THE SOBOLEV NORMS AND LOCALIZATION ON THE FOURIER SIDE FOR
SOLUTIONS TO SOME EVOLUTION EQUATIONS

SERGEY A. DENISOV
ABSTRACT. In this paper, some evolution equations with rough time-dependent potential are studied in the

case of one-dimensional torus. We show that the solution has higher regularity for the generic values of the
coupling parameter. We also control the localization of these solutions on the Fourier side.

1. INTRODUCTION

Let P(x) be an algebraic polynomial with real-valued time-dependent coefficients

Plz) = Z pial,  pi(t) € L, (R)

One can consider the following evolution equation

iug = (kP(i0;) + V)u, wu(z,0,k)=1, ze€T, keR (1)
where the potential V'(x,t) satisfies
IV (@, )| zo(r) € Lige(RT) (2)

Since p; € R, the unperturbed evolution (i.e. when V' = 0) defines a unitary group in L*(T).
The assumption (2) allows one to iterate the Duhamel formula (see [10]) and show that the
resulting series converges in L?*(T). That implies the L*(T) norm of the solution is bounded
for any t however it might grow as t — oo. One question we want to address in this paper
is what happens to the Sobolev norms? Are they bounded for ¢ > 0 and, if so, how fast can
they grow as t — oo?

The case of real-valued V' is a very special one and we will mostly focus on that situation.
Indeed, if V' € R, then [ju(x,t,k)|[z2ry = 1 for all . Let f, denote the Fourier transform
of f(z) in the variable x € T. For real-valued V', we will study the localization of solution
on the Fourier side and its asymptotical behavior for large time. In particular, the following
question is quite natural: if initially @, (0, k) = &y, then what can be said about the size of

Y [t k)P

n[>p(t)

for various u(t)? If this sum is small, then a nontrivial 2 norm of @ should be supported
on the first u(t) frequencies because the total £2 norm is conserved and is equal to 1. This
problem is related to the estimates on the Sobolev norms but is not equivalent to it. The
results we obtain in this paper answer some of these questions. What makes our setting
different from the earlier extensive work on the subject of large-time behavior of evolution

equations (see, e.g., [11] and references there) is that we want to address these problems not
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for a particular £ but for its “generic” value with respect to the Lebesgue measure. The
current paper is a continuation of [3] where the analogous questions were studied mostly by
the complex analysis technique. In the proofs that follow, we develop more robust pertur-
bation theory. For example, we can handle equations in which the parameter k£ enters in a
more complicated way, e.g. in (1), instead of k we can write A(k) where A is smooth but not
necessarily analytic. The main motivation to study these problems comes from the scattering
theory of multidimensional Schrodinger operator with slowly decaying potential as explained
in [4]. For the case of smooth V' the nontrivial upper estimates for the growth of Sobolev
norms were obtained in [2] where the Schrédinger evolution was handled and the arithmetic
structure was used to gain extra regularity of solution. In the second section, the Schrodinger
evolution with real V' is considered. The third section also handles Schrodinger evolution
but with general V. In the last section, an asymptotical result for the non-degenerate P, i.e.
when p; # 0, is obtained. The Appendix contains two auxiliary lemmas.

For simplicity, we will study only the case of quadratic polynomials P(z), i.e., d = 2,
however the methods can be easily adjusted to other symbols. The symbol || f|| will refer
to the L*(T) norm in case of a function f and [|O]| will refer to the operator norm if O
is an operator. We will denote the Hilbert-Schmidt norm of the operator O by ||O|ls,. If
p € [1, 00|, the symbol p’ denotes the conjugate exponent, i.e.

.

p D
For real «, [a] stands for the integer part, f * g denotes the convolution of f and g, x4 is
the characteristic function of the set A. For the norms in Sobolev spaces we have

1f Fraemy = D+ 10DVl 1 iy = D1+ InD)** | ful?
n n#0
For two operators A and B, the commutator [A, B] = AB — BA.

