = ¢ together with the relation Ry = 0 says
that (e=7E, (i) = —K4(1)e""E,(i). Since Eo(i) > 0, this shows that for such Hamiltonians H
we have E (i) > 0, 7 € R,. That implies o, = 1 for all 7 € Ry. Now let % € Sz(CS) be a
diagonal Hamiltonian such that det H > 0 almost everywhere on R,. Define the new Hamiltonian
H: 1 (det H(Ly (7)) 2H(Ly (7)), det H = 1 on R,. The function 7 — ©(Ly(7), z) then solves
Cauchy problem (2.5) for H. The previous reasoning shows that for the corresponding coefficient &,
we have @, = 1, 7 € Ry. But @, = ar, (), and we see that o, = 1 for all diagonal Hamiltonians
H € Sz(CS) such that detH > 0 almost everywhere on R,. Then, the general case follows via
an approximation argument by considering Hamiltonians of the form H. = ¢ (}9) + H, and letting
e — 0. d

2.6. Scattering and wave operators. The following theorem answers the question: does the asymp-
totics Yx + of a state X under the evolution U; determine the state X itself? It also strengthens
Theorem 2.23.
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Theorem 2.27. Let H € Sz(CS), let Dy be the corresponding self-adjoint operator (2.4) on H, and
let © = wdx + ps be the main spectral measure for H. Then, the strong wave operators
9 —1770

Wy = tl}glm U Uy, (2.99)
exist and are complete, i.e., they are correctly defined (the limits are understood in the strong operator
topology) and unitary as operators from L?(Hg) onto the absolutely continuous subspace Hae of Dy
Moreover, if X € H, Yx + are defined by (2.73) and Pac denotes the orthogonal projection in H onto
the absolutely continuous subspace of Dy, then we have W.Yx + = PacX. Hence, Yx 1 determine
PacX uniquely and we have Yx, + = Yx, + in Theorem 2.23 if and only if PacX1 = PacX2. The
scattering operator

S=wiw_, S:Yx, Yy,
is a unitary operator on L*(Hy), and its spectral representation takes the form
_ D
Wiy SWiih fo = Fﬂfo, foe L*(R), (2.100)
“w

where D, is the Szegd function of u. In particular, the operator S does not depend on the choice of
the phase function v in Theorem 2.235.

Proof. Let us first prove that the limit in (2.99) exists as ¢ — 4+00. The argument for ¢ - —oo is
similar. In fact, we claim that for an arbitrary X, we have

Jim U7'UY Yy, = PacX. (2.101)
Indeed, denoting Ay = [Ly(|t] —b), Ly(|t| + b)] for some positive numbers b, we have
Utilﬁg,tYXﬁ = Utileb,tfj’s,tYXa‘i’ + Ut71XR+\Ab,th’S,tYX,+
= U7 X2, UbX + U7 (x40, U0 Y = X2, UeX) + U xea, US Yy
To get our claim, it is enough to prove that

(a) limp o limsup,_, 4 Xz A, , U9 Y4 | 200y = 0,
(b) limyioe XAy, U2, Yx 4 — Xa,,, U X || 202y = 0 for every b >0,
(¢) limpy 4o limsup,_, ., HUtfl)(Ab’tUtX — PacX|2(2) = 0.
Clearly, (b) is just a restatement of Theorem 2.23. To check (a), observe that

b, O Vo lioio = | VACHEI Y () i
+ bt

| U Yo (7) 2
R A[t]—b,[t]+0]

Now, (2.76) yields (a). It remains to prove (c). First, notice that
U7 X2, Ut X = PacX 7230y = X2, (Ut X = UrPacX)|72030) + [IXR\Ay, Ut Pac X 7220

By Theorem 2.23, we have Yx = Yp, x 1 and, therefore, lim;_, . o« |[xa, , (UtX — U PacX)| 2¢3) = 0.
Finally,

xR A, UtPacX (72 30) = 1UtPacX 72020) = Xy, Ut PacX 7230
= [PacX [72(20) = X200, Ut Pac X | 7234y
and, by Theorem 2.23,

11m§gp(HPachl2m<H> =[x, UtPac X [230)) = | PacX [72(2) = i inf [xa, U3 Yeuex,+ 720

= [Pac X |2 (30 — tminf (JUF Vewex 41 7230) = IXm80 , URiVPae x4 [22(30))-

By (2.73), we get
103 4 Yruex 4172 30) = 1 PacX 2230 (2.102)
and R
lim limiup HXR+\Ab,tUS,tYPacX,+||L2(H) =0
o8]

bo+0
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follows from (a). Hence, we get (c).
Then, (2.73) implies, in particular, that the map Y, : X — Yx , is the unitary map from H,e onto
L3(Ho). So, limy—, Ut_lU Y exists for every Y € L*(Ho) and lim;, .. U;” 1U0 Y =7y
Summarizing, we have proved that the strong wave operator W, in (2.99) ex1sts and W, Yx ;. =
P, X for every X, where Yx . is defined as in Theorem 2.23. Analogously, one can check the existence
of the wave operator W_ and prove the formula W_Yx _ = P,.X. All other assertions of the theorem
are simple consequences of these two facts. O

The following corollary implies, in particular, that if Szegé measure p is purely a.c., then every
X € H propagates and the global L?(#H) asymptotics holds for U; X. The reader can compare it to
Theorem 2.23 which establishes the asymptotics over the finite interval.

Corollary 2.28. Let H be a Hamiltonian of class Sz(CS). Then, there exists a phase function v such
that the following assertion holds. For every X € Hac, there are uniquely defined Yx + € L*(Ho) such
that R

Jim U X~ U3 Ytz = 0, (2.103)

Moreover, if H is diagonal, then one can take v =1 on R,.

Proof. Indeed, if X € H,e, then X = P, X, and (2.103) is equivalent to
M [PacX = U 'O Yt p2) =0,

that holds by Theorem 2.27. O

2.7. Dynamical classification of spectral types. Our analysis allows to detect the spectral types
of Dy by observing the long-time dynamics of U.

Suppose X € H is given. Denote the orthogonal projections to absolutely continuous, singular
continuous, and pure point subspaces of Dy by Pac, Psc, and Ppp, respectively. Our next result gives
the dynamical characterization of whether X has nontrivial projections to any of these subspaces.

Theorem 2.29. Let H € Sz(CS). Then, for every X € H we have

. . 1
bgrgﬂgrgﬁj [0 0.0, Loy € = [Pop X 20, (2.104)
lim li 1TUX2 dt = | Psc X 2.1
T o N IO X022 30, (1 0), o (1)) D = [Poc X [ T2 309 (2.105)
, tkm 1UX 122 30 L (=), et = 1PacX 723095 (2.106)
bhffj tl}m |UeX | L2 (34, (L3 (24b) +00)) = O- (2.107)

The analogous statements hold when t — 400 is replaced by t — —o0.

Proof. We start with proving (2.107). Given X and € > 0, we can find X. € H such that | X —
Xelz2(2) < € and X, has compact support. From Theorem 2.1, we get

W Sup [V Xell 2ot (Lo b4+, +00)) = O-
Therefore,

lim sup lim sup U X N[ 22 (34, [ L2 (pt),+-00)) < limsup limsup [|Us (X — Xo)| 22 (3, [Ly (b+1), +0))

bo+o t—+w bo4w t—o+w

+ limsup lim sup U Xc || 2234, [Ly (b41),+0)) < €,
bo+4+w t—o+w

because |Up(X — Xc)|r2(3) = |X — Xc|r2(3) < &. Since € is arbitrary, we get (2.107).
Formula (2.106) is immediate from Theorem 2.23.

To prove (2.104), we apply Lemma 5.3 from Section 5.5. Take A > 0 and b € R\ Ujeq(s) - Let
P{_,A) be the orthogonal projection associated with the spectral decomposition of Dy. We claim
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that the operator x[o,5]P[-a,A] is compact in H. Indeed, this follows from the formula

X[0,6](7)
MU [ o a) (W X) (o) du(o)

VT o)A
and the fact that the set {S[_A Al O(r,x) Wy X) du: | < 1} is precompact in C[0,b] by Arzela-
Ascoli theorem. Hence, by Lemma 5.3 applied to Hilbert space H, operator Dy, and A = x[o ], one
has

X[0,6(T) (P=a,a1 X)(7) =

o1 (T
lim TL Ixt.0 Ut Ploa, a1 X 72yt = . IX10,61 P,y Prea a1 X 7230y

T—x -
J

where P(p,; is orthogonal projection corresponding to eigenvalue E; of Dy and the sum is done over
all eigenvalues. Taking b to infinity (see Corollary 2 in [73]), we have

. .1 (T 2 2
Jim lim fo IX10,60Ut Pl a, a1 X 2230y At = [ Pop Pl—n a1 X |72 (3¢) (2.108)
for every X. Now, taking A — o0, we get (2.104).
We are left with showing (2.105). Fix any X and b > 0. Then,
10X 72 30) =N0:X W 200000, 230 03] + 10X W72 0L (8), Lo (1))

U X2 0, g (=) Lo (t0]) T NUX T2 30 (L 2 48) )
We also have

10X 200y = | X 1720200 = 1PacX 72020y + [Poc X |2 30) + | Pop X[ 72(30)

Subtracting one identity from the other and taking the Cesaro mean, we get

L 1 ("
lim lim (TL (U X122 (34, [ 230 (0) L (1)) O — PscX”%z(H)) =0,

b—xw T—Hwo

as follows from already established (2.104), (2.106), and (2.107). The arguments for ¢ — —oo are
identical. O

We will need the following technical lemma later in the text.

