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Abstract. It is known that the essential spectrum of a
Schrödinger operator H on `2 (N) is equal to the union of the spec-
tra of right limits of H. The natural generalization of this relation
to Zn is known to hold as well.

In this paper we generalize the notion of right limits to general
infinite connected graphs and construct examples of graphs for
which the essential spectrum of the Laplacian is strictly bigger than
the union of the spectra of its right limits. As these right limits
are trees, this result is complemented by the fact that the equality
still holds for general bounded operators on regular trees. We
prove this and characterize the essential spectrum in the spherically
symmetric case.

1. Introduction

Let G be a graph with vertices V (G) and edges E (G). The degree
of a vertex v ∈ V (G), d(v), is the number of u ∈ V (G) such that u ∼ v,
where we denote u ∼ v for vertices u, v ∈ G if (u, v) ∈ E (G). G is
called regular if all vertices have the same degree. A connected graph
which has no cycles is called a tree.

A Jacobi operator on a graph G is an operator, H, acting on ψ ∈
`2 (V (G)) ∼= `2 (G) by

(Hψ) (v) =
∑
u∼v

au,vψ(u) + b (v)ψ (v)

where a : {(u, v) | u ∼ v} → (0,∞), satisfying au,v = av,u, and b :
V (G) → R are functions (which we take to be bounded throughout
the paper). The particular case of a ≡ 1 and b(v) = −degree(v) is the
discrete graph Laplacian, ∆. The canonical example we have in mind
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is that of a Schrödinger operator, namely H = ∆ + Q, where Q is the
operator of multiplication by a bounded real valued function.

Given a bounded self-adjoint operator, A, let σ(A) denote its spec-
trum and σdiscrete (A) denote the set of isolated eigenvalues of A of finite
multiplicity (=the discrete spectrum). The essential spectrum of A is
the set σess (A) = σ (A) \σdiscrete (A).

The essential spectrum of a self-adjoint operator can be characterized
as that part of the spectrum that is invariant under compact perturba-
tions (this is the content of Weyl’s Theorem [26, Theorem S.13]) and
so, for a Schrödinger operator defined over an infinite graph, should
morally depend only on properties of the operator ‘at infinity’. For
the case of Zd, this intuition was made precise by Last-Simon in [14]
using the concept of ‘right limit’ (introduced in [13]). The purpose of
this paper is to discuss the possibility of extending this idea to general
connected graphs.

For the purpose of this introduction, we define right limits on N.
Consider a bounded Jacobi matrix H acting on `2 (N). A Jacobi matrix
H(r), acting on `2 (Z), is a right limit of H if there exists a sequence of
indices {nj}∞j=1 ⊆ N s.t. for every fixed l ∈ Z,

(1.1) al+nj ,l+1+nj

j→∞−→ a
(r)
l,l+1, bl+nj

j→∞−→ b
(r)
l .

Equivalently, if we extend H to an operator H̃ on `2 (Z), we will get
H(r) as a strong limit1 of a sequence of left-shifts of H̃ (corresponding
to the sequence {nj}). Note that, by compactness, one can always find
a right limit along a subsequence of any such sequence of shifts.

Thus, a right limit of H is a limit point of shifts of H. The concept
of right limit was extended in [14] to operators on Zd, where in this
case all possible directions towards infinity must be considered. We
shall extend the notion of right limit to general connected graphs in
Section 2 below. Since the word ‘right’ no longer makes sense in this
context, we shall name the relevant objects R-limits.

The following characterization of the essential spectrum of Jacobi
matrices is essentially from [14] (for related results see [2, 3, 5, 7, 8,
9, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]; comprehensive reviews
and further references on the subject can be found in [5, 14, 25]).

Theorem 1 ([14, 20, 25]). Assume H is a bounded Jacobi matrix on
`2 (N) or on `2

(
Zd
)
. Then

σess(H) =
⋃

H(r) is a right limit of H

σ
(
H(r)

)
(1.2)

1We recall that a sequence of operators, {An}n defined over a Hilbert space H,
is said to converge strongly to an operator A if for any ψ ∈ H, limn→∞Anψ = Aψ.
Similarly, it is said to converge weakly if for any ψ, φ ∈ H, limn→∞ (φ,Anψ) =
(φ,Aψ).
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Remark. This theorem was stated in [14] with
⋃
r σ (H(r)) on the right

hand side. However,
⋃
r σ
(
H(r)

)
is in fact closed (see e.g. [20] and [25]

for details).

In the context of regular trees, Golenia [10] and Golenia-Georgescu
[6], have shown (1.2) in the particular case of Schrödinger operators
when Q has a limit (in the usual sense) on every path to infinity. We
are not aware of other results treating general potentials Q on graphs
and trees.

One direction of the inclusion in (1.2) is almost trivial for operators
on `2

(
Zd
)

and follows almost immediately from the characterization
of the essential spectrum via an orthogonal sequence of approximate
eigenfunctions. This is true for the case of general graphs (with the
same argument). Nevertheless, we give a proof of this theorem in Sec-
tion 3 below for completeness.

Theorem 2. Assume H is a bounded Jacobi matrix on `2 (G) where
G is a connected graph of bounded degree, then,⋃

L is an R-limit of H

σ (L) ⊆ σess (H)

We remark that we expect the analogue of this theorem to hold for
the generalization of Jacobi matrices to band-dominated operators (see
e.g. [20] for the definition).

Our first main result is the somewhat surprising fact that for general
graphs the reverse inclusion fails.

Theorem 3. There exists a connected graph G s.t. the adjacency op-
erator (i.e., the Jacobi matrix with a ≡ 1, b ≡ 0) on G satisfies,

σess (AG)

∖ ⋃
L is an R-limit of AG

σ (L) 6= ∅.

While the graph of Theorem 3 is not a tree, its construction involves
the use of a sequence of regular graphs with girth growing to infinity.
It has three right limits, a line, a d-regular tree, and a gluing of the
two. It is thus of some interest that the result still holds on regular
trees.

Theorem 4. Assume H is a bounded Jacobi matrix on `2 (T ) where T
is a regular tree, then

(1.3) σess (H) =
⋃

L is an R-limit of H

σ (L).

Remarks.

(1) The proof of this theorem is an adaptation of the method of
proof from [14] to the case of a tree, and relies on the construc-
tion of an appropriate partition of unity. However, the direct
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approach of defining the relevant functions on balls fails due to
the fact that the size of the boundary of balls is comparable to
their volume. Nevertheless, by restricting attention to annuli
and using the structure of the tree, it is possible to overcome
this obstacle.