2. THE SCHRODINGER EVOLUTION WITH REAL-VALUED V

The important special case of (1) is the Schrodinger evolution which corresponds to P(z) =
pax?®. We first assume that ps = 1 so (1) takes the form

iug = (kA +V)u, u(z,0)=1, 2€T, keR, A=075, (3)
Let
vi(t) = [V (2, t)| oo ()
and w(t) € C[0,T] be arbitrary positive function. Take

Dy(T) :/OTU’f(T) (1+/0TU1(7'1)d7'1) dr
Dy(T) = ( /0 TU‘f(T)w<T)dT) ( /0 2 /0 Twl(mdmh)

Theorem 2.1. Suppose V is real-valued and o < 1/2. Then

and

/Sup ||u(:c,7,k:)||2-a(T)dk§Dl(T)—i—Dg(T), VT >0
R

T7€[0,7T
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In particular, if V' is bounded on T x R then for Lebesgue a.e. k the solution is H*
regular for any ¢ and the norm does not grow faster than ¢'5*¢ with any fixed e > 0. We
expect much stronger result to hold and state it as an

Open problem. Prove that

T
[ s e Wtk 1+ [ [ Vi ndadr, T >0
R 7€[0,T] 0 T

We will use the following notation
‘7 — e—ikAtveikAt (4)

Take any interval S C [0,7] and define the operator Vs(k) by its matrix representation on
the Fourier side

—

Vs(k)(m,n) = / Rm> =)y (r)dr, m,n € Z
S

Let Py be a projection to the first N Fourier modes

Py f(n) = Xpuin - f() (5)
and Qn = I — Py.
Lemma 2.1. We have
T
/Sup||PNVs(k:)QN||§2dk§N_llogN/ /VQ(x,t)dxdt (6)
R S o Jr
Proof. For any S,
Z Z / zk: 2_n? tdt Z Z |Qm n m _n2))|2

Im|<N |n|>N [n|<N |m|>N

/ Vl(t)e““tdt’
S

By Carleson’s theorem on maximal functions [6], we have

o = llallz < 1Vl
The Lh.s. in (6) is bounded by T} + T, where

Z Z _m2

where

q(k) = sup
S

\m\<Nn>N
and
Vinn
=D 2
Im|<N n<—N
Since T} = Tg, we only estimate T1 If a =n—m,3=m+n, then
a+2N 2 2N+« |2N+Oz‘
T < S < N— B e et B
X EY eyt S vy St
a>2N =a—2N =1 B 2N —«

(7)
and that finishes the proof. O



Remark. The logarithmic factor in the estimate above is not present when the Laplacian
A is restricted to the Hardy space H?(T). It is also negligible when the average in N is
taken. Indeed, we have

oo 3N o 00

v 2N+ 122 + o

2 Jog g———dr < 2
ZZQ SN —a[+1 ™ Z / |2x_a|+1x~zva
N=1 a=N /3 a=1

so the second term in (7), rather than the first one, is in ¢

Now, we are ready to prove theorem 2.1. The technique will resemble the one used in [7]
for the matrices 2 x 2.

Proof. (of theorem 2.1) Consider ¢,, = P,u, 1, = Q,u. Then,

and so .
]2 = 21m / (QuV b, i) dr (8)
B _ 0
If ¢, = e*2tgp,, and 1), = e*2h),,, then
0 = (QuV Q) Un + (QuV P, 1010n = (PaV P + (PaV Q) (9)

and integration by parts in (8) yields
ln(t, )I” S D+ I

where . ¢
= [ 4(@uPa ) . = [ (@ufle )
0 0
For I, we have
t
< / 1@V Pall - 1V -

due to (9) and ||¢,|| < 1, ||vn|| < 1.
For I, we substitute (9) to get

t
L< / 1QuVr Pall - IV - [l +
0

e [ (/ t QU ()Pt ) 3o, (QuT (1) P

For the last term, we can use the following identity

2Re [(Z/tr). 2t = |2l 2R [ (2000, 2 )(m)ar

Thus, the second term in (10) is bounded by

(10)

t
ar(t, k) = | QuVios Poll? + / 1Qu Vo P21V (1) dr
If we denote

t o~
ao(t k) = /0 1@V Ball - [Vl
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and z(k) = max,cjo,r) ||¥n]| = ||¢n(t(k), k)|, then the quadratic inequality
22 < asz +

gives
2 S as +V/ay (11)
In other words,

sup y  [a;(r, k)P S ay(t(k), k) + au(t(k), k) S

T7€[0,T jl>n
T T _
( / w(T)IIV(~,T)|I%oo<T)dT) ( [ w) s ||@nvspn||2dr> ar(t(k). B)
0 0 SQ[T,T]

where we applied Cauchy-Schwarz. By lemma 2.1, we have

logn
u;(1,k)|Pdk < D+ D
[ s S (s ppdr s 4D+ D)

T7€[0,T jl>n

where Dj(9) were introduced above. Multiply the last estimate by [n|™¢ and sum in n # 0 to
get theorem 2.1. 0

Assume that o < 1/2,7 > 3/4 is fixed and vy (t) < (1 +¢)77. Take w(t) = (1 + )2
Then, we have the following striking estimate

sup ||ul| ge(ry < 00
>0
for a.e. k. This is a remarkable fact as we do not assume any smoothness of V' at all.