Lemma 2.30. Suppose H is a proper Hamiltonian, r € R+\UI€3 I X € H is compactly supported
n [0,7], and (X, (§))r2(m) # 0. If Y is defined by

Y(r)=0, 7>r,
Jf H(s < (2.109)

then X and PyY satisfy |(WnX)(2)|* + |(WxPuY)(2)|? > 0 for all z € R. Such X and Y exist.

Proof. First, observe that

X (0), (e = <J£H(S)X(S)d8, (D2 = (X, (§)) 20y # 0.

Second, notice that ©(7,0) = (}) and so (WX )(0) # 0 given assumptions of the lemma. Suppose
is such that = # 0 and (WxX)(z) = 0. Observe that, by Lemma 2.22, W3 Y = Wy PyY. Then,

JT WY = J(:(?—[Y, O(r,x)Yeedr = —x™ 1 LT<JY, O'(1,x)de2dr
=g ! (_<Y(O), ( (1) )>(C2 + J:<JY” @(T, 1’)>(c2d7'>

- (‘<y<o>7 (9)c2 + LTG%(T)X (), O(r, ‘”WC”)
= 271 (=Y (0), (9))er + VWi X)(2)) # 0,
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where we used (2.109) and our other assumptions. Finally, since H is proper, we can always find X
that satisfies all conditions and define Y accordingly. For example,
—§" h(s)ds
X =) xoa Y= (g )Xo

is one possible choice. O

Theorem 2.29 gives a dynamical description of spectral types for each element X but it does
not tell how to detect the presence of pure point, singular continuous, and absolutely continuous
spectral types for Dy itself. We will address it in the next theorem. Recall that A, is defined as
Ab,t = [LH(|t| - b),LH(|t| + b)] for b > 0.

Theorem 2.31. Let H be a Hamiltonian of class Sz(CS). Then, the following holds true.
(A) If the singular spectrum of H is empty, then
Jim - lim (UeX 2,0 = X220 (2.110)

— 4+t
for every X € H.
(B) If there is some compactly supported X € H for which

bo+x To+xw

: S
llm hm TJO HUtX”%?(’H,[LH(b),LH(t—b)])dt=07 (2111)

then Dy has no singular continuous spectrum.
(C) Let vectors X and 'Y be defined as in Lemma 2.30. If both of the equalities

Jim lim inf U X 20,80, = X 2200), (2.112)
bEI}r{L ltlglf}f U PaY (|2 (34,80,0) = 1Y IL230) (2.113)

hold, then the singular spectrum of Dy is empty.
(D) Let vectors X and Y be defined as in Lemma 2.30. If both of the equalities

N )

s L 10X 220,10, a0 o) 4 = O, (2.114)
. 1 (T )

pHm, L 1UY 220,10,y o) 4 = 05 (2.115)

hold, then Dy has no bound states.

We get the same conclusions if the limits t — +00 are replaced by t — —o0.

Proof. Suppose the singular spectrum is empty, then X = P, X and our claim follows from (2.107).

Then, suppose compactly supported X is such that (2.111) holds. Recalling Theorem 2.23, consider
f = WyuX. Represent the measure p = pac + pis as a sum of absolutely continuous and singular
components and further write pus = pisc + ptpp as a sum of singular continuous and pure point parts.
Then, (2.105) gives

J |f|2d:“sc =0.
R

On the other hand, f is an entire function that can have only countably many zeroes in C. Therefore,
|f] > 0 a.e. with respect to pise and so pise = 0.

To show (C'), we only need to prove that (2.112), (2.113) imply that the spectrum of # is purely
absolutely continuous. If f:= Wy X and g := Wy PgY, then (2.112) and (2.113) give

f (12 + 19[2)dps = 0.
R

That, however, contradicts Lemma 2.30 unless us(R) = 0.

Finally, to get (D), we notice that (2.114), (2.115) and (2.104) give Ppp X = PppY = 0 which can
be rewritten as

f]R(mz 1) dppp = 0,
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where, again, f = Wy X and g = Wy PyY. Since f and g are entire functions that have no common
zeroes by Lemma 2.30, we get ppp = 0.

The arguments for ¢ — —oo are identical. g

3. KREIN STRINGS

In this section, we introduce Krein strings, explain the connection with diagonal canonical systems,
and use this connection to translate some results obtained in the previous section to this new setting.
We will be using extensively two papers: [6] and [42].

3.1. Krein strings. Let 0 < L < o0 and M be a non-decreasing right-continuous function on (—oo, L),
satisfying M (&) = 0,¢ < 0. The Lebesgue-Stieltjes measure m on [0, L) is defined by m[0,£] = M(§).
We write its decomposition into the absolutely continuous and singular parts as m = mye + mg =
p(€) d€ + mg. Recall that in our notation M(L—) = limgqyz, M (€) and that the [M, L] pair is called
proper if M and L satisty the following conditions

L+ M(L-) = o, (3.1)
0< M(&) < M(L—), VEe(0,L). (3.2)

These two conditions are very natural (see [41]). They guarantee that the spectral measure o of the
string operator is unique in the class of spectral measures with non-negative support. Additionally,
they make sure that the map [M, L] — o is injective. In this paper, we will work with proper [M, L]
pairs only. Some authors (e.g., [42]) define strings with left-continuous M while others (e.g., [29]) work
with right-continuous M. In [41] and [42], the authors considered two functions (€, z) and (¢, z)
that satisfy

p€) =12 j[ € 9Pl )am(s), € [0.D),

(e 2) = s—zf (€ = 5)0(s, 2) dm(s), £€[0,L).

)

It is customary to extend ¢ and ¥ to (—00,0) by ¢(&,2) = 1 and ¥(§, z) = £ where £ < 0. These
functions are uniquely determined by the string [M, L] and they define the principal Titchmarsh-Weyl
function ¢ of [M, L] by

o) — 1im P62,
L (&, 2)
see formula (2.21) in [42] or Theorem 10.1 in [41]. That function ¢ has the unique integral represen-

tation do ()
o
a2 = | 2. (34
Ry A—z
where o, the main (or orthogonal) spectral measure of the string [M, L], is a measure on R,
satisfying condition
J do ()
<
R

z € C\[0, 0), (3.3)

1+ '
+
We emphasize (see [41]) that proper string is in the limit-point case if and only if
J’ £2dm = +o0. (3.5)
[0,L)

However, when the integral in (3.5) is finite and we are in limit-circle case, the main spectral measure
with non-negative support is unique and is given by (3.3). Later in the text, we will focus on strings
[M, L] in Szegd class for which the condition (3.5) will always be satisfied.

Similarly to (2.7), we can define the generalized Fourier transform associated with the string [M, L]:

L
Uy v o L o(E)p(€, 2) dm(e),  zeC, (3.6)

starting with functions v € L?*(m) that have compact support in [0, L). It is known (see Section 10
in [41]) that Uy, can be extended to the unitary operator from L?(m) onto L?(o). The inverse map is
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given by (see formula (2.25) in [42])

v = Uy (Unr) = f AENUn) (N do(N),  €e0,L),

where the last integral can be first defined on L?(o)-functions with compact support and then extended
to all of L%(c). The theory of Krein strings goes back to works by M. Krein [54] and Feller [32].

3.2. Connection between Krein strings and canonical systems with diagonal Hamiltoni-
ans. Suppose [M, L] is a proper string. Consider the increasing function N: & — £ + M (&) on [0, L)
and let n denote the corresponding measure, n[0,£] = N (&) for £ € [0, L). Condition (3.1) is equiva-
lent to N(L—) = +00. Define the function N(—1) as generalized inverse of N, see Section 1.4. Using
the fact that N is strictly increasing, one can show that N(-1 is continuous on R, and we have
NED(N(€)) = € for every € € [0, L). Recall that p is the density of the absolutely continuous part of
m, so that m = pdf + m,. Define two functions on R :

: if N (r) € Qy(m),
OZ(T) = p(N(—l)(T)) . (37)
THp(NCD (7)) otherwise.
and
" if N (r) € O (m),
6(7’) = { 1 L ) s (38)
Tip(N-D (7)) Otherwise,

Given «, 3, define H, = diag(w, 8). If H, is proper and trace H, = 1, we let

r o sup{a: €(z)=€}
ér) = [ pps, L= s o= a(s)ds, €<L.  (39)
0 0

0

Lemma 3.1. Formulas (3.7), (3.8), and (3.9) establish the bijection [M,L] — diag(c,B) between
proper [M, L] pairs and proper Hamiltonians H, = diag(a, §) with unit trace.