(2) Note the closure in (1.3). Since our proof is an adaptation of
[14], we cannot do better with this method. We believe it is
possible to show that the set on the RHS is closed, however
this seems to require some delicate estimates on the growth of
generalized eigenfunctions on trees and is likely to be somewhat
technical. Since this is not in the main thrust of this paper, we
postpone this analysis to a later work. Nevertheless, we note
that our discussion in Section 6 shows that in the spherically
symmetric case (1.3) holds without the closure (see (6.1)).

(3) We expect Theorem 4, and its proof, to carry over to the case
of non-regular trees as well. We restrict our attention to regular
trees here for simplicity.

(4) It is interesting to study the possibility to generalize another
characterization of the essential spectrum of Jacobi matrices
which holds in the 1-dimensional case. In this case, the essen-
tial spectrum is characterized in terms of σ∞

(
J (r)
)
, the pure

point spectra in `∞ (Z) of the right limits (see e.g. [25, Theo-
rem 7.2.1]).

The structure of this paper is as follows. First, in Section 2 we define
R-limits on infinite graphs. Sections 3, 4 and 5 are dedicated to the
proofs of Theorems 2, 3 and 4 respectively. Finally, in Section 6 we
discuss the case of spherically symmetric operators on a regular tree,
where the essential spectrum can be characterized using right limits and
truncations of right limits of a single one-dimensional Jacobi matrix.

2. R-Limits of General Graphs

This section deals with the extension of the concept of right limits to
general connected graphs with bounded degree. There are two issues
that make the analogous notion of right limit for general graphs more
complex than that of the one-dimensional object. The first (minor)
one is the fact that general graphs may have multiple paths to infinity.
This is true already in the case of Zd and is the main reason why we
refrain from using the name ‘right limit’ in this case and use R-limit
instead. The second issue is that with a general graph the absence of
homogeneity means that the different R-limits of an operator might be
defined on various different graphs which are not necessarily related in
a simple way to the graph over which the original operator was defined.
Thus, one is faced with the requirement to compare operators defined
over different graphs. In order to deal with the first issue, one has to
specify a path to infinity (in fact, it suffices to consider sequences of
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vertices with increasing distance from some fixed root, but considering
paths is equivalent and more convenient). In order to deal with the
second one, we need to introduce local mappings to finite dimensional
vector spaces which will satisfy a certain compatibility condition with
each other.

Let H be a Jacobi matrix on a connected graph G with bounded
degree. For any vertex v ∈ G and r ∈ N denote the ball

Br (v) = {u ∈ G | dist(u, v) ≤ r} ,

and denote by Nv,r the number of vertices in this ball, i.e. Nv,r =

|Br (v)|. Let H
(v)
r = H|Br(v)(=the restriction of H to `2 (Br(v))).

Let η be an indexing of the vertices of this ball,

η : Br(v)→ {1, 2, . . . , Nv,r}

and define the corresponding unitary mapping Iη : `2 (Br (v))→ CNv,r

by

Iη (δu) = eη(u),

for any vertex u ∈ Br(v), where δu is the delta function at u and{
e1, e2, . . . , eNv,r

}
is the standard basis in CNv,r (i.e. ei (j) = δi,j). Let

M
(v)
η,r ∈MNv,r,Nv,r be the matrix defined by

M (v)
η,r = IηH(v)

r I−1
η .

Definition 2.1. Fix a vertex v ∈ G and for any r ∈ N, let

ηr : Br(v)→ {1, 2, . . . , Nv,r}

be an enumeration as above, and Ir = Iηr be the corresponding isomor-
phism. We say that the sequence of isomorphisms {Ir}∞r=1 is coherent
if for any r < s and any u ∈ Br(v)

ηs(u) = ηr(u).

When we want to emphasize the dependence on v, we say that {Ir}∞r=1

is a coherent sequence at v.

Note that, if {Ir}∞r=1 is a coherent sequence of isomorphisms at v ∈
G, then for any r, the corresponding matrix M

(v)
ηr,r is the Nv,r × Nv,r

upper left corner of the matrix M
(v)
ηs,s for any r ≤ s. Thus, in what

follows, when the coherent sequence is clear, we omit the ηr and write

simply M
(v)
r = M

(v)
ηr,r.

We say that a sequence of vertices {vn}∞n=0 is a path to infinity in G
if vn+1 ∼ vn ∀n ∈ N, and |vn| = dist (vn, v0)n→∞−−→∞ monotonically.

Definition 2.2. Given a graph G′, a vertex v′0 ∈ G′ and a Jacobi
matrix H ′ on G′, we say that {H ′, G′, v′0} is an R-limit of H along the
path to infinity {vn}∞n=0 if there exists a sequence of indices {nj}∞j=1,
such that
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(i) For any j ∈ N there exists a coherent sequence of isomorphisms{
I(j)
k

}∞
k=1

at vnj .

(ii) There exists a coherent sequence of isomorphisms {I ′k}
∞
k=1 at v′0.

(iii) For any r ∈ N Nvnj ,r
= Nv′0,r

for all sufficiently large j, and

(2.1) lim
j→∞

M
(vnj)
r = M (v′0)

r .

In the one dimensional case, the matrices M
(vj)
r are simply truncated

Jacobi matrices and (2.1) translates to the condition (1.1). Thus, the
definition of R-limits is a direct generalization of the definition of right
limits in the one dimensional case.

3. Proof of Theorem 2

First, recall Weyl’s criterion (see, e.g. [26, Theorem VII.12]) for
the essential spectrum of a bounded self adjoint operator A on a
Hilbert space H: λ ∈ σess (A) iff there exists an orthonormal sequence
{ψn}∞n=1 ⊂ H of approximate eigenfunctions, i.e. functions satisfying
(ψn, ψk) = δn,k and

‖(A− λ)ψn‖
n→∞−−−→ 0.

Proof of Theorem 2. Assume {H ′, G′, v′0} is an R-limit of H along a
path to infinity {vj}∞j=0, and λ ∈ σ (H ′). Given ε > 0 define

ε′ = min

(
2ε

1 + ‖H ′‖+ |λ|
,
1

2

)
.

Since λ ∈ σ(H ′) there exists ψ ∈ `2 (G′) s.t. ‖(H ′ − λ)ψ‖ < ε′ and
‖ψ‖ = 1. Additionally, since ψ ∈ `2 (G′), there exists R > 0 s.t.∥∥ψ|G′\BR(v′0)

∥∥ < ε′.