In the rest of this section, we will consider the problem which is directly related to the
multidimensional scattering [4]. We again take P(x) = coz? but now the coefficient decays
int )

)= T
The difficult problem in this area is to show that the solution has localization u(t) <t for
a.e. k as longs as potentials V' satisfies some decay condition, e.g.

V(z,t) < C(1+1)712 €€ (0,1/2)

In fact, this is not known even for € close to 1/2.

Below we will give a partial solution to this problem in the case when V' oscillates. This will
improve on the earlier result from [3]. The following proof is general enough to handle initial
data of the form u(x,0,k) = €% for any j and thus it yields that the whole monodromy
matrix for (1) is “almost diagonal”.

Theorem 2.2. Suppose that V' can be written as V = Q.(x,t)/(t+ 1) where Q is real valued
and

1@l zoe(my < At + 177 |Qullpoe(ry < AE+1)177, v >3/4 (12)
Let Vip =V - x4s1 and ur be corresponding solution. Then, we have

/@mw1—uﬂ%ukwwk5AﬂT+1ﬁ4v
R

t>T
5



Proof. We will suppress the dependence of w on T and will write u instead of up. Let
Uy (t, k) = e~in?k/(t+ 1)y n(t, k). For the zero Fourier mode of u, we have

o(t, k) _1+Z/‘7QJ IO (r, k) dr

l71>1

Integration by parts gives

|ug — 1] < Z/ (/ ]7?]—1—7-1 ijQ/(”“)dTl) T/L\’j(T, k)dr

=1
From Cauchy-Schwarz and ||0;u|| < A(t+1)77, we have

sup |@0 - 1|2 5
t>T

22 (/ (T+ 1)—1—6d7_) / (7'+ 1)—2’Y+l+e Z < sup
T T ; IC[7,00)

l7]>1

~ 2
/ij(Tl)eika/(n-i-l)dTl dr
7 71 + 1

and the Carleson theorem implies (after the change of variables & = (1,4 1) 7! for the integral
in )

/sup Uy — 12dk < AT + 1)>
R

t>T
Then, notice that

dolalP =1, 1 aol* < 2[1 — | (13)
and then
1= alP = 1= @ + 3 3 < 11 -l
J#0
This estimate finishes the proof. 0

This theorem immediately implies for 7" = 0 and small A that for the positive measure set
of k the solution has a zero mode bounded away from origin for all time. It also implies the
localization on the Fourier side but only in the regime of small .

3. THE SCHRODINGER FLOW WITH COMPLEX-VALUED V

In this section, we again study (3) but we do not assume that V' is real-valued and thus
the L? norm of the solution is not necessarily conserved. However, for generic k, not only
the L? norm will be bounded but also the Sobolev norms H*(T) where o < 1. This is an
improvement on the results from the second section however the bound will be exponential
in time. The proof will be based on the concept of the variation norm as advocated in [9]
with ideas going back to [8]. The key result from [9] we will use is the following estimate
(see [9], (68), Appendix B): if P = {A,}, Aj = [t;,tj41) is any partition of R, then

1/2
/ f zktdt

J

Sl pell2) (14)

L' ()

sup




We first restrict the problem (3) to the case of finite matrices. Instead of (3), consider
Xt = e*ikAtV(N)e"kAtX, X(O, k’) = I(2N+1)><(2N+1) (15)

where VIN) = PyV Py so we will be dealing with matrices of the finite size but the estimates
we obtain must be independent of N. Assume first that the time ¢ € [0, 1], we will handle
the intervals [0, 7] by scaling later.

Let us go to the Fourier side and then

X, =V™MX, X(0,k)=1I
where V is given by (4). Consider the scale £%® of the weighted ¢* spaces with the norm

1/2

o= | D IHPQ+1iD>

l7I<N

If O is a linear operator in C*¥*! we will denote its operator norm in £>* by ||O||,. On the
group § = GL(2N + 1,C), consider the following metric

1
MAm=M/wwwmt
7 Jo

where 7(t) is any continuously differentiable path in G such that v(0) = A and (1) = B.
Here we assume that both A and B lie in the same connected component of GL(2N +1,C).