Proof. That correspondence is explained in, e.g., [6], Lemma 6.2. (In fact, our «, 8, and H, satisfy
o = hy, B = hi1,Hy = Hs, where hy, ho, and H,, are notation used in that paper. The connection
between Krein strings and diagonal canonical systems is well-known and can also be found in [35], [42]).
Notice that some authors assume that M is left-continuous. That change in normalization makes a
difference only at those fA where M has a jump. These points correspond to those indivisible intervals
where H, = diag(1,0). Moreover, N (E) is the right end of each such indivisible interval.

It is only left to comment that the assumption that the left end of the string is heavy is equivalent
to the condition that the Hamiltonian H, = diag(a, ) is not equal to (J9) on [0,e] with some
e > 0. Moreover, making the assumption that L + M(L—) = 400 and the right end is heavy is
equivalent to saying that H, is not equal to either (§9) or () on (79, 0) for some 79 > 0. Indeed,
L+ M(L-) = 4o gives N(L—) = 400 and (3, defined by (3.7), can not vanish on (79, 0) for some
70 > 0 since otherwise we would have (N1 (7), L) € Qg(m). Similarly, L + M(L—) = +o and the
assumption that the right end is heavy, along with the formula (3.8), does not allow « to vanish on
(10, 00) for some 79 > 0. The converse statements follow similarly if (3.9) are used: since 8 does not
vanish on (79, ) for any 79, we have L + M (L—) = 4o00. Then, since o does not vanish on (7, 0),

the right end of the string is heavy. g
We will need the following two results from [42] (see also [6]).

72) ®4(7,2)

_ (=D O
Lemma 3.2. Let§{ = NUY (7). If 05 (1,2) 5 (7,2)
% (752 % \TH%

with Hamiltonian diag(c, 8), then
04 (1,2) ®4(m2) | _ ( p(6:2%)  2p(6,5°) )
O (1,2) @y (7,2) 2T o (6—,22) Wi(E—,2%) )
Proof. That follows from Lemma 4.1 in [42] after the matrix Wy, which is introduced in that paper,

. . . Ot (r,z) oL (r,
is rewritten in terms of f(T 2) f(T ?) . O
9* (7,2) (I)* (7,2)

) is a monodromy matrix for the canonical system

For the proof of the following lemma, check [6] and Theorem 4.2 in [42].
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Lemma 3.3. Suppose [M, L] — diag(c, B) is the bijection given by (3.7), (3.8), q is the Titchmarsh-
Weyl function for the string given by [M, L], and m, is the Titchmarsh- Weyl function for the Hamil-
tonian H, = diag(a, 8). Then, we have

2q(2%) = my(2), zeCT . (3.10)

Consequently, the spectral measure py of Hamiltonian diag(w, 8) satisfies

px([En, E2]) = ga([Ef,Eg]% 1 ({0}) = o ({0}) (3.11)
for all0 < E1 < Es.

Remark 3.4. Since the measure p, is even, the last identities define it uniquely. Also, our integral
representation (2.42) connecting the spectral measure p and m is different from the one used in formula
(2.1) in [42] by a factor w. Hence, we have 1/s/7 in (1.7) and an extra factor w in (3.11).

Lemma 3.5. If H, = diag(«, 8) is any proper diagonal Hamiltonian, then
GI(T?Z) = @:(T7 _Z)7 @; (T7 Z) = _6;(7—7 _Z)a (I):(T’Z) = _(I);F(T7 _Z)v @;(Ta Z) = (I);(T, _Z)

For such Hy, Wy, establishes a unitary equivalence between the subspace {X = (X1, X2)' € H, X5 =
0} and the subspace of all even functions on L*(u). Similarly, Wy, establishes a unitary equivalence
between the subspace of {X = (X1, X2)t € H, X; = 0} and all odd functions on L*(u).

Proof. The first claim follows directly from the equation

Ji of(ra) ef(ra) ) _ ; a(r) 0 ot(r,2) oL (r.2) o) @f0) _ (1 0
dr \ 9% (7,2) @ (7,2) 0 B(7) 04 (1,2) @y (r,2) |’ 05 (0,2) ©5(0,2) 0 1)/’
if we multiply it from the left and from the right by ((1) _01). The other statements follow if we recall
that p is even measure. g

*

Given (3.6) and the unitary map Uy, one can define the Krein string as an operator Sy, by
Sn = Uy MUy,

where dom Sy := {v € L*(m) : My\Upv € L*(0)} and we recall that M, f is a function in A which is
equal to A\f(\). Clearly, Sy is a self-adjoint operator in L?(m). With that definition of Sy;, we can
obtain its characterization through the associated canonical system.

Lemma 3.6. The map T:v € L?*(m) » X = (vo N=Y 0) is a unitary map onto the subspace
{X = (X1,X2)! € H : Xo = 0} of the space L*(H4) introduced in (2.2) with H, = diag(a, ).
Moreover,

YD}, T = Su. (3.12)

Proof. The first claim that the map is unitary follows from (3.8) and the change of variables in the
Lebesgue-Stieltjes integral (see formula (6.3) in [6] or formulas (4.35)—(4.36) in [42])

L s
f [o(&) dm = f (N (7)) Pa(r)dr.
0 0

Clearly, the function N (&) might have jumps and the variables £ and 7 are not in bijection. However,
if N has a jump at a point E, then the function v(N(~1 (7)) is equal to a constant on the corresponding
indivisible interval in variable 7 which is mapped to a point E .

To show (3.12), we need to prove D%* T = TS);. To prove this identity, it is convenient to work on
the spectral side of both Sy, and Dy, . Suppose o is the main spectral measure of [M, L] and function
g satisfies: g € L?(c) and A\g € L?(c). By our definition, this is equivalent to U,,'g € dom Sy;. For
Uyt g, we can write

Uit 9)(x) = f oVl Ndo(N)
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and the integral converges in L?(m)-sense. Then,
- _ 311) (1 ¢
(YW 9))() = ( [ aet ) 2o o) (2] staerrain.o) -
+
=Wy, (72 g(a?),

where the last identity follows from combining three facts: g(x?) is even, measure 4 is even, and
O, (7,2) is odd in z. The last formula shows that

1.2
Wiy T Uil g) () = g(ﬁ).

Notice that, thanks to (3.11), the map g()\) — g(A\?)/+/7 is a unitary map of L?(c) onto to the set of
even functions in L?(u4). Moreover, if g, A\g € L?(0), and v = Uy;'g, then

(3.13)

) 2
13 2 9(z°)

N

Wi, D3, To = Wi, Dy Wiy ) Wi, To (3.14)

On the other hand, (3.13) also yields

g(@?)
VT

The comparison of (3.14) and (3.15) now gives D%*Tv =T Sy for every v € dom Sy and the proof

is finished. O

WH*T Syv = z2 - (3.15)

Remark 3.7. Formula (3.12) provides an expression of Spv solely in terms of M and v (see, e.g.,
p. 151 in Chapter 5 of [29], for a similar representation). In particular, that gives

13
v e dom Sy = v(E) = C—J (J hdm) dn, CeC, he L2(m). (3.16)
0 [0,n]

3.3. Wave equation for Krein strings. The vibration of the proper string with parameters [M, L]
is governed by the following formal hyperbolic Cauchy problem:

Ut + SMU = 07 u(£7 0) = u0(£)7 ut(£7 0) = 07 ul(0_7t) = 0) (317)

where ug(€) is the initial displacement of the string, its initial velocity is equal to zero, and the
Neumann boundary condition u'(0—,¢) = 0 indicates that its left end is “loose”. In this paper, we will
only study solutions to (3.17) given by the formula

u(é,t) = cos(tr/Sar)ug, o € L*(m), (3.18)
where cos(tA/Shs) is defined via Spectral Theorem:

cos(ty/Sar)uo = Uy, (cos(t\ﬁ) (UMUO)()\)).

Function v is understood as element in C(R, L?(m)) n L*(R, L?(m)) in the standard mixed-norm
notation. It is even in ¢ so we can consider only positive ¢t. If uq is real, then u is real as well. Hence,
since w is a linear operator of ug, we can assume without loss of generality that ug is real.