Thus by defining for every w ∈ V (G′)

ϕ(w) =

{
ψ(w)/K w ∈ BR(v′0)

0 otherwise,

with

K =
∥∥ψ|BR(v′0)

∥∥ > 1

2
,

we get an approximate eigenfunction for H ′, supported on BR (v′0), and
satisfying ‖ϕ‖ = 1. Indeed

‖(H ′ − λ)ϕ‖ =

∥∥∥∥(H ′ − λ)
ψ − (ψ − ϕ)

K

∥∥∥∥ < 1 + ‖H ′‖+ |λ|
K

ε′ ≤ ε.

Since H ′ is an R-limit of H there exists some u = vnj ∈ G s.t. the
corresponding matrices satisfy∥∥∥M (u)

R+2 −M
(v′0)
R+2

∥∥∥ < ε.
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Let I : `2 (BR+2(u)) → CNu,R+2 and I ′ : `2 (BR+2(v′0)) → CNv′0,R+2

be the isomorphisms from Definition 2.2. Denote by χ′ the function
χ′ = I−1I ′ϕ̃ ∈ `2 (BR+2(u)), where ϕ̃ = ϕ|BR+2(v′0). Additionally define

χ(w) =

{
χ′(w) w ∈ BR+2 (u)

0 otherwise.

Then

(H − λ)χ =
(
H|BR+2(u) − λ

)
χ′

and thus,

‖(H − λ)χ‖ =
∥∥∥(M (u)

R+2 − λ
)
I ′ϕ̃
∥∥∥ <∥∥∥(M (u)

R+2 −M
(v′0)
R+2

)
I ′ϕ̃
∥∥∥+

∥∥∥(M (v′0)
R+2 − λ

)
I ′ϕ̃
∥∥∥ <

ε+ ‖(H ′ − λ)ϕ‖ < 2ε

We can now repeat this argument for a subsequence of vertices along
the sequence

{
vnj
}

from Definition 2.2, s.t. dist (u1, u2) > R+2 for any
two vertices u1, u2 on this subsequence. As a result we get for any ε > 0
an orthonormal sequence of (compactly supported) functions {ϕk}∞k=1

satisfying,

‖(H − λ)ϕk‖ < ε.

Thus, by taking e.g. εn = 1
n
, we can choose an orthonormal sequence

of approximate eigenfunctions for H. Hence by Weyl’s criterion λ ∈
σess (H). �

4. Proof of Theorem 3

Proof of Theorem 3. We shall construct a graph G for which the adja-
cency operator H = AG on `2 (G) satisfies

σess (AG)

∖ ⋃
L is an R-limit of AG

σ (L)

is nonempty.
We recall that the girth of a graph G is

girth (G) ≡ min {length(l) | l is a cycle in G} .

Fix d > 2 and let
{
Gni , u

(1)
i , u

(2)
i

}∞
i=1

be a sequence of d-regular graphs

on ni vertices, each with two marked vertices u
(1)
i , u

(2)
i ∈ Gni , where,

{ni}∞i=1 ⊂ N, ni →∞, and s.t.

girth (Gni)
i−→∞,

dist
(
u

(1)
i , u

(2)
i

)
i−→∞.
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By, e.g., [15] such a sequence exists for d = p + 1 for any prime p 6= 1
satisfying p ≡ 1 (mod 4). Additionally, let {ki}∞i=1 ⊂ N, be an increas-
ing sequence s.t. ki+1−ki →∞. We construct G by ‘replacing’ the edge
(ki, ki + 1) in N by the graph Gni . This is done by cutting (ki, ki + 1)

and attaching u
(1)
i to ki and u

(2)
i to ki+1 (see Figure 1). Formally

V (G) = N ∪
⋃∞
i=1 V (Gni) ,

E(G) = (
⋃∞
i=1E (Gni)) ∪

(
E (N)

∖
∪∞i=1 {(ki, ki+1)}

)
∪(⋃∞

i=1

{
(ki, u

(1)
i )
})
∪
(⋃∞

i=1

{
(u

(2)
i , ki+1)

})
.

Figure 1. The construction of the graphG for the coun-
terexample.

Let H = AG on G, i.e. the potential is Q(v) = deg (v). For each
graph Gni the constant function ϕ (v) = 1√

ni
is an eigenfunction of H

with eigenvalue λ = d. Define

ϕi (v) =

{
1/√ni if v ∈ Gni

0 otherwise.

Then, summing over the boundary terms, we have for any i ∈ N

‖Hϕi − λϕi‖2 = 2/ni.

Thus

‖Hϕi − λϕi‖2 i→∞−→ 0.

Additionally, for any i 6= j the functions ϕi and ϕj are orthogonal. Thus
{ϕi}∞i=1 is an orthonormal sequence of approximate eigenfunctions of H

for the value λ = d, and thus d ∈ σess (H) . We claim that d /∈
⋃
σ (L).

Indeed, it is easy to see that the only R-limits of G are the following
three objects:

(1) The adjacency operator on the full line Z, appearing when the
limit is taken along a subsequence

{
vnj
}∞
j=1

of points (only) on

N, of increasing distance from the sequence {ki}∞i=1, i.e.

inf
i

(
dist

(
vnj , ki

))
−→
j
∞.
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(2) The adjacency operator on a d-regular tree Td, appearing
when

{
vnj
}∞
j=1

includes (only) points on {Gni}
∞
i=1, of increas-

ing distance from both the sequences of vertices
{
u

(1)
i

}∞
i=1

and{
u

(2)
i

}∞
i=1

, i.e.

inf
i

dist
(
vnj , u

(`)
i

)
−→
j
∞

for both ` = 1, 2. Since the girth of Gni grows to infinity, we
conclude that for any R > 0 the reduced graph of radius R
around vnj will be a tree for j large enough.

(3) The adjacency operator on the tree, T̃ = T̃d, which is a half-
line connected to a d-regular tree at the point 1 ∈ N, appearing
when

{
vnj
}∞
j=1

are points on N of fixed distance from {ki}∞i=1,

or when
{
vnj
}∞
j=1

are points from {Gni}
∞
i=1 and are of a fixed

distance from either
{
u

(1)
i

}∞
i=1

or
{
u

(2)
i

}∞
i=1

.

The corresponding spectra for the first two operators are:

(1) σ (AZ) = [−2, 2].
(2) σ (ATd) =

[
−2
√
d− 1, 2

√
d− 1

]
.

Both of them do not contain the point λ = d. The following lemma
completes the argument.

Lemma 4.1. d /∈ σ
(
AT̃
)

The proof of this Lemma is given in the Appendix. Concluding, this
example satisfies d /∈

⋃
L σ (L), while d ∈ σess(H). �

Remark 4.2. In fact σ
(
AT̃
)

= σ (ATd), but the calculation is a bit
cumbersome, and since it is not necessary here we do not go into details.