Remark. Let v be any curve such that

/01 17"y adt < dg(A, B) +1
Then t
A0 = A+ [ Ao
and therefore Ot
@ < Bl + [ 19 Olll)

By Gronwall-Bellman, we have

1Blla S [[Alle exp (/0 ||7’(T)7‘1(T)Had7> S [[Alla exp (dg(A, B)) (16)

Theorem 3.1. Suppose V(z,t) € L>®(T x [0,1]) and X (¢, k) is the solution to (15) on the
interval [0,1]. Let o € (0,1) and p € (4/3,2) so that ap < 2(p — 1). Then, we have

sup log(1+ | X (£, k)[la) S 1+ V50 + V][ 0000 (k)

0<t<1

where
so=ap /2 and [[UK)|y S IV]ew= sup [V(z,t)|

z€T,t€0,1]
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Proof. Recall [9] that for the continuous curve v(t) on § we can define

/B
HVHVB - Sup (Zd ]+1))> ) 6 € [1700)

where P is any partition. Then, we have ([9], lemma C.3)

IVllve < llellve + C min(lyl[3s, I7l17s) (17)

where

and 5 € [1,2). Thus, (15), (16), (17) and the simple estimate (that follows from the definition
of the variation norm)

dg(7(0), (1)) < [l7llve
imply

sup | X (K)o S exp(Q + Cmin{Q2 Q7). Q = \ (18)

te[0,1]

¢
/ V(r, k)dr
0 VA[0,1](£2>)

and thus we only need to obtain a bound for (). Let A7 be a diagonal operator on the Fourier
side with the diagonal elements equal to (2 4 |n|)7, v € R.

To handle 5 € (1,2), we will use the standard complex interpolation between 5 = 1 and
p = 2. Take sy € (0,1) and p € (0,1). Suppose we fix a partition P of the interval [0, 1].
Then, for any s € (0,1), take 3(s) = s+ 1,q(s) = (s + 1)/s. The £ norm can be written as
B(s) 1/B(s)

.7

j+1
ARV (7, k)A~*Hdr

max |7]j |q(So)/q(s)

Hn”eq(so)zl j

tjt1 ~
/ NPV (1, k)N dr
t

J

since

1 1

o) B

For the norm of the operator, we have another variational representation

tjt1 -
/ NPV (7, k)A™*HdT
t

J

j+1
max / ST @ ) V(7 )@ + ) frgadr

5=|lgll,2=1
1l2=lgle=t | Sy, | 4=t

One can arrange the maximizers f’, ¢’ such that the last sum is equal to

ti+1
/ U@+ ) Vo7, K) 2 + [nl) = Frogldr

m,n
8



i.e. the absolute value can be dropped. Thus, we only need to bound

=Dl / S @+ )V (7, K) 2+ [n]) = 1D
J tj m,n

where [[7|o) = 1 and [|fjllz = [|g}llz = 1 for all j.

Notice that F(s) is analytic in s in the strip 0 < Res < 1 and we can apply the three

lines lemma there [5].

My = sup |[F(s)] €S (s —t;) sup [V S IVl =aciony

Res=0 j te(ty,tir1]

and

J

1/2
zm:sw«m\<(z]mw) 3

Res=1 -
J

t
< / T llvegeon
0

| (30)| < Ml SOMfO = ||V||1 SO“/ V||v2 (e2:1)

By the three line lemma, we have

tj+1 -
/ AV (1, k)N HdT
t

o\ 1/2

(19)

Taking the supremum over all partitions, we have the standard interpolation

V]

i < VIS [ Pl

(20)

for any sg € [0, 1]. Next, we will focus on the bounds for the second variation norm because

it enters into (20).