In this paper, we do not address the question in what sense u satisfies (3.17) or questions of
uniqueness and existence of solutions in classes of higher regularity (see, e.g., [14] where similar
issues were studied in the context of the wave equation with fractal Laplacian). We only notice that
assumption ug € dom Sy; implies that u is strong solution which means that it is twice strongly
continuously differentiable function of ¢ in the topology of Hilbert space L?(m) and that it satisfies
equation for every ¢ > 0 and initial conditions for ¢ = 0 (see [5], p. 225). The uniqueness of such
strong solution follows immediately from the self-adjointness of Sps ( [5], Theorem 6.2 on p. 229).
Since u € dom Sy for every t > 0, the formula (3.16) yields that u is continuous in &, and has right
and left derivatives at each £ € (0, L) and the right derivative at zero. Condition ug € dom Sy ensures
that the Neumann boundary condition u'(0—,t) = 0 can be interpreted in a standard way u/(0,¢) = 0
provided that m({0}) = 0 (if m({0}) > 0, then «’(0,¢) # 0 in general). Moreover, an assumption
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ug € dom Sy guarantees that the energy is finite since

By = L f (12 + (Spru)u)dm = lr Meos?(1WA) + sin? (V) - (Unguo)2dor =
2 Jjo,1) 2 Jo

1

Thus, one can argue that an assumption ug € dom Sy, gives rise to a solution that makes physical
sense.

In the following lemma, we show that w(£,t) can be written via the evolution operator for the
corresponding canonical system. That will allow us to use the results of the previous section.

Lemma 3.8. Let u be defined by (3.18) and U, be an evolution for the canonical system with the
Hamiltonian H, = diag(«, ) in which o and 5 are obtained by formulas (3.7) and (3.8). Then,

(D) = %((UtX)(T) + (U_tX)(T)), (3.19)

where X (1) = (uouv(;”(r))) &= NED(r), 72 0.

Proof. Taking g = cos(v/At)go, go € L?(0) in (3.13), we have Wy, T Uy, cos(VAt)go(N))(z) =

ﬁ cos(xt)go(x?), which gives

1 A ,
§T_1(6”D”* +e P )Y = T cos(tDy, )T = cos(tv/Sar),

since gg is arbitrary. O
Define c
Tu(©) = [ Vol ds,  Lu(n) =17 (0) = inf(€ > 05 Tar() > ),
for £e[0,L),neR;. In [%] (see proof of Theorem 2 there), we showed that

m@=£¢WWWhnmm €= NI, (3.20)

where Ty, is defined by (2.18) for the Hamiltonian H, = diag(c, ). Recall that the front of u(¢,t)
has been denoted by fr, in the Introduction. Now, we can prove Theorem 1.7, which gives the formula
for fr,.

Proof of Theorem 1.7. That is immediate from Lemma 3.8, formula (3.20), and Theorem 2.1. O

Remark 3.9. If the number Ly(t + a) in (2.19) is an endpoint of indivisible interval, it must
be its left endpoint by definition. Hence, Theorem 2.1 and the formula for operator Y show that
[u(€, )] L2 (m,5e,3) = O, i-e., the wavefront as a point never carries a positive L?(m)-norm of solution.

Remark 3.10. The vibration of the classical infinite Stieltjes string with beads of equal masses con-
nected by massless wire exhibits infinite speed of propagation (see, e.g., [82], p.25) and that example
corresponds to p =0 and mg = ijzo 0(€ —74) where 6(€) denotes the unit point-mass at zero. The for-
mula (1.19) for the front of the wave confirms our intuition that the wave propagates instantaneously
through the intervals on which p = 0. In fact, it shows that the presence of nontrivial mg on such an
interval plays no role in that phenomenon. For example, if p =1 for € ¢ [a,5],0 < a < 8 < 0 and
p =0 on [a, 5], then the formula (1.19) yields

e, = feo +t, t<ter,
t B+t, t>te

as along as fry < a. Observe that we have fr, = « at the critical time tey since Ly is left-continuous.

tcr = — ftO

Recall that the measure 0 = vm + o5 on R} with the density v and the singular part og belongs
to the Szegd class Sz(R, ) if (z + 1)~ € L'(o) and
1
ogu(@) 4o o,

ry V(T +1)
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A simple change of variables shows that ¢ € Sz(R,) if and only if . € Sz(R), where p, is taken
from Lemma 3.3. In the Introduction, the class of strings for which the spectral measure is Szegé
was called Sz(Str) and it was characterized in Theorem 1.10. The following result gives its dynamical
description and has Theorem 1.8 as a corollary.

Theorem 3.11. Suppose [M, L] is a proper string. If there is ug € L?(m), a compactly supported
function, such that

litm sup [[u]p2(m,a,,.,) >0, Agay =Lyt +a—10),Ly(t+a), (3.21)
-+

then [M, L] € Sz(Str). Here, a = Tar(fry). Conversely, if [M, L] € Sz(Str), then

liminf ju]2(m a0 > 0 (3.22)

for every compactly supported ug € L?(m) not equal to zero identically and for every ¢ > 0. Here,
again, a = Ty (fty).

Proof. That follows from Corollary 2.16 and Lemma 3.8. O

Remark 3.12. Combined with the Theorem 3.13 below, we conclude that (3.22) can be strengthened
to

tl}iﬂ% HUHLZ(m,Az,a,t) >0

for every £ > 0.
When [M, L] = [d¢, 0], we have ¢(&, 2) = cos(£+/2), the spectral measure is (mv/A) " 1d),

@) = [ @ eos VR e, Aek,,

0
and the solution to (3.17) is given by (see (1.21))
) +ug(E —t —t
where ug is extended to R as even function and o(1) is in L?(R, ). Hence, the evolution is equivalent
to translation when ¢t — +o0.
Recall, that Q,c(m) and Qg(m) are sets that satisfy (1.28). As in the case of canonical systems, we
need to introduce the modified dynamics. Given y € L?(R), we let

PPy € X (©) 0 1O y(Th(© —1),  £e0,L) (324

For the modified evolution, one can use a change of variables to get |H~/toy||L2(m) < ylpewy- If
o € Sz(R. ), then its Szegd function is defined by

Dy, (V?)

Tz
where the measure py, given by (3.11), is the spectral measure of Hamiltonian H,. Notice that
|D,(AN))? = o'()) for a.e. A > 0. In the case when [M, L] € Sz(Str), we can obtain the asymptotics of
u near its wavefront. The following result implies Theorem 1.9 from the Introduction.

D,(2) :=

Theorem 3.13. Suppose [M, L] € Sz(Str). Then, there is a map ug — Gy, from L*(m) to L?(R),
such that for every fized positive a we have

Jim fu— VPG ll12 (m [ (t-a), L (t+a)]) = O- (3.25)

The function G, can be computed by the formula

_ 1 Re(D, (a)e™V)g(a) .
Guo(n) = NG LM(U) T da, g :=Unruo. (3.26)

Moreover, |G, ||iQ(R) =2[9 * XQue(0) ||2L2(a) and, if ug € Hac(Sn), then

Jmfu = VPG| L2y = 0. (3.27)
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Proof. Fix a > 0 and choose b > a. Define H, by formulas (3.7), (3.8) and note that H, € Sz(CS).
Set X = Yug and let, as above, £ = N-D(7) for 7 > 0. Formula (3.19) gives

<“(% t)> _ %((UtX)(T) +(ULX)(T), =0 (3.28)

Using Theorem 2.23, we obtain
1 1, -1
5 (X)) + (U-X)()) = SHIAD U Yxos + U Yx )Ty (1) +0(1), ¢ =+, (3:29)

with o(1) in L?(H, Ap+), where

CONN

_1 “r I : 0,

Hy i (T) = 0 (;E:;)z 7: B(r)a(r) >
0, 7: B(r)a(r) =0,

is the matrix from (2.70), and

WioYx,+ = [Dpy " XQuc(us)> WioYx,— = [Dpy " XQuc(ps)> [ =Wn,X.
Applying (2.76), we obtain

50054 + 0% )0 = 55 (=0 (1) Aot =0 (7)) + ot

as t — +o0, with o(1) in L?(H,) and

~

1 e —ix
hi(n) = E fR (@)D, (x)e™" - X Qe (1) A

E*(n) = \/% JR f(x)D/"‘* (x)eii’”? ’ XQ&C(H*) d.’L’

In other words, we have

Ap(r—1)

1
S UYx 4 + UL ¥x,)(7) = ( 0

) +o(1), t — +o0,
where o(1) is in L?(H,) and
1 T
470 = 5= | @ RADL @) oy dr. meR
We now see from (3.28) and (3.29) that

u(&,t -1 Ae(T —t —1
(“67) =k (V) kR T o) + R, 330
where |R1¢|r2(20) + | B2t 22(3,4,,) — 0 as t — +oo. Note that considering £ € Qac(m) for which
p(€) > 0 is the same as considering those 7 > 0 for which det H.(7) = a(r)8(7) > 0. Moreover, for
such & and 7 we have

a(r)

e = ( B(T))i, Tar(€) = Ty (7).