5. Proof of Theorem 4

We start by reformulating a result from [14] in our context: let T
be the d-regular tree and consider a bounded self-adjoint operator, A,
defined over `2(T ). Let {jα}∞α=1 be a sequence of bounded, self-adjoint
operators on `2(T ) such that ∑

α

j2
α = Id

where the convergence in the sum is meant in the weak operator topol-
ogy sense. The following is Proposition 2.1 from [14].

Proposition 5.1. For any ϕ ∈ `2(T )∑
α

‖Ajαϕ‖2 ≤ 2‖Aϕ‖2 + (ϕ,Cϕ)
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where
C = −2

∑
α

[A, jα]2.

We are now ready for the

Proof of Theorem 4. We follow closely the reasoning of the proof of
Theorem 1.7 of [14]. Fix a vertex ∈ V (T ) and call it the origin O. For
any v ∈ V (T ), let |v| = dist(v,O). Take L ∈ N and for α ∈ N define

ψα,L(v) =

{
1− ||v|−α|

L
if ||v| − α| < L

0 otherwise.

We denote

jα,L(v) = ψα,L(v)/
√
wL(Y ), wL(v) =

∑
α

ψ2
α,L(v)

so that {j2
α,L}, α ∈ N forms a partition of unity, i.e.,∑

α

j2
α,L(v) = 1

for every v ∈ V (T ). Note that this partition of unity is defined similarly
to the one in [14], except that in our case it is applied to “annuli around
O”.

It is easy to see that
√
wL(v) = c(L) for all v with |v| > L. Moreover,

c(L) ∼
√
L in that there are constants, c1, c2 > 0 such that

c1

√
L ≤ c(L) ≤ c2

√
L.

As in [14], it now follows that

| ([H, jα,L]δv1 , δv2) | .
{

(L · c(L))−1 if dist(v1, v2) = 1, and ||v1| − α| ≤ L+ 1
0 otherwise,

where the implied constant depends on supu∼v au,v (recall the function
a from the definition of the Jacobi matrix H).

Consider the operator

C = −2
∑
α

[H, jα,L]2.

It is a hopping operator with range at most 2, i.e., (Cv1, v2) = 0 if
dist(v1, v2) > 2 and the other matrix elements are bounded by

2 · d · (2L)(c(L))−2L−2

(
sup
u∼v

au,v

)2

.

It follows that ‖C‖ . L−2.
We are now ready to finish the proof. Suppose λ ∈ σess(H). Then

by a simple adaptation of Weyl’s criterion (as in the proof of Theorem
2 above), there is a sequence {fn} ∈ `2(T ) such that

(5.1) lim
n→∞

‖(H − λ)fn‖ = 0, ‖fn‖ = 1,
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and

(5.2) sup
|v|<R

|fn(v)| = 0

for every R > 0 and n > nR.
Fix ε > 0 and choose Lε so large that ‖C‖ < ε2 for every L > Lε.

Then by Proposition 5.1

(5.3)
∑
α

‖(H − λ)jα,Lfn‖2 . ε2 + ‖(H − λ)fn‖2 . ε2

if n > ñε.
In order to obtain an approximate eigenfunction of an R-limit from

what we have, we now need to exploit the structure of the tree. For

any α and L let {Oβ}
Nα,L
β=1 be an enumeration of the vertices satisfying

|Oβ| = α − L (Nα,L = d · dα−L−1). For each such Oβ let Tβ be the
subtree of T with root Oβ that is obtained by disconnecting the edge
closest to Oβ on the path between O and Oβ. Notice that

jα,L =

Nα,L∑
β=1

jα,L,β

where jα,L,β = jα,L · χTβ and χTβ is the characteristic function of Tβ.
Notice further that jα,L,β(v) = 0 if |v| = α − L which implies that the
functions {(H − λ)jα,L,βfn} have disjoint supports and therefore

‖(H − λ)jα,Lfn‖2 =
∑
β

‖(H − λ)jα,L,βfn‖2 .

Finally, we note that {j2
α,L,β} forms a partition of unity, since j2

α,L =∑
β j

2
α,L,β.

This yields that ∑
α,β

‖jα,L,βfn‖2 = 1

and from (5.3)∑
α,β

‖(H − λ)jα,L,βfn‖2 . ε2
∑
α,β

‖jα,L,βfn‖2 .

This implies that for each sufficiently large n there are αn, βn such
that

(5.4) ‖jαn,L,βnfn‖ > 0

and
‖(H − λ)jαn,L,βnfn‖ . ε‖jαn,L,βnfn‖

Moreover limn→∞ αn =∞ due to (5.2) and (5.4).
Denote the restriction of H to the support of jαn,βn by Hαn,βn . There

is a vertex, vn, such that BL/2(vn) is contained in the support of jαn,βn .
In order to show that there is a subsequence of {vn} lying on a path
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to infinity, let us identify each v ∈ V (T ) with a subinterval of [0, 1]
as follows. Vertices with |v| = 1 are each assigned to a single interval[
j−1
d
, j
d

]
(j = 1, . . . , d). Subdividing these intervals, each into (d − 1)

subintervals, we assign these intervals in turn to the vertices at distance
2 from O in such a way that if v′ lies in Tv then its assigned interval is
contained in the interval assigned to v. Continuing in this way, we see
that a path to infinity corresponds to a sequence of nested intervals.
It follows, as in the proof of the Bolzano-Weierstrass Theorem, that
there is a subsequence of {vn} that lies on a path to infinity. Thus,
by compactness, there is an R-limit, H ′, of H and a sequence, nk,
such that H converges to H ′ along the sequence {vnk} in the sense of
Definition 2.2.

Therefore

‖(H ′ − λ)hn‖ . ε‖hn‖
for large enough n, where hn is a translation of jαkn ,L,βknfkn . Since
‖hn‖ > 0 and ε is arbitrary, we have

λ ∈
⋃

L is an R limit of H

σ(L)

and the theorem follows. �

6. Spherically Symmetric Operators on Trees

Let T be a d-regular tree, and as in the previous section, fix an
arbitrary vertex and call it the root, O. A Jacobi matrix, H, on T is
spherically symmetric around O if there exist functions

A : N ∪ {0} → (0,∞), B : N ∪ {0} → R

so that

au,v = Amin(|u|,|v|), b(v) = B|v|.

The spherical symmetry implies that H decomposes as a direct sum
of Jacobi matrices on the half-line. Thus, its essential spectrum can
be described using this decomposition and the right limits of the con-
stituent half-line operators. This section is devoted to a discussion of
this description and its relation to the one given by Theorem 4.

In order to describe the decomposition, we first need

Definition 6.1. The k-th tail of a Jacobi matrix, A on N, is the Jacobi
matrix, A[k] on N, defined by

(
A[k]
)
i,j

= (A)i+k,j+k. The sequence of

tails of A is the sequence of matrices {A[k]}∞k=0.