Lemma 3.1. Suppose p € (4/3,2) and u=2/p’. Then, we have

1/2
<sgp > ||A“‘7Aj<k>w||2> SVl + UK
J

where

WUE < 1V loor T, (k) = /A V(. k)dr

Proof. We have
AFVA (B)ATH = Va, (k) + [A¥, VA, (k)] ATH

For the first term, we have an obvious estimate

Z IVa, (W)I* < IIVIZ ZIA P <IIVI%

For the second one,

= m nl#
w1, 0, 5 3 (M) s
J J

9

(22)

2

t) eik(m—n)(m+n)tdt



Let « = m —n and § = m + n. Notice that
[[m[* — [n["] ~ |lm| = [n]| - [Jm]| + [n[[*~"
Therefore, we have two terms to bound
p— 2 N ,
-5 5 () | e
jal>1 |B]>]al B

and

5 () | s

la|>1]8]<|e] J

Now, (14) implies

2
Il 5 X 3 (1o ) w3 [ T
a>1|Bl<a 1+ |B - OZ|
L' /2(R)
al— 1|/3| 2 I 2/p
SY (s / Tty
a>1 |Bl<a @ 0
o113 ) (/ o2
< Va(®)[Fdt | 5
P (s ii=am) (/]
D IVall3@r = - a®=) < VI,
a>1
as long as
1 < 2
2 H= P
For I, the estimate is similar
a|5|u ? 1kaﬁt i
|2y S Z - supz dt
a>1 |f]>a 1+18—afr
LP'/2(R)
alg) ) ( / 2
< Va(®)dt ) S
Z%Z (ww 1+ 15—am) U
D IVall3a 47 + o= < VI
a>1
Combining these bounds with (22), we have the statement of the lemma. U

The lemma gives a necessary bound for the variation norm so (18) and (20) then finish
the proof of the theorem. O

The immediate corollary of this theorem is
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Lemma 3.2. Under the conditions of the theorem 3.1, assume that u is the solution to
iug = (EA+V)u, u(x,0,k)=1
Then, we have

sup log(1+flu(.,  K)llrem) S 1+ IVII™ + |V]|25 s Tt (k)

where
NTEMy S TV oo

Proof. Consider ™) which solves
™) = (kPyA + V) ) N30, k) = 1
By approximating lemma (the lemma 4.1 in [3], which also works in our setting), we have

sup ™ (2, t, k) —u(z,t,k)|| =0, N — oo
t€[0,1], ke[—A,A]

for any fixed A. Therefore, given any fixed m, we have

sup log(1+ || Puu(z,t, k)|la) S 1+ [V[IA + V][5 Bu=0+=0) (k)
0<t<1

with m-independent U. Taking m — oo, we have the statement of the lemma.

We conclude this section with
Theorem 3.2. IfV € L>(T x [0,T]) and
iug = (kA +V)u, wu(z,0,k)=1
then (under the conditions of the theorem 3.1)
sup log(1+ [|u(.s £, k)| sacm) S 1+ (TIVI|ao) 7 + (TIV o) 50 (k)

o<t<T

and

1L (Bl S TV oo
Proof. Tt is sufficient to notice that ¢ (z, 7, k) = u(x, T1,k/T) solves the problem
iy = KAY + TV (x, T, (x,0,k) =1
for 7 € [0,1] and rescale using the lemma 3.2. O

The following corollary is immediate
Remark. Let o« <1 and V € L*>(T x [0,00)). We have

||U($, i k)HHO‘(T)
>0 exp(t?)

< C(k,a) (23)

for a.e. k € R. The simple example of V(z,t) = i shows that the exponential growth is
possible even for L?*(T) norm. It is likely that exp(#?) can be replaced by exp(t#), p > 1.

11



4. THE CASE OF REAL V, SMALL GAPS, AND THE NONDEGENERATE SYMBOL

In this section, we will prove the localization result for a particular case of (1) when the
symbol is nondegenerate, i.e.

P0)=1#0

We will also assume that ¢;(t) = «;(t + 1)™7 and «; are constants. This is the hard case
when the gaps between the eigenvalues of the differential operator are decreasing in t. That
represents the real difficulty in the analysis of the multidimensional scattering [4].

In this paper, we will consider the quadratic polynomial only which leads to

i0 0?2
= k o +V k)=1 24
Uy (t 17 1)2) u u, u(z,0,k) (24)

We will obtain the asymptotical result as t — oo for the u with the standard WKB-type
correction coming from the corresponding transport equation. This will done under the
assumption that V is real and decays like ¢ with v < 1 being very close to 1.