So, one can rewrite relation (3.30) in the form

(1607 N0wetm O HOATME =0 _ gy 1)y (T (1) + (),

or in the form R )

T (u(-,t) = VP2y) (1) = Hy 2 (T) R1t(Tr, (7)) + Rau(7),
with y = 2A;. Since b > a, the mapping T sends L?(m,[La(t — a), Ly (t + a)]) into a subset of
L?*(H,Ap+). Noting that

_1
[Has - (Rt o Ty ) + Rotllrzn,,) < Btz + 1 R2tl2ea,,) =0, t— +o0,
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we see that (3.25) holds with G, = y = 24y. If we put g = Uprup, then g and f are related to each
other by f(z) = g(2?)/s/m according to (3.13). Recall also that D, (z) = D\“/";?//;)
the function f is even, and D, (—z) = D, () almost everywhere on R since p, is even. After
changing variables 22 = o, we obtain

G (1) = % f F(2) Re(Dyy (£)€7) - X ) ()
2
R
L1 [ @) Re(Dy (VY -y (o) (@)
NN Ja
1 9(@) Re( D, (a)eVan)
\/E Qac(o) \4/5

. By construction,

(@) Re(Dyy (2)€™") * X Qe () (%) d

do

do.

We also have HGuo||2L2(R) = 4||Af||2L2(1R) = 2”XQ&C(H*)fH%2('u*) = 2||PacXH%2(H) = 2||Pac“0H%2(m) =
2[9X e (o) Hiz(g), where in the second identity we have used the formula

470 = 5= | @ ReD () do = 5 [ @)Dy ()

in which the integrals are understood in the L?(R)-sense. Finally, Corollary 2.28 implies (3.27). O

3.4. Examples. In this subsection, we explain how the general results can be applied to two examples
considered in the Introduction.

Example 1.11: strings for which p = 1. Consider the case when L = oo and p = 1. For the
associated measure m, we get
dm = d¢ + dmg, (3.31)

where mg is any singular measure. If mg = 0, then the solution u is given by (3.23). The models
described by our choice of M are numerous, e.g., think about the beads with masses {m;} placed at
points {£;},&0 < &1 < ... connected by the string with a uniform density equal to one.

One might want to know how the presence of “impurities” encoded by mg changes the character of
wave propagation. The general results from the previous subsection can be reformulated as follows.
From Theorem 1.7, we immediately get

Proposition 3.14. If uy has compact support and |uol|p>(m) > 0, then ft, = fry +¢.

Clearly, the front propagates with the same linear speed regardless of the nature of ms. For M that
satisfy p = 1, it was established (see [6]), that

ms(R;) < 00 < 0 € Sz(R,). (3.32)
In the next two statements, we describe how the dynamics of v depends on ms.
Proposition 3.15. If |ug|r2(m) > 0,fty < o0, and mg(R,) = o0, then
B {22 g f5e,—a,fe,3) = 0
for every fized a > 0. Conversely, if there is ug that satisfies |uol r2m) > 0, frg < 0, and
tim sup w22 m. e, —a.fe,1) > 0
—>
for some fized a > 0, then mg(R) < c0.
Proof. That follows from the Theorem 3.11 and (3.32). O

The next result shows that the condition mg(R;) < o guarantees that part of the wave propagates
like a traveling wave in (3.23). In that theorem, P,. denotes the orthogonal projection to Hac(Shr)-
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Proposition 3.16. In the case when mgs(Ry) < 00, we have

tﬁﬁloo lu(, )l L2 (m, [t—a,t+a]) = 05 (3.33)
lim Hu(7t) - Guo( - t)HLz[tfa,tJra] =0,

t—+c

for some G, € L*(R) and all a > 0. Moreover, ||Gy,||r2@®) > 0 if and only if Pacuo # 0. If ug is not
tdentically equal to zero and has compact support, then Pacug # 0.

Proof. These results are contained in Theorem 3.11, Theorem 3.13, and (3.32). O
The statements made in Example 1.11 in Introduction now follow.

Example 1.12: strings made of two types of material. For another example, let us consider
a string m = pd¢ on R, with no singular part whose density p takes two positive values: a and b.

Specifically,
E
pr)={" T (3.34)
b, TeR\E,

for some Lebesgue-measurable set £ € R,. We interpret such strings as those made from two types
of material. Despite the relative simplicity, the model when p takes only two positive values can have
a nontrivial spectrum, e.g., a spectrum with gap structure if p is periodic (see also [16] for analysis of
related problems on the graphs).

In Example 1.12 of Introduction, we claimed
Proposition 3.17. Suppose a #b. We have o € Sz(R..) if and only if either {&: p(§) = a}| < w0 or
{E: p(§) = b}| < 0.

Proof. We will apply Theorem 1.10 with properly chosen {7, }. Define 7, by

Nn = fn v p(§) d§.
0

Thus, &, =n,n=0,1,.... Since p takes values a and b, we always have condition
0<Cl<’l7n+1—’l7n<02, n=20,1,2,...
satisfied. For each n > 0, we have
a, TeEFE
=1 " 3.35
p(7) {b, i (335)
where |Ey,| = 6p, |Fpn| =1 — 06y, and E, S [n,n + 1), F, € [n,n +1). Then,

n+2
2J p(T)dT =2a(6n+6n+1) +2b(2_6n_6n+1)

n

= b+ 2(a — b)(6, + Ops1)

and

n+2 2
( [ vem dr) = @b+ (Va — D)6y + ,e1))?
= 4b + 4Vb(\a — NVb) (6 + Gpi1) + (Va — V)2 (6, + 6n11)%.

If we denote

A, =2Jn+2p(7)d7'— UMMCh)Q, n =0,

n n
then the straightforward calculation shows

Ay =2(a =)0 4 0ns1) — (AVB(Va = VB) (00 + Ons1) + (Va — VD)2 (6 + 60i1)?)
= (Va—Vb)2(2 = 6, — 6p11) (60 + Ops1).

Then, the string satisfies conditions in the left-hand side of (1.25) if and only if either a = b or

o0

n=0
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Next, if either

|E| = Z|E|_i<5 <o (3.37)
or
|EC|—Z|F|_Z 1-14,) <o, (3.38)
then (3.36) converges. Conversely, the convergencenofothe series (3.36) implies that

Since 0y, € [0,1] for each n, one can not have ¢; + d;11 < € and 2 — (0 + dx+1) < € simultaneously if
k-l =1and e < % Hence, (3.39) gives that either lim,, ., §, = 0 or lim,,—,,(1 — d,,) = 0. In the
former case, (3.36) is equivalent to (3.37) and in the latter case, it is equivalent to (3.38). O

Remark 3.18. Taking b = 0 in (3.35), one gets a string made of one type of material which can be
distributed with “gaps” over R, . The application of Theorem 1.10 with n, = n,n =20,1,... yields the
similar result. Namely, o € Sz(R) if and only if |{&: p(§) = 0}| < 00. Indeed, in that case condition
(1.25) reads (recall that &, = Lys(n) and F = {£: p(§) =0})

f (2va(nrz = &) —4) <0 (3.40)

Since ¢
n— \/&L xde = Na(én — |[0,] A FY),

one has \/a|[0,&,] N F| = \Ja&,—n so the sum in (3.40) converges if and only if >,/ _ |[€n, Enta2] N F| <
00. Since lim, 4 &, = +00, the last condition is equivalent to |F| < co. Notice that if |F| = o0 in the
last example, adding singular measure mg can not place o in Sz(R.). Indeed, inserting ms does not
change the grid {£,} but it increases M (&,42) — M (&) in (1.25) making the total sum diverge.

4. DIRAC OPERATORS

We start this section by recalling the definition of the one-dimensional Dirac operator. Then, we
make the connection to canonical systems and explain how the results from the second section can be
applied to prove the theorems stated in Section 1.2.

4.1. Dirac operators. Recall that the one-dimensional Dirac operator D¢ on R is defined by
Dg: Z— JZ' +QZ, J=073), Q= (0. (4.1)
Here the functions ¢i,¢o are real and belong to Ll (R;). The “free” Dirac operator with potential
@ = 0 will be denoted by ©,. The domain of D, is given by
Z is locally absolutely continuous on R,
dom®g = <{ Ze L*(C?): JZ' +QZ e L*(C?),
(Z(0),(}))e2 = 0.
With this domain, the operator D, is a densely defined self-adjoint operator on L?(C?), see Section 8.6
in [64] or [12] for recent developments. Let ¥ denote the generalized eigenvector of D¢:
JU'(7,2) + QU(r, 2) = 2¥(7,2), ¥(0,2) =(}), 720, zeC, (4.2)

where the derivative is taken with respect to 7. Then, there exists a unique Borel measure pup on R
such that the generalized Fourier transform

Fo: Z— % R+<Z(T),\I/(T, Z)ce dr, z€C, (4.3)

densely defined on functions with compact support, can be extended to a unitary operator from L?(C?)
to L?(up). That measure is called the main spectral measure of Dg.
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One can see that D and Dy, are the same operators acting on the same Hilbert space L?(C?)
and giving rise to identical generalized eigenvectors, generalized Fourier transforms, and main spectral
measures (cf. (4.2), (4.3) and (2.5), (2.7)).