Let H be spherically symmetric on T . Then it follows (see [1, 4])
that H is unitarily equivalent to a direct sum

∞⊕
n=1

(
⊕knj=1Sn

)
,
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where {Sn}n are Jacobi matrices on N with parameters {a(n)
k , b

(n)
k }∞k=1

satisfying

a
(n)
k =

{√
dA1 n = k = 1√
d− 1Ak+n−1 otherwise,

b
(n)
k = Bk+n−1,

and kn is some explicit function of n and the degree of the tree ([1, 4]
have this decomposition for Schrödinger operators, but using the ideas
of [4] it is easy to extend the analysis to the Jacobi case). Notice that
the direct sum includes kn copies of Sn for each n ∈ N. Additionally,
note that the matrix Sn is the (n− k)’th tail of the matrix Sk for any
n > k ∈ N. In short,

S1 =


B1

√
dA1 0√

dA1 B2

√
d− 1A2

0
√
d− 1A2 B3

√
d− 1A3√

d− 1A3 B4

. . .


and all other Sn’s are tails of this Jacobi matrix.

The following general proposition deals with a situation of this
type.

Proposition 6.2. Assume J is a bounded Jacobi matrix on N with
parameters {aj}∞j=1 and {bj}∞j=1, satisfying

sup
j

(|aj|+ |bj|) = M <∞.

Let {Jn}∞n=1 be a subsequence of the sequence of tails of J ,
{
J [k]
}∞
k=1

,

let {in}∞n=1 ⊂ N, and let K =
⊕∞

n=1

(
⊕inj=1Jn

)
. Then the essential

spectrum of K satisfies:

σess (K) =

(⋃
r

σ
(
J (r)
))
∪

(⋃
s

σ
(
J(s)

))
where

{
J (r)
}

is the set of right limits of J , and
{
J(s)

}
is the set of limit

points in the strong operator topology of the sequence {Jn}∞n=1 .

Before proving Proposition 6.2 we present another preliminary propo-
sition:

Proposition 6.3. The essential spectrum of K satisfies:

σess(K) = σess (J) ∪ Σ
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where,

Σ = Σ0

∖
σess (J) ,

Σ0 =

{
E ∈ R | ∃ (nk)

∞
k=1 ⊆ N, nk+1 ≥ nk, nk →∞, (gk) ∈ `2 (N) , λk ∈ R,

s.t. Jnkgk = λkgk, and λk −→
k→∞

E
}

(i.e. Σ is the set of limit points of eigenvalues of the Jn’s that are not
in σess).

Proof of Proposition 6.3. First, note that Jn is a finite rank pertur-
bation of J and thus σess (J) = σess (Jn) for every n ∈ N. Thus
σess (J) ⊆ σess (K). Additionally Σ ⊆ σ(K) and its elements are ei-
ther eigenvalues of infinite multiplicity or non-isolated points of σ(K),
so Σ ⊆ σess (K). Thus,

σess(K) ⊇ σess (J) ∪ Σ.

For the reverse inclusion, denote σn = σ (Jn) \σess (Jn), so,

σ (Jn) = σess (Jn) ∪ σn = σess (J) ∪ σn.
Then,

σ (K) =
⋃
n

σ (Jn) =
⋃
n

(σess (J) ∪ σn) =

= σess (J) ∪

(⋃
n

σn

)
.

The essential spectrum is closed and thus we can write

σ (K) = σess (J) ∪
⋃
n

σn,

and we claim that this is exactly:

=

(⋃
n

σ (Jn)

)
∪ Σ.

Indeed, σess (J) ⊆ σ (Jn) for every n, and if λ ∈
(⋃

n σn

)∖
σess (J)

then it is either an isolated eigenvalue of some Jn (so λ ∈ σ (Jn)), or
an accumulation point of eigenvalues of Jn’s, in which case λ ∈ Σ. The
opposite inclusion is immediate. We now have

σ (K) \ (σess (J) ∪ Σ) =

[(⋃
n

σ (Jn)

)
∪ Σ

]∖
(σess (J) ∪ Σ) =

=

[⋃
n

(σ (Jn) \σess (J))

]∖
Σ =

(⋃
n

σn

)
\Σ.
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Each term σn = σ (Jn) \σess (J) = σ (Jn) \σess (Jn) = σdisc (Jn) con-
tains only isolated eigenvalues of finite multiplicity. Every accumu-
lation point of such points is contained in Σ. Hence, every point in
(∪nσn) \Σ is an isolated eigenvalue of finite multiplicity of finitely
many Jn’s, and thus it is also an isolated eigenvalue of finite multi-
plicity of K. We conclude that σ (K) \ (σess (J) ∪ Σ) ⊆ σdisc (K), and
thus σess (K) ⊆ σess (J) ∪ Σ. �

Proof of Proposition 6.2. We shall show that(⋃
r

σ
(
J (r)
))
∪

(⋃
s

σ
(
J(s)

))
= σess (J) ∪ Σ

which will imply the result by Proposition 6.3.
The inclusion(⋃

r

σ
(
J (r)
))
∪

(⋃
s

σ
(
J(s)

))
⊆ σess (J) ∪ Σ

follows from the fact that by Theorem 1(⋃
r

σ
(
J (r)
))
⊆ σess (J)

and ⋃
s

σ
(
J(s)

)
⊆ σess (J) ∪ Σ

since every λ ∈ σ
(
J(s)

)
is a limit point of a sequence {λn}n with

λn ∈ σ (Jn).
For the reverse inclusion, again by Theorem 1 we have that σess (J) ⊆
∪rσ

(
J (r)
)
. Thus (using Proposition 6.3) it is sufficient to prove that

Σ ⊆ ∪sσ
(
J(s)

)
. Let E ∈ Σ. Assume {Ek} is a sequence of eigenvalues

of {Jnk}, with nk+1 ≥ nk, s.t. Ek → E, and let ψk be the corre-
sponding eigenfunctions, satisfying Jnkψk = Ekψk, ‖ψk‖ = 1. Since
nk → ∞ we may assume, by restricting to a subsequence if neces-
sary, that Jnk converges strongly to some J(s), i.e. for any ψ ∈ `2 (N),∥∥J(s)ψ − Jnkψ

∥∥→ 0.
Denote by µk the spectral measure of Jnk and δ1 = (1, 0, 0, 0, . . .).