The following lemma is quite standard

Lemma 4.1. Suppose O:(t) is an operator-valued function such that ||O|| € L'[0,00).
Consider two equations

0y = Oy,  ¥1(0) = fi
and

10y = (O + O1)ba + 3,  2(0) = fo

where O(t), O1(t) are both self-adjoint and
1511 1O1, 1O1]] € Lo (RY)

loc

Then,

T
sup [y — | < /0 O + 5 @) [N dt + [[.f2 = fill

te[0,7
Proof. Let W be the solution to
10 W1(t1,t) = O(t)Wi(ty,t), Wity th) =1
Since O is self-adjoint, the operator W, is unitary. Then, by Duhamel’s formula, we have
t
wg(t) = Wl(o,t)fg — ’L/ Wl(T, t)(Ol(T>¢2<T> +](T>)d7’
0

Since Wi(0,1) fi = 91, |[¢2]| = 1, and W1 is unitary,

t
[92(t) — 1 ()] < [If2 — f1ll +/ O + 115 () Ddr
0
O
This lemma will allow us to throw away any L' perturbations with small norm when the

localization question is studied.
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Restrict the problem (24) to the diadic intervals I = [T, 27 first. Then, on the Fourier
side, we can write

R n n n? ~ .
wy = | k TP[Ta] + Q[ra 1 + (172 + Vx4V |u (25)
u(T, k) =1

where Py and @y are defined in (5),

2
Vi = ]{JP[T o] Ty n + k;P[Ta] (L — ﬁ)

(t+1)? t+1 T
and
sup W]l S 777 (26)
tel ke[—A,A]
for every fixed A.
We take
a<1/2 (27)

to make sure that [, ||Vi||dt ~ T%*7! is small.

Consider the following problem now

2 o~
iy = (k <%P[T“} + Qe (t +;+ 1 (t+;+ 1)2)) * V*) ¢, (28)
(b(SC,O,k) = ¢(O)(x>k)

It is obtained from (25) by dropping Vi (the error made by doing that will be taken care of
by lemma 4.1) and by shifting to the time interval ¢ € [0, T.
Denote by v = exp(ipu(z,t, k)) the solution to the transport equation

vy = ikv, /T + Vv, v(z,0,k)=

Theorem 4.1. Let v € (21/22,1), |V (z,t)] < C(t +1)77, and ¢\ satisfies the following
properties

sup |6V |pw(r) <1, sup ||¢ Moy S T (29)
ke[—AA] ke[—AA

where A > 1 is fized. Then, we have
A
/ sup ||¢(x, ¢, k) — v(@.t, k) (x + kt/T, k)| 'dk < T~ (30)
—A t€[0,T

Proof. Write (28) in the block form

03} EAy + Vi Via o3} (31)
G2 Var kEAy + Vay G2

where kAy + Vi1 = Ppa (k% + ‘7*) Prray. Notice that this operator is a restriction of the

transport equation to the first 7% modes so we start with proving localization results for this

operator.
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Lemma 4.2. Let f(x,k) be such that
1f (@, B lleemy < 10 I (2 B nsegny S T°

~

and y solve the problem

iy = (kAL +Vi)y, y(2,0,k) = Prpoyf(2, k)
Then, we have the following representation

y(x,t, k) = vz, t, k) f(x + kt/T, k) + d(x, t, k)
and

A
/ sup [|6(z, k,t) ||2dk; < T2 2v+2h—a | pi-dy—a (32)

—A t€[0,T]
Proof. Notice that p is real-valued. In ([3], lemma 2.1) we proved that

/sup ZIJHujtkldk<T/ /Vthda:dt<T2 27
R

t€[0,T]

That implies ([3], Appendix, lemma 6.2) that v is unimodular and

A
[ sup vt Bk ST
—A t€[0,T]

for any fixed A. Thus vV (z,t, k) = v(x,t,k)f(x + kt/T,k) solves the transport equation
with initial data f(x, k) and
1| ooy < 1
From the second lemma in Appendix, we have
1N 2y S T+ [Vl a2
Therefore

A
/ sup Y [DV(t k) Pk S T 4 70 (33)
—A t€[0,T] In|>T?

for every ¢ > 0.
The function v® = Prapp® satisfies
i@ = (kA + Vi@ + 60 0@ (2,0,k) = Pgaf(z, k)
where
5(1) = P[Toc]VQ[Ta]V(l)
and so (33) gives
A
/ sup [|60|[2dk < T—2/(T—e+2-27 4 72— (34)
—A t€]0,T]

The lemma 4.1 yields

A
/ sup ||y . V(2)||2dk3 5 T2—27(T—a+2—2'y + TQB—a)
—A t€[0,T]
14



By (33),

A
/ sup ||vW — v@|2dk < T 4 T2
—A te[0,T]