4.2. The reduction of Dirac operator to a canonical system and the Szegé condition. The
following result is well-known, see, e.g., Section 2.4 in [9].

Lemma 4.1. Let Q € L{ (Ry) be as in (4.1), and let the matriz-valued function Ny be the solution
of the Cauchy problem

JNy(7) + Q(7)No(7) =0, 7=0, No(0)=(57)- (4.4)

Denote by Dy the self-adjoint operator on H corresponding to the canonical system generated by the
Hamiltonian H = N§No. Then, the main spectral measures of the operators D¢ : L*(C?) — L*(C?)
and Dy : H — H coincide. In particular, the operators ®qg and Dy are unitary equivalent and the
unitary equivalence is given by the operator V: X — NoX, which is a unitary map from H to L?(C?).
Moreover, we have Wy = FoV'.

An important property of the locally absolutely continuous Hamiltonian # = NJ Ny in the previous
lemma is that it has unit determinant everywhere on R, . Indeed, the Wronskian in problem (4.4) is
constant so det No(7) = det Ny(0) = 1. Hence,

detH(T) = 17 TH(T) =T, LH(U) =n T,nE R-‘ra (45)

for the corresponding functions T3 and Ly introduced in (2.18). The identity det No(7) = 1 has other
important implications. First, in the polar decomposition Ny = O|Ny| the matrix |Ny| satisfies

INo| = /NFNo = H2, det|No| = detH? = (detH)? =1

and the rotation matrix O is defined uniquely and is locally absolutely continuous. Second, the space
H coincides with L?(H) defined in (2.2). Moreover, if function X is compactly supported, then VX
is also compactly supported and their supports coincide.

The spectral measures pp of the Dirac operators define a proper subset of all Poisson-finite measures
on the real line that generate the canonical systems as discussed in the second section. Some of them
belong to the Szegd class. Thanks to the characterization (2.27), we have the following proposition
(see Corollary 1.4 in [7]):

Proposition 4.2. The condition NJ Ny € Sz(CS) is necessary and sufficient for the spectral measure
up of the Dirac operator to satisfy up € Sz(R).

Checking that NJ Ny € Sz(CS) is not always easy. However, in many cases, the application of our
proposition is straightforward.

Proposition 4.3. Suppose that the potential Q with entries in Li (R ) has the form

=5 %) wa-()

Then, for the spectral measure up of the corresponding Dirac operator ®g we have

| ) dr | " ol 4) <o, (A7)

n n

pup € Sz(R) <= NFNpe Sz(CS) Z <

nz=0

where h(r) = 2% 1) ds 7 >

Proof. The first equivalence has already been discussed and we need to show the second one. For
the potentials @ of the form (4.6), define g(7) = Sg q(s)ds. Then, solving the problem (4.4) to find
Ny is easy. That gives

%)= (i) empy) o 2= (57 ).
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respectively. Therefore, for H = NJ Ny, we have
_ (cosh2g(r) sinh2g(7) e 0

H(r) = (sinh 2¢g(1) cosh2g(T) or H(r) = 0 e29(r) )
In both cases det H = 1 on R, and the straightforward calculation yields

n+2 n+2 n+2 n+2 n+2 1

detj H(r)dr = J e29(7) dTJ e 2 dr = f h(T) de ——dr.

n n BT

So, H € Sz(CS) if and only if (4.7) holds. The result follows. O

n n n

Remark 4.4. Propositions /.2 and 4.3 imply Theorem 1.5.

4.3. The evolution for Dirac equation and Mgller wave (modified wave) operators. The
self-adjoint operator ©¢ defines a unitary evolution e®e, Lemma 4.1 above gives the connection
between e*®2 and evolution ¢®P* for canonical systems.

Lemma 4.5. If H = NNy, then '@ = VelPnV =1 for all t € R.

For every Z in L*(C?) = L*(H,) we again define the front as
fr[Z] = inf{r = 0: Z(s) = 0 for almost every s > 7}.

Notice that all elements of Ny are real-valued so Z has real components if and only if X = V=7 has
real components.

Proposition 4.6. For every real compactly supported Z € L*(C?) and every t € R, we have
fe[e"®2Z] = Jt| + [ Z].

Proof. That follows from Theorem 2.1 and formula (4.5). O

Remark 4.7. For an arbitrary compactly supported Z € L?(C?), we can write each of its components
as a sum of real and imaginary parts. Then, Proposition /.6 gives ft[e?®2Z] < |t| + ft[Z] for all
teR.

We will also need the following proposition.

Proposition 4.8. Let u be the spectral measure of the Dirac operator ©¢. Suppose p ¢ Sz(R). Then,
for every Z € L?(C?), we have

: it _
Jim (e Z e ez 1oy -pfete)) =0

for every b > 0.

Proof. That follows from Corollary 2.14 and formula (4.5). O
Proof of Theorem 1.1. Take a non-zero function Y € L?(C?). Set
Zy.y = Wi(Dg,D0,7)Y = lim e PN "0y,

t—+c

and notice that || Zy, 1 ||r2(c2) = |V z2(c2y > 0. That yields
lim ||M, ™Y — e Zy | |12(c2) = 0. (4.8)

t—o+oC

Formula (2.75) for Y = (XY}) can be recast as
2

a0, (Y1) 1 [ Yi(r —t) +Yi(r +1) 1 (i(Ya(r —t) = Ya(7 +1)) .
e ( ) (—i(Yl(T—t) —Y1(T+t))> + 5 < Ya(r — ) + Ya(r + 1) ), eR,, (4.9

where Y} € L?(R ) is extended to the whole real line R as an even function and Y3 is extended as odd
function. That gives

Yo 2

lim inf [[e™2°Y | 2 c2, b, 1447) > 0
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for large enough b. From (4.8), one gets liminf; ,, . [P Zy ll2 e [t=b,t+5)) > 0. Now we have
u € Sz(R) by Proposition 4.8. The case when ¢ — —oo can be handled similarly. O

Remark 4.9. Notice that we have used the existence of lim,_, , ., e "2 Mve”@"Y for just one nonzero
element Y € L?(C2) in the proof of Theorem 1.1.

Proof of Theorem 1.2. Assume that the main spectral measure pp of D¢ is in the Szegd class. By
Lemma 4.1, up coincides with the spectral measure of the Hamiltonian H = N Ny generated by the
solution of equation JN{ +QNy = 0, No(0) = ({ 9). Taking into account (4.5), Theorem 2.27 tells us
that for some function vo: R, — T and for every Y € L?(Hy) = L?(C?), the limits

Jim e —UDH L H T3P0, Jim e HPH ML H 3¢1PH Y
—+0

exist in the norm of L?(#). Since Dy, = Dy, that implies existence of the limit

lim Ve “PHM., H™ 3¢Proy = lim e PRV M, H 2P0y

t—+0 o+
in L2(C2). Note that (No(7)H ™2 (7))*(No(r)H "2 (7)) is the identity matrix for each 7 € R . Since
det(No(1)H 2(r)) =1, TeR,,

it follows that the operator Y — VH~2Y on L2(C?) coincides with the multiplication operator by a
2 x 2 matrix-valued function of the form

Sty = < cos ¢(7) sincp(r)) 7 o(7) € [0,27).

—sinp(7) cosp(T)

5, ( 1'> _ ( cos p —ising ) g ( 1'>.
—i —sing —icos @ —i

Formula (4.9) shows that when ¢ — +o0, for every Y € L?(C?) we have

o 1) ()P0

where o(1) is with respect to L? ((Cz)fnorm Therefore,

eTIPQY M, HTEMPY = TN i eP0Y 4 0(1), ¢ — 40

We have

and the limit
Wi(Dg,D0,7)Y = lim e #PQM "0y

t—+oC
exists in L2(C?) for all Y € L?(C?) if we take v = 7pe~". The existence of the wave operator
Wi (®q,Do,7) follows. Arguing similarly, one can prove the existence of W_(Dg, Dy, y) with the
modification to the dynamics given by M. Moreover, the proof shows that

Ran W4 (D, Do,7) = V(Ran W(Dy, Dy, 7)) = Fo Wi(Hae(Dn)) = Fo (L (ptae)) = Hac(Dq),

where pac = wdx is the absolutely continuous part of the measure p and 4 = pp. In other words,
the wave operators W (D¢, Dg,7) are complete. It is also clear from the proof that our construction

gives v = 1 in the case where @ is anti-diagonal (¢; = 0). O
Proof of Theorem 1.5. Given Lemma 4.5, Theorem 1.5 is a direct consequence of Theorem 2.29
and Theorem 2.31. 0
Proof of Theorem 1.6. Given Lemma 4.5, Theorem 1.6 follows from Theorem 2.29. 0

4.4. Wiegner-von Neumann potentials. In this subsection, we prove Theorem 1.4. Let us recall
its statement for convenience.