Then,

µk −→
w

µs

where µs is the spectral measure of J(s) and δ1.
Assume first that limk µk ({Ek}) = 0. We shall show that in this case
E ∈ σess(J), in contradiction with E ∈ Σ. Note (letting χE (Jnk) be
the spectral projection of Jnk onto {E})

|ψk(1)|2 = (δ1, ψk) (ψk, δ1) = (δ1, χEk (Jnk) δ1) = µk ({Ek}) −→
k→∞

0.
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Define
{
ψ̃k

}∞
n=1

by

ψ̃k(j) =

{
0 j < nk
ψk(j − nk + 1) j ≥ nk

.

Then ψ̃k satisfies
∥∥∥ψ̃k∥∥∥ = 1 and,

(
Jψ̃k

)
(j) =


(Jnkψk) (j − nk + 1) j ≥ nk
ankψk (1) j = nk − 1

0 j < nk − 1

.

Thus, ∥∥∥Jψ̃k − Eψ̃k∥∥∥ ≤ ∥∥∥Jψ̃k − J̃nkψk∥∥∥+
∥∥∥J̃nkψk − Eψ̃k∥∥∥ ≤

≤ |ankψk (1)|+ |Ek − E| → 0.

In addition, it is clear that ψ̃k −→
w

0, which implies that E ∈ σess(J).

Thus, we can conclude that

lim
k
µk ({Ek}) > 0,

so by taking a subsequence of {Ek} we can assume that

ν = lim
k
µk ({Ek}) > 0

exists. Let ε > 0 and f ∈ C (R) s.t. supp (f) ⊆ (E − ε, E + ε), f ≥ 0
and f (E) > 0. Then there exists some N ∈ N s.t. for every k > N ,

|Ek − E| < ε, µk ({Ek}) > ν/2 and f (Ek) > f (E)/2.

Now, for every k > N we have that∫
f dµk ≥ f (Ek)µk ({Ek}) ≥ f(E) · ν/4 > 0.

Hence by the weak convergence of the measures µk −→
w

µs we conclude

that
∫
f dµs ≥ f(E) · ν/4 > 0 for every such f , and thus (since the

spectrum is a closed set) E ∈ supp (µs) ⊆ σ
(
J(s)

)
. �

It follows that in the spherically symmetric case, the one-dimensional
decomposition provides one with an additional description of the essen-
tial spectrum. However, in contrast to the one-dimensional case, the
essential spectrum is given by spectra of one sided matrices in addition
to the whole-line ones (obtained as the right limits). Thus, for example
in the case of periodic {Aj, Bj} we would get as the essential spectrum
not only the spectrum of the corresponding periodic whole-line Jacobi
matrix, but also the possible eigenvalues from the half-line matrix.
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Comparing Proposition 6.2 with Theorem 4, we conclude that the
spectrum of an R-limit of H in the spherically symmetric case is de-
scribed using the spectra of the one-dimensional Jacobi matrices de-
rived from the decomposition of H, as in Proposition 6.2. In fact it is
possible to make an identification:

Theorem 5. Let H be a spherically symmetric Jacobi matrix on a
regular tree and let

K = H =
∞⊕
n=1

(
⊕knj=1Sn

)
be its decomposition to half-line Jacobi matrices.

Let further
{(
J (r)
)}

,
{(
J(s)

)}
be the corresponding limiting matrices

defined in Proposition 6.2. Then for any J (r) there exists an R-limit
{L, T ′, v0} of H so that σ

(
J (r)
)
⊆ σ (L), and for any J(s) there exists

an R-limit
{
L̃, T ′, ṽ0

}
of H so that σ

(
J(s)

)
⊆ σ

(
L̃
)
.

Note that even if H is spherically symmetric, its R-limits need not
be. Thus, we find this correspondence between R-limits and one-
dimensional Jacobi matrices quite remarkable. The constructive proof
relies on a ‘spherical decomposition with respect to a point at infinity’
in some sense. It is given in Appendix B.

Finally, note that Theorem 5 implies that for spherically symmetric
H

(6.1) σess (H) =
⋃

L is an R-limit of H

σ (L)

which shows that the conclusion of Theorem 4 is true in this case
without the closure.

7. Appendix A: calculating the spectrum of AT̃

Proof of Lemma 4.1. The tree T̃ = T̃d is composed of a d-regular tree
T = Td connected at a point 0 ∈ T to the first point 1 ∈ N in a line.
Thus AT̃ is a finite rank perturbation of AT ⊕ AN, and so

σess

(
AT̃
)

= σess (AT ) ∪ σess (AN) = σess (AT ) = [−2
√
d− 1, 2

√
d− 1].

Therefore d /∈ σess

(
AT̃
)
. We want to exclude the possibility that d ∈

σ
(
AT̃
)
\ σess

(
AT̃
)
.

Using Dirac’s bra-ket notation, define A0 = AT̃ − |δ0〉 〈δ1| − |δ1〉 〈δ0|
and R (z) =

(
AT̃ − z

)−1
, R0 (z) = (A0 − z)−1. Recall the resolvent

identity (we omit the dependence on z),

(7.1) R0 −R = R0

(
AT̃ − A0

)
R = R0 (|δ0〉 〈δ1|+ |δ1〉 〈δ0|)R.

Multiplying by δ0 on both sides we have

mT (z)−m(z) = mT (z) 〈δ1|R(z) |δ0〉 ,
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where
mT (z) = 〈δ0|R0 (z) |δ0〉
mN (z) = 〈δ1|R0 (z) |δ1〉
m (z) = 〈δ0|R (z) |δ0〉 .

Additionally, by multiplying the identity (7.1) by δ1 on the left and by
δ0 on the right we have

0− 〈δ1|R(z) |δ0〉 = mN(z)m(z).

Combining we get,

mT (z)−m(z) = mT (z) (−mN(z)m(z)) ,

which implies

(7.2) m(z) =
mT (z)

1−mT (z)mN(z)
.

Now, if λ ∈ σ
(
AT̃
)∖

σess (AT̃ ), then limε→0 Im (m (λ+ iε)) 6= 0. We

will consider this expression for λ = d. It follows from (7.2) that

Im (m) =
Im (mT (1 +mTmN))

|1−mTmN|2
=

Im (mT )− |mT |2 Im (mN)

|1−mTmN|2
.

It is known (see, e.g., [25]) that

mN (z) =
−z +

√
z2 − 4

2

mT (z) =
−2 (d− 1)

(d− 2) z + d
√
z2 − 4 (d− 1)

.

Thus
lim
ε→0

Im (mT (d+ iε)) = lim
ε→0

Im (mN (d+ iε)) = 0.