This gives (32). O
Let us choose f = 1.5(1 —+) as in (29) and consider the solution to (31). Notice first that
1Qura10@| £ TP/
so, since evolution preserves the L?*(T) norm, we have

sup [[¢(x, ¢, k) — C(a, 8, k)| S TP/ (35)

te[0,7)

where ¢ solves (28) with initial condition {(x,0,k) = (9 = Prejp®

(2):{%&% kszfvm](g)’ G1(0,k) = Prryo®, (2(0,k) =0 (36)

Let W(t, k) be defined as
IO W = Mty e kNt W(0,k) =1

If
G WG, = e,
then - ¢
. G\ _ 0 Wteikbty e —ikhat G
i, < O] = | ey inary ke : (37)
For 61,
Gt k) =0 —i / W (r, k)T Vg (r)e MGy (7, k) dr

We take an inner product with ¢(© and integrate by parts

(G, ¢y = ICO)? - / t<ez‘kwv12<¢>e—ikm@<7,k>,W(T,mg%f (38)
0

As ||G]12 + ||§2||2 = |||, it is sufficient to show that the second term in (38) is small to

guarantee that ¢; = (© + “small” and ( = “small” (see lemma 5.1 from Appendix).
Let
‘712<t’ k) _ eikAlthu(t)efikAgt

and write .
/ <V12(7' k)CQ(T k), y(r,k))ydr =1 + I
Here ’ . t
) = WRC, h= [ G VaPraidn b= [ @ ViQuaiir

where ¢ will be chosen later. From the lemma 4.2, we have

A
/ sup [|Quragi(t, k)|3dk S (T°727 + T 0 4 2220 pi-br-a
—A tel0,T)

15



since A
/ sup Qg (vF) Pk S 71 + 7
Atel0,T
Therefore, by Cauchy—Schwarz,

A 1/2
( / sup |Iy(t, k)|2dk> ST (T + TP)T =92 4 Thotime/2 4 p2=2me/2) | pra

—A tel0,T]
and
e1 =min{0/2-2(1-7),0/2—=5—-(1—-7),a/2——-2(1—-7),0/2=3(1-7)}
which yields the following conditions
20 —7)<d/2, 1 —y+<6/2,21 =) <a/2—0,3(1—7) <a/2
For I, we integrate by parts and use 52(0, k) =0 to get

h= [ Gamenmar+ [ G armLpi
and .
Q(T,t,k’):/ ‘/1*2(7'1,]{7)P[T5]d7'1

For the derivatives, we have
G ST 171 ST
and for the Hilbert-Schmidt norm of @,

swp Q14,5 3 Y sup

t,7€[0,T] W>Te |j|<T0 7€[0,T]

2

[ Bestrmdesp b/ + 2/ = /Ty dr

The Carleson’s theorem on the maximal function again gives
[ sw Qs T e
t,7€[0,T)

as long as
)<«

That yields an estimate for [

1/2
(f15m nar) s g

t€[0,T]

Combining the bounds obtained above, we have

N 1/2
(/ sup |(&(t, k), ¢O) — [[¢© ||2|2dk) <T

—A t€[0,T]

where
e = min{ey, (o —9)/2—-2(1 —~)}
so we add one more condition on the parameters

a>6+4(1—7)

16
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Consequently, the lemma 5.1 from Appendix gives
/ sup [[C(¢, k) — e MW (0,8, k)¢ | *dk < T
t€[0,T)
since
Cl — W—leik/\ﬂcl
For e~ (0, ¢, k)¢, the lemma 4.2 is applicable and we have
A
/ sup H(b . V¢(O)<I + ]{Zt/T, k)||4d]€ 5 T4572a + Tf2e + T272'y+267a + T474'yfa
—A t€[0,T

by using (35) and ||6(x, k,t)|| < 1. For simplicity, let us make the following choices of our
parameters:

d=6(1—7),a=11(1—7)

and so
A
[ s o vean s 70
—Ate[0,T]
Since we will need o < 1/2 (check (27)), the condition v > 21/22 follows. O

Now, we are ready to prove the similar statement for the problem (25).