Theorem 4.10. Suppose that a potential Qo 5 with entries in Ll (R,) has the form

q O 0 g¢q sin 7¢
Q — @) = = — > .
a,B (O q> ) or a,B <q 0> ) q(T) 7_5 ) T =2 70, (4 10)
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for some a, 5 € R and 79 > 0. Then,
peSz(R) << Wi(Dg,D0,7) exist << (a,8)€ A v v As, (4.11)

where
1
Al:{(o‘7ﬂ): 05<07 B—Oé>§}7
1
A2 = {(O‘>ﬁ): Q€ (071)7 5 > 5}7
3
A3:{(a76): 05217 OZ+5>§}
Remark 4.11. Note that the set A1 U Ay U A3 in Theorem 4.10 is open. It is shown in Figure 1.

A sequence of real numbers {z,,} is uniformly distributed mod 1 if for every interval [a, b] € [0, 1]
we have

<k<g<n:
lim H{l<k<n: zrmodlEe [a,b]}
n—x0 n
where x mod 1 denotes the fractional part of . We will use the following result.

=b—a,

Theorem (Theorem 3.5 in [58], p. 29). Let k be a positive integer, and let f be a function defined
for z = 1, which is k-times differentiable for x > xo. If f*) tends monotonically to zero as x — o0
and lim,_,. z|f*) (z)| = o0, then the sequence {f(n)}n=o is uniformly distributed mod 1.

In particular, given « € (0,1), the sequence {%}n?@ is uniformly distributed mod 1. Indeed, one
can use the previous theorem with f = % Let us notice that {%}790 is uniformly distributed mod 1
for any o > 0, see [58] for more details.

We also need Korey’s estimate from [52]. Recall that we use notation {f); = ﬁ §, f(x)de.

Theorem. Suppose I = [a,b] and measurable function f: I — R satisfies
(hr-¢ehHhr=1+4e  eeo.1]. (4.12)
Then,
(f =<{Hrhr < eve, (4.13)

for a universal constant c.

Proof. In [52], formula (3.7), Korey shows that

efyr-exp (—=(fHr) =1+¢, e e[0,1],
implies {|f — m;(f)|> < C+/e’, where m;(f) denotes a median of f over I. By Jensen’s inequality,
exp (—(f>r) < {e~ 7). Therefore, (4.12) implies
{f =mi(f)) < Cv/e.
Now, for every ¢’ € R, we have
Qf =<1 <{f = Pr+le =1l < K| f = Pr
Taking ¢’ = my(f) finishes our proof. O
Given real-valued ¢ € L (R..), denote gn(7) = 2§ q(s)ds and G = gn — {gn)n.n+2]-
Proposition 4.12. If lim, 1« [|9n]2#[n,n+2] = 0, then
n+2 nt2 2

go <L hn(T) dT L ) dr — 4> < = go fn g (T)dr < 400, (4.14)

where hy (1) = eV 7 > n.

Remark 4.13. Notice that
n+2 n+2

J ﬁfl dr < J gTQL dr
T

) n

by Cauchy-Schwarz inequality. Hence, to establish convergence of the sum in the left-hand side of the
proposition, it is enough to check that |gnlr2[n nr2] € 2(N).
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Proof. Notice that
<hn>[n,n+2] ’ <h;1>[n,n+2] = <e§n>[n,n+2] : <€_§">[n,n+2]-

Then, since limy, o [|gn | L% [n,n+2] = 0, We use Taylor expansion to get

nt2 n+2 1t e
J, eIn dr :2+J §nd7'—|— if gidT-i‘O <J, |§n|3d7') 3

n+2 N n+2 1n+2 e
[Femirma [ Taare [Taarso ([ arer),

as n — +oo. It follows that

n+2 n+2 1 n+2 n+2
J ho(7) de de =4+2f f]TQL(T)dT—i-O(I[ Z]’?L(T) d’l‘) ,
n n n T n n

which proves the required claim. O

In the proof below, many arguments will be based on the following formulas. For an integer n > 1,
a,beR,a #0, and d = (a+b—1)/a, we have
o * cosy
— df dy
e e yatl

* sinT? = sin cos
af Z— dr = f dy dy = — dy
n T ne Yy Yy

T . z z?

cosy siny siny

= — —d(d+1) f dy
. y | o ydt2
and
¥ cosT® > cosy s1ny siny
af 7 d7'=f T dy = df de (4.15)
n T ne Y

. x
siny
yd
A simple iteration implies the bounds for the remainders

o siny
[,
ne Y

cosy|”
Y+

—d(d +1) J ;?;g dy.

n

ne ne

—a(d+2) —a{d+2
) +z ( ), xr > n.
ne Y

< n—o{d+2) + p—old+2) U” Cos Yy dy

Proof of Theorem 4.10. Recall Proposition 4.3, Theorems 1.1 and 1.2. To prove our result, we
only need to establish the range of parameters o and g for which the condition

D (ﬁj+2h%(r)drjf+2}MiT)dT——4) < (4.16)

n=0 4

is satisfied, where h,, is defined as in Proposition 4.12. For an integer n > max(1l,7) and v =
(o + B —1)/cr, we have

* ginT¢ * Siny cosy @
@ 5 dr = dy = —
n T ne y'Y y’y

no

. Foe
siny
y'erl

* giny
—%7+Dfayw2@-
n

no

Let us consider several cases.

Case a > 1, a + 8 > 1. In this case v > 0 and we are in the setting of Proposition 4.12. Note that

1 2
2 cos ™\ 2
— . (4.1
>[n,n+2] < Y >[n,n+2]> ( 7)

** siny
—7w+i[[ ez ) =

no

siny |*
yr+t

sup
ze[n,n+2]

-

ne
Thus, we only need to control the sum of dispersions

a 2
5= = D3¢

cosz®
TxY
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In what follows, we will see that the second term in the parenthesis is negligible. Set n = ay + a — 1.
We have n = v > 0. We apply (4.15) in which d = n/a to get
J"H cos(z) d 1 (sin(n+2)* sinn®
= —
(n+2)n n’

il «@

) +O(n~)

and n="=% € £*(N). So, the question reduces to the convergence of the series

Z 902 J"H cosjax‘l d — sin(n +2)*  sinn® 2 ‘ (4.18)
x2ey (n+2)n nn

n=1 n

n

Notice first that « > 1, + § > % implies 2ay > 1 and 2n > 1. We get convergence in that situation
and (4.16) holds.

We claim that for a > 1,1 < a+ 8 < %, the series diverges and (4.16) does not hold. Indeed, in

that case, one has
n+2 2 ,.x
cos
f % dr ~n27 n 2 =0o(n 27, n-—ow
xey

n
and we get the claim because 2ay < 1.

It is only left to consider « =1 and 0 < 8 < % In that case, v = g, and

CcCosT < COS T

> = n"P(cosz — {cos T)[nnt2]) T O(n="71h.
[n,n+2] 7

xY xY

Since {(cos & — {cOS T n+2])Dnnt2) ~ 1 and B < 3, the series (4.17) diverges.
To summarize, if « > 1 and a + 8 > 1, then (4.16) holds if and ounly if o + 3 > %

Case a > 1, a+ 3 < 1. We are going to show that (4.16) fails for this range of parameters. Assume
that (4.16) holds where, again, h,, = exp (2§’ S‘IT‘—;& dr). Then, estimate (4.13) gives

(f’n-‘rQ 2
’I’LZl n

€T e o 1 n+2 py o3 @
J SH;; dr — 3 L L SH;; ds dy‘ dx) < 0. (4.19)
Recall that v = (o + 8 —1)/a < 0 and

n

o4

T ¢in 7% o _ z® v cosy
ozf e d7'=fa y Tsinydy = —y Vcosy|na—7J‘a Es dy
n n n

= n" cosn® — ™ cos £ + O(n~ L),

Therefore, we have

1 n+2 Y o « 1
*J aJ e dsdy =n=“cosn® — =
2 J, o SP 2

n+2
J Yy~ cosy® dy + O(n_o‘('”l)),

(n+2)°

=n"* cosn® — n_“’_Hé cosndn + O(n_“(7+1)),

2a ) o
=n"% cosn® + O(n~ D+

Hence, uniformly in z € [n,n + 2],
¥ ginT® R
a f a1 J f

n+2
J x| cosz®| dx + O(n_o‘('YH)H) >n e (J

n

3 (0%
sm; ds dy‘ = 27| cos 2| + O(n— I+,
s

Since
n+2

| cos z%| dx + O(n_o‘H))
and
n+2
ian, |cosz®|de = C >0 (4.20)
for every o > 1, the terms in series (4.19) can be estimated from below by cn=27® > ¢ > 0 for large

n. So, (4.16) does not holds if « > 1 and o + 8 < 1.
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Case a € (0,1), 8 < 1 . We are going to show that (4.16) fails for this range of parameters. Assume
that (4.16) holds and h = exp (27 S27° d7). Then, the estimate (4.13) gives