Additionally the denominator of Im (m) satisfies,

1−mT (d+ i0)mN (d+ i0) =1− (d− 1)
d−
√
d2 − 4

(d− 2) d+ d
√
d2 − 4 (d− 1)

=

1−
(d− 1)

(
d−
√
d2 − 4

)
2d (d− 2)

6= 0

since the number
√
d2 − 4 is irrational for every 2 < d ∈ N (d2 − 4 is

not a perfect square). Thus

lim
ε→0
|1−mT (d+ iε)mN (d+ iε)|2 > 0,

and we get
lim
ε→0

Im (m (d+ iε)) = 0.

This implies that d /∈ σ
(
AT̃
)∖

σess

(
AT̃
)
, and we can conclude that

d /∈ σ
(
AT̃
)
. �
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Remark. As mentioned in 4.2, actually σ
(
AT̃
)

= σ (AT ). The inclusion

σ (AT ) ⊆ σ
(
AT̃
)

is clear. Additionally, it is not hard, but is a bit cum-
bersome to see that for any λ /∈ σ (AT ) the expression 1−mT (λ)mN (λ)
is nonzero, and thus in this case also λ /∈ σ

(
AT̃
)
.

8. Appendix B: Proof of Theorem 5

We begin by discussing some properties of R-limits of regular trees.
Let H be a Jacobi matrix on a d-regular tree T (with d > 2) with
root vertex O ∈ T . Let {H ′, T ′, v′0} be an R-limit of H along a path
to infinity {vj}∞j=0 ⊂ V (T ). Since a regular tree is homogeneous, any

R-limit of H is defined on the same regular tree. Thus T ′ is another
copy of the d-regular tree, which, for convenience, we take to be distinct
from T .

Definition 8.1. Given an isometry between trees f : T → T ′, denote
by If : `2 (T )→ `2 (T ′) the isometry operator: (Ifψ) (v) = ψ (f (v)).

Definition 8.2. For any vertex u ∈ T , R > 0, denote by Pu,R the
projection operator onto `2 (BR (u)). Further, for any operator X on
`2 (T ), let Xu,R = Pu,RXPu,R.

Proposition 8.3. Let H be a Jacobi matrix on a d-regular tree T ,
and assume {H ′, T ′, v′0} is an R-limit of H along a path to infinity
{vj}∞j=0. Then there exists a subsequence of vertices {uj}∞j=1 ⊆ {vj}

∞
j=0

and a sequence of tree isometries {fj : T → T ′}∞j=1, with fj (uj) = v′0
(see Figure 2) satisfying, for every R > 0,

(8.1)
∥∥∥IfjHuj ,RI

−1
fj
−H ′v′0,R

∥∥∥ −→
j→∞

0.

Moreover, if H ′ is a Jacobi matrix on T ′ and there exist sequences
{uj}∞j=1, and {fj}∞j=1 as above, s.t. (8.1) is satisfied for any R > 0, then

{H ′, T ′, v′0} is an R-limit of H along the path {vj}∞j=0.

Proof. Assume the R-limit H ′ is obtained along the subsequence{
vnj
}∞
j=1

(as in Definition 2.2), and define uj = vnj . Note that for

any j ∈ N the coherent isomorphisms sequence
{
I(j)
k

}∞
k=1

can be ex-

tended to an isomorphism Ij : `2 (T ) → `2 (N), that agrees on balls

around uj with I(j)
k . Similarly, the sequence I ′k can be extended to an

isomorphism I ′ : `2 (T ′) → `2 (N). Now we can define Ifj (and fj) by

Ifj = I ′−1Ij. The convergence (8.1) then follows directly from (2.1).
In the other direction, assume {uj} is a sequence of vertices and
{fj}∞j=1 is a sequence of tree isometries as above. By compactness there

is a path to infinity, {vj}∞j=1, which contains a subsequence
{
u′j
}∞
j=1
⊆

{uj}∞j=1, i.e. u′j = vnj , for a corresponding sequence {nj} ⊆ N. Let

{I ′k}∞k=1 be any sequence of coherent isomorphisms of T ′ around v′0.
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Figure 2. The isometries fj between T and T ′.

We can now define for any j ∈ N a coherent sequence of isomorphisms{
I(j)
k

}∞
k=1

of T around u′j by

I(j)
k = I ′kIfj |Bk(u′j).

The convergence (2.1) follows directly from (8.1). �

As we show next, it is possible to choose the isometries {fj} s.t. the
path from uj to v0 is always mapped to the same sequence of vertices
in T ′ from v′0 to infinity.

Definition 8.4. Denote by N (u) the set of neighbors of the vertex
u. Additionally, assuming u 6= v0, denote by A (u) = A1(u) = Av0 (u)
the vertex w ∈ N(u) on the (shortest) path from v0 to u. For n ∈ N,
let An(v) = A (An−1 (v)).

Proposition 8.5. Let {T, v0} and {T ′, v′0} be two copies of the d-
regular tree, assume {vj}∞j=0 is a path to infinity in T , {wj}∞j=1 ⊆
{vj}∞j=0 is a subsequence, and {gj : T → T ′}∞j=1 is a sequence of tree

isometries, with gj (wj) = v′0. Then there exist a subsequence of ver-
tices {uj}∞j=1 ⊆ {wj}

∞
j=1, a corresponding subsequence of tree isometries

{fj}∞j=1 ⊆ {gj}
∞
j=1, and a path to infinity {v′k}

∞
k=0 ⊂ V (T ′), s.t.

(8.2) ∀n ∈ N, fj (An (uj)) = v′n,

for any j ∈ N s.t. |uj| > n.

Proof. By compactness, the sequence {fj (A (wj))}∞j=1 ⊂ T ′ contains a

vertex v ∈ N(v′0) an infinite number of times, denote it by v′1 = v and
restrict to this sebsequence. Continue further inductively to define the
path to infinity {v′k}∞k=0. Finally take the diagonal over the resulting
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subsequences of vertices ⊆ {wj}∞j=1 and tree isometries ⊆ {gj}∞j=1 to

define the subsequence {uj}∞j=1 and the subsequence {fj}∞j=1. �

We refer to the sequence {v′k}∞j=0 from Proposition 8.5 as an ancestors
sequence.

Corollary 8.6. Let H be a Jacobi matrix on a d-regular tree T , and
assume {H ′, T ′, v′0} is an R-limit of H along a path to infinity {vj}∞j=0.

Then there exists a subsequence of vertices {uj}∞j=1 ⊆ {vj}
∞
j=0, a se-

quence of tree isometries {fj}∞j=1 as in Proposition 8.3, and an ancestors

sequence {v′k}
∞
k=0 ⊂ V (T ′), s.t. (8.1) and (8.2) are satisfied.