Theorem 4.2. Let v € [83/87,1), |V(x,t)| < Ot + 1)77, and u'V satisfies the following
properties

sup [P [peomy <1, sup (u@| gy S THO
ke[~ A,A] kel AA]

where A > 1 is fized. Then, for the solution of (25), we have
A
/ sup u(z,t, k) — v(z,t, k)u® (x + kt /T, k)||*dk ST~ (41)
—A te[T,2T]

Proof. Apply the theorem 4.1, lemma 4.1, and (26) to get

A
/ sup |z, t, k) — vz, t,k)u® (x + kt /T, k)|[*dk < T~00 4 74D (42)

—A te[T,2T]

If v > 83/87, the first term is larger and we have the statement of the theorem. ([l

Let us define the solution to the following transport equation
iGy =ikG,/(1+t)+ VG, G(z,0,k)=1

Lemma 4.3. For an arbitrary fived A > 0, we have

A T
/ sup ||G(z, ¢, k;)||§{1/2(]-)dk 5/ (1 —i—t)/VQ(x,t)dxdt (43)
0 T

—A t<T
17



Proof. Consider
H(z,t) = G(z,e" — 1)
For H, we have
iH(z,t, k) = ikH,(x,t, k) + Vi(x,t)H(x,t, k), H(z,0,k)=
where
Vi(z,t) = 'V (x, e — 1)
From [3], we have

/sup Z]]HH tk:\dk:</ /Vthdxdt

telo
Taking 7 = logT" with large T, we get the statement of the lemma. 0

Now that we can control the behavior of u on every diadic interval, we can prove the main
result of this section

Theorem 4.3. Assume that v € [83/87,1) and V in (24) satisfies
IV (@, )l e (ry < AL +6)77
Then
A
/ sup |lu(z,t, k) — G(x,t, k)||dk — 0 (44)

A t>0
as A — 0. Here A is any positive number.

Proof. Take T; = 27 and consider the diadic intervals [T}, Tj;1). On any fixed interval [0, T}]
we have
sup |lu—1]] =0, sup ||G—1]|—0
te[0,T5] te[0,T5]
when A — 0. This convergence is uniform in k& € [—A, A]. Therefore, it is sufficient to
assume that we solve the problem on the interval [T, 00) instead where N is sufficiently
large.
The estimate (43) implies that

A
/ NG T Dy th S T

Therefore,
|G (@, T;, k)7
[y T g < e, e (1,150 -9) (45)
—A5 T

J

If v solves
vy = ikq(t)v, + Vv, v(z,0,k) =
with ¢ given by: ¢(t) = Tj_l, t € [1},Tj41), then

sup|lv — G| =0
>0

as A — 0 and similarly

A (@, Ty o)l ey
Z T
j J

dk <00, pBe(1—7,1.5(1-7)) (46)
—A



Then, we can consider €2y: the set of those k € [—A, A] for which

Z ||V<x’7}7k)||§]1/2(T) dk < 1
T
J J

As A — 0, the measure of {[—A, A]\Q,} will converge to 0. Then, restricting k to the set
), we can recursively apply theorem 4.2 to show that

sup [lu — G

>0

converges to zero in measure (as a function in & € Q) provided that A — 0. This is
equivalent to (44) since ||u|| = ||G|| = 1. O

Remark. It is conceivable that the constant 83/87 can be decreased by more efficient
choice of parameters. This theorem is important since it can handle a difficult case of v < 1
for very general class of pseudodifferential operators. Indeed, we used the fact that V is
multiplication operator but the polynomial P(x) can be replaced by other nondegenerate
symbols.

5. APPENDIX
We used the following elementary lemma in the main text.

Lemma 5.1. Suppose V is a vector space with the inner product and v,a are two vectors
such that v = vy + vy, and

vi Loy, aLlovy, Jorl* + floaf* = fal?

Then,

lv = all < 2v/Jllal]? = {v1, a)] (47)
Proof. Assume first that ||a|| = 1. We have an orthogonal decomposition

v=1vy+ (vy,a)a + P

Therefore

lval* + 111 + [{vr, a)* = 1 (48)
and

lv —all* = floal* + 1911 + 1 = (v1, @)
However, (48) implies
loa* + [[0]* = 1 = [{vr, a) |
and so we have
lv —all* < 4]1 = (v1, a)
If ||a]| # 1, rescale the vectors by ||a|| to get (47). O

The following lemma is quite standard in the description of Krein’s algebra (e.g., [1], p.
123, formula (5.2) or [12], proposition 6.1.10)

Lemma 5.2. Let f,g € H/*(T) N L>(T), then
1 gll ey S Il lgll ey + gl f e ery

19



Proof. The proof immediately follows, e.g., from

(1]
2]

3]

(4]

(10]
(11]

(12]

/() = fW)I”
||f||§p/z(m~||f||2+// T e
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