2 ([ |

T sin T 1 ("2 (Y sins®
f ; dT—ff f —dsdy d:z:) < .
e} n T 2 ), n S

Applying the mean-value theorem, we see that
2

n+2 T o3 @ Tn o [e%
ST Sin s
— ee}
ni 1 (L L e dr L G ds‘ d:v) <

for some points ,, € [n,n + 2]. That yields
2

n+2 x «@
Sin T
Z (f J 3 dT‘ dx) < o0,
nz1 n zn T

where we interpret {; f as —S [ if b> a. For each n > 0, one can choose an interval A, € [n,n + 2]
of length I such that dist(z,,A,) > 1. Then, again by the mean-value theorem, there exist points

1
Tn €A, such that
T §in ¢
= 2 (J J dr
n=1l Ay, [29 7_

. 2
Tn gin 7 T sinT® 2 n+2
dr 3 dr|dx | < Z
Ty T8 zn T n=1 n
J’I" dr
Ty TB

Since sin7® —sinn® = O(n® 1) for 7 € [n,n + 2], we have
Tn gin T
J 3 dr
Tn T
Given that g < %, we have I,, ~ n~? because x,, and ¥, are at least i—distance apart. The sequence
{in"‘} is uniformly distributed mod 1. Therefore, there is Ny so that for every N > Ny, we will have
a bound

2

1
dac) < 0.

En>1

(4.21)

> |sinn®| - I, — O(n*'1,), I, =

|sinn®| > 0.01
for at least £ integer numbers n € [N,2N]. Therefore, since a € (0, 1),

2N )
Z ‘|sinna| I, —0(n°7I,)| 2 N'=2,

Since 8 < 3, limy o, N1727 is either equal to 1 or is infinite and we have a contradiction with (4.21).
Therefore, (4 16) falls

Case a € (0,1), B > 1. Since [ is positive, we are in the setting of Proposition 4.12. We have

By e (05 -

"2 dr 1
QZG Tﬁ> do <8 ) —5 < 0.

n=1

Hence, (4.16) is true for this range of parameters by Remark 4.13.

Case a <0, 8 —a> % For this range of parameters, we have

2
1
ZJ’ (J sin 7% dT) deﬂZm

nx=l1 =1

due to the fact that siny is comparable to y when y € [0,1]. Using Remark 4.13, we conclude that
(4.16) holds if 3 — a > 1.
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Case a <0, 83— a < % We claim that (4.16) fails in that situation. Arguing as in the case when
a€(0,1) and B < 3, we assume that (4.16) is true and obtain
n+2 x . o 2
3 (J J ST dT‘ dx) <, (4.22)
n=1 n Tn Tﬁ

for some points z,, € [n,n + 2]. For each n > 0, one can choose an interval A,, € [n,n + 2] of length
1 such that dist(z,,A,) > ;. Then, by the mean-value theorem, we have

Tn gin 7 T sinT® e o
J 7ﬁd7'=f f 5 dexSJ J 5 dr
ZTn T An . T . T

Tn n Tn
for some points Z,, € A,,. Since sin7® > 27% /7 for 7 € [n,n + 2] and n > 1, one gets

Tnogin 7
dr
oz

Tn

dx,

1
4

T
n*h# < J o P dr <
xT

Ln

) ’I’LZl,

which leads to a contradiction with (4.22). O

5. APPENDIX

In this Appendix, we collect a few auxiliary results and prove some statements made in the main
text.

5.1. Proof of Proposition 2.11. The modification of the proofs in [7] yields the statement. Alter-
natively, one can argue as follows. First, we claim that (2.27) implies (2.28) for o, = An with any
A > 0. Indeed, if my and py denote Titchmarsh-Weyl function and spectral measure, respectively, of
canonical system with Hamiltonian H (A7), then my(z) = m1(A~'2) as follows from (1-5) in |7]. Now,
it is enough to observe that py € Sz(R) <= p1 € Sz(R).

Second, we claim that, given intervals I— < I,|I| = 1, and € € (0,1], the following implication
holds
detf H(T)dr —1=c=det | H(r)dr —|I|? S e, (5.1)
I I-

for every non-negative Hamiltonian H that satisfies det H = 1 a.e. on I. Indeed, denote A = SI_ Hdr
and B = {,, Hdr where I = I~ U I". Then, we get (see, e.g., (A-1) in [7]):

det A= |I"|%, detB>|IT)?

and
det(A+B)=1+e.

Minkowski inequality for determinants yields

det(A + B) = (Vdet A + v/det B)?%.
Denoting v/det A = x and /det B = y, we get
r+y<(+9)r, |[C[+|IT|=1, [T <z, |[T|<y

That implies (draw the corresponding domains on the plane), that |I~| < « < |I7| + Ce. Taking the
square of the last bound yields the estimate on the right-hand side of (5.1).

Now, if det H = 1 a.e., the statement in (2.28) holds by combining these two claims. Indeed, suppose
u € Sz(R;) and we are given sequence {o,}. Then, there is A such that every interval [a,, an42] is
inside one of the intervals [Al, A(I + 2)] or [A(I — 1), A(l + 1)] for some [. Since the sum in (2.28)
converges for {a;} = {\l}, we can apply (5.1) (with dilated and translated interval I) to get condition
in the left-hand side of (2.28) satisfied for {a;,}. Conversely, if the sum in (2.28) converges for some
{a,}, then there is suitable A such that each interval [An, A(n + 2)] is covered by either [ay, qjq2]
or [ay—1,a41] for some [. Thus, applying (5.1) again, we get that the sum in (2.28) converges with
{an} = {\n} and p € Sz(R,). The case of general H follows by making the change of variables in 7
and using an approximation argument. g
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5.2. Free evolution for canonical systems and Dirac operators. Recall that ®, = Dy,. We
now show that the free evolution for these operators is, in fact, equivalent to the shift on the real line.
To this end, we work in terms of Dirac operator and perform two elementary unitary transformations

Dy=—-2""00Z= ("4 o), Z= % (150)-

Here, 0, stands for the differentiation operator. Operator ’}50, taken with suitable boundary condition
at 0: f1(0) = if2(0), is self-adjoint on the same Hilbert space (;ﬁ;) € L2(C?). If one further maps

fi(x), x>0,
(£) = a0 =4°
ifo(—x), x <0,
then, D¢ becomes unitary equivalent to —id, on L?(R) with e*®>g = g(z +t), which is the standard
shift operator.
5.3. A formula for exponential type.

Lemma 5.1. If entire function f has bounded type both in C, and C_, then its exponential type can
be computed by the formula

typef _ limsup logmax(|f(iy)|, |f(_ly)|) ) (52)
Y=+ Yy

Proof. Let us apply Theorem 2 in Lecture 16 of [63]. It says that for every entire function f of

bounded type in C; and C_ we have
log|f(2)] = o4y +o(z]), y=0
log |f(2)] = oy +o(lz]),  y<0,

)

outside of a set of disks {z € C: |z —a;| < r;} of finite view (the latter means that ‘Z—J‘ < 00). Here
J
o+ € Rand y = Imz. Take ¢ > 0 and denote 0 = max(c,,—c_). By the maximum principle for

subharmonic functions, we have

log |f(2)| < (o +€)ly| + o(|2])

everywhere in C as z — o0. Therefore, we have type f < 0. On the other hand, the set of disks of
finite view cannot fill any half-axis, hence

_ log | f(iy)| e log | f(iy)]
o4 = limsup —————— —o_ = limsup ————,
y—>+D Y Yy—>—b |yl

which proves the statement. O

5.4. Rotation matrices. The following result in the linear algebra has been used in the main text.

Lemma 5.2. For every real 2 x 2 matriz A with non-negative determinant, there is a rotation matriz

X, of the form
cosp  sinep
Y, = 2
¢ (— sin ¢ cosgo) ’ v € [0,2m),

such that ¥,A > 0.

Proof. This is immediate from the proof of the polar decomposition given in [33], p. 276. 0

5.5. Robinson’s theorem. In the main text, we used the following variation of a result by Robinson
[73], which is based on ideas dating back to Ruelle’s work [75].

Lemma 5.3. Suppose H is a Hilbert space, D is a densely defined self-adjoint operator, and Pa
denotes the orthogonal projector for D relative to a set A € R. If A is a bounded operator on H and
AP_j a] 18 compact for some A = 0, then

N
Plim AP Ry bl = 3 1APE, Pa bl
J



for

SZEGO CONDITION, SCATTERING, ... 59

every ¢ € H, where Pg, denotes the orthogonal projection on the eigenspace that corresponds to

eigenvalue E; and the sum is over all eigenvalues {E;} of D.

Proof. The proof is an application of Theorem 2 in [73] to operator DP[_, 5] with the perturbation
taken as AP[_j z] where both DP_j 5) and AP[_, aj are considered as operators acting on H. [
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