As the term ‘ancestors’ suggests, an ancestors sequence defines a
natural direction on T ′ that we want to think of as a direction ‘toward
the past’ (or toward the tree T ). Considering v′k+1 as an ancestor of v′k,
we obtain a partial order relation on the tree comparing ancestors and
their ‘descendants’. Explicitly, given an ancestors sequence {v′k}

∞
k=0

in T ′, and k ∈ N ∪ {0}, the subtree Γv′k is the connected component
containing v′k in the graph obtained from T ′ by removing the edge
(v′k+1, v

′
k). For any v ∈ Γv′k such that v 6= v′k we write v′k >D v (thus

Γv′k is the tree of ‘descendants’ of v′k, together with the ancestor v′k).
Moreover, if v ∈ Γv′k for some k, let Γv be the connected component
containing v in the graph obtained from Γv′k by removing the edge on
the unique shortest path between v and v′k. Γv is the tree of descendants
of v and we write v >D u for any u ∈ Γv with u 6= v. The tree structure
implies that this is well defined (i.e. Γv does not depend on k and the
definitions coincide for v = v′k) so that we get a partial order relation
on T ′.

With this notation in place, we are finally ready for the

Proof of Theorem 5. Let J (r) be a right limit of J = S1 along a se-
quence {li}∞i=1 ⊆ N, i.e.

(8.3)
∥∥∥Jli,R − J (r)

0,R

∥∥∥ −→
i→∞

0

for any R > 0. We claim that we can find a corresponding R-limit
{L, T ′, v0} of H, s.t. σ

(
J (r)
)
⊆ σ (L). Indeed, for i ∈ N take some ui ∈

T s.t. dist (ui, v0) = li, and take any isomorphism of trees fi : T → T ′

s.t. fi (ui) = v′0. Moreover, by Proposition 8.5 and restricting to a
subsequence if necessary, we can assume the existence of an ancestors
sequence

{
v′j
}∞
j=0

s.t. (8.2) is satisfied. For any j ∈ N define a Jacobi

matrix L(j) on `2
(

Γv′j

)
, with diagonal terms:(
L(j)

)
x,x

=
(
J (r)
)
|x|−j,|x|−j ,
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and off diagonal terms(
L(j)

)
x,y

=
1√
d− 1

(
J (r)
)
|x|−j,|y|−j ,

where for x ∈ Γv′j , |x| = dist
(
x, v′j

)
. Note that L(j) is spheri-

cally symmetric around v′j, and that the sequence
{
L(j)

}∞
j=1

satisfies

L(j)|Γv′
j

= L(k)|Γv′
j

for k ≥ j (see Figure 3). Thus, we may define

Figure 3. The subtrees Γv′j , and the diagonal terms of

L, (J)k ≡
(
J (r)
)
k,k

.

L on `2 (T ′) by L|Γv′
j

= L(j). This defines an operator on `2 (T ′) since

∪∞j=1Γv′j = T ′. The sequence
{
L(j)

}∞
j=1

converges strongly to L: indeed,

for any ε > 0 and g ∈ `2 (T ′) we can find R > 0 s.t.
∥∥∥g|T ′\BR(v′0)

∥∥∥ < ε,

and thus for any j > R + 1,∥∥(L− L(j)
)
g
∥∥ < ‖L‖∥∥∥g|T ′\BR(v′0)

∥∥∥ < ‖L‖ ε.
Next notice that by the spherical decomposition (and the symmetry)

there exists for any i ∈ N a map ni(x) : BR (ui)→ N ∩ [1, 2R + 1], s.t.
for x, y ∈ BR (ui)

(Hui,R)x,y =

{
(Jli,R)ni(x),ni(y) if x = y

1√
d−1

(Jli,R)ni(x),ni(y) if x 6= y

Similarly, each term
(
Lv′0,R

)
x,y

corresponds to a term
(
J

(r)
0,R

)
ñ(x),ñ(y)

(note that Lv′0,R is spherically symmetric around v′R, but not around
v′0). Moreover, by the construction of L, the maps ñ and ni are related
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by ñ (fi(x)) = ni(x) (for i ∈ N, x ∈ BR (ui)). It follows, using (8.3),
that for any R ∈ N∥∥IfiHui,RI

−1
fi
− Lv′0,R

∥∥ < dR
∥∥∥Jli,R − J (r)

0,R

∥∥∥ −→
i→∞

0.

Thus by Proposition 8.3, L is an R-limit of H.
The spherical decomposition of L(j) produces a direct sum of half-line

Jacobi matrices,

(8.4) L(j) ∼=
∞⊕
i=0

(
⊕L(j)

i

)
,

Now, from each approximate eigenfunction of J (r) we can pro-

duce approximate eigenfunctions of L
(j)
i above, for any j − i large

enough: assume g is an approximate eigenfunction of J (r), satisfying∥∥J (r)g − λg
∥∥ < ε, since ‖g‖2 = 1 we can take N large enough s.t.∥∥g|Z\(−N,N)

∥∥ < ε. For any m ∈ Z define hm ∈ `2 (N) by

hm(n) =

{
g(n−m− 1) |n−m| < N

0 |n−m| ≥ N
,

then for any j, i ∈ N s.t. j − i > N ,(
L

(j)
i hj−i

)
(k) =

(
J (r)g|[−N,N ]

)
(k − j + i− 1)

for every k ∈ N ∩ (−N − j + i− 1, N − j + i− 1). Thus,∥∥∥L(j)
i hj−i − λhj−i

∥∥∥ ≤ ∥∥J (r)g|[−N,N ] − λg|[−N,N ]

∥∥+ ε

≤
∥∥J (r)g − λg

∥∥+
(∥∥J (r)

∥∥+ |λ|
) ∥∥g|Z\[−N,N ]

∥∥+ ε < C · ε.

By the unitary equivalence (8.4), an approximate eigenfuction of some

L
(j)
i will correspond to an approximate eigenfunction of L(j), with the

same eigenvalue. Moreover, since the infinite matrix L
(j)
i depends only

on j − i, the same function is an approximate eigenfunction of L(j) for
any j large enough. Thus, using the strong convergence L(j) → L we
get an approximate eigenfunction of L. Therefore σ

(
J (r)
)
⊆ σ (L).

We now turn to the second case indicated in Proposition 6.2, and
assume J(s) is a strong limit of the sequence {Jk}∞k=1. Any such J(s) will

appear as the restriction to the half line `2 (N) of some right limit J (r)

which corresponds, as above, to an R-limit, L. Thus J(s) is contained

in the set of matrices
{
L

(j)
i

}∞
i,j=0

above. Thus, again, any approximate

eigenfunction of J(s) corresponds to an approximate eigenfunction of

some L
(j)
i , and thus also of L. Hence σ

(
J(s)

)
⊆ σ (L). �
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