SPATIAL ASYMPTOTICS OF GREEN’S FUNCTION FOR ELLIPTIC
OPERATORS AND APPLICATIONS: A.C. SPECTRAL TYPE, WAVE
OPERATORS FOR WAVE EQUATION

SERGEY A. DENISOV

ABSTRACT. In the three-dimensional case, we consider Schrodinger operator and an elliptic operator
in the divergence form. For slowly-decaying oscillating potentials, we establish spatial asymptotics
of the Green’s function. The main term in this asymptotics involves L?(S?)-valued analytic function
whose behavior is studied away from the spectrum. This analysis is used to prove that the absolutely
continuous spectrum of both operators fills R*. We also apply our technique to establish existence
of the wave operators for wave equation under optimal conditions for decay of the potential.
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1. INTRODUCTION
In this paper, we study two operators that are central for Spectral and Scattering Theory of wave
propagation. The first one is Schrédinger operator
(1.1) H=-A+V, zeR?
and the second one is elliptic operator written in “divergence form”
(1.2) D= —div(1+ V)V, zeR3.

We will study the Schrodinger operator in the first part of the paper, operator (1.2) will be considered
in the second part. The potential V is always assumed to be real-valued and decaying at infinity at
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a certain rate to be specified below. One motivation for this work comes from the following problem
suggested by B. Simon [43]:

Let V' be a function on RY which obeys
(1.3) f [~V (2)da < .

Prove that —A +V has an a.c. spectrum of infinite multiplicity on [0,00) if v > 2.

For v = 1, a lot is known, e.g., the characterization of V' € L?(R*) in terms of spectral data was
obtained in [24]. The Simon’s multidimensional L? conjecture generated a lot of activity and many
results were obtained. We recommend two recent surveys [7], [38] and [39, 40, 41] for more information
and the list of references.

The goal of this paper is to go far beyond understanding the a.c. spectral type. When the spectral
parameter is taken off the spectrum, we will study the asymptotics of the Green’s function and
establish existence of the a.c. spectrum and wave operators as a consequence. In a sense, this paper
builds on ideas introduced in [13] where less precise estimates were proved using perturbation theory
and more restrictive class of potentials was treated.

To illustrate the kind of results obtained in this paper, we list a few of them below. First, we need
the following notation: given function f defined on {z € R3 : |z| > N} and p > 1, we introduce

0 » 1/p
|f|epm,oo>7mdéf<2( sup If(x)|)> :

n=N n<lz|<nt1
Theorem 1.1. Consider V that satisfies the following conditions:
(1.4) V=divQ, QeC'R%, |Vleg)re+|Qle@) e <®.
Then, c4c(—A + V) =R"T.

Comparing it to other recent results in the field (see, e.g., [7] and [38]), this theorem is, perhaps, the
strongest in terms of unconditional point-wise decay imposed on V. This rate of decay also turns out
to be optimal on /P scale. The statement of the theorem is contained in a stronger result, theorem 2.5,
which is proved in the first part of the paper along with auxiliary lemmas. The method is based on
analysis of the spatial asymptotics of the Green’s function G(x,y, z) when z is a regular point of H,
y € R3 is fixed and z tends to infinity in arbitrary direction. Under rather mild (and, again, essentially
optimal) assumptions on V, we prove the formula

(1.5) G(z,y,2) = GOz, y, 2)(Ax(0,y, k) + o(1)), |z| = 0, 2/|z| > 0 € S?,

where G is Green’s function of Hy = —A and Ay (0, y, k) is L?(S?)-valued function analytic in k = /2.
We obtain the uniform estimates for A, and study its boundary behavior in k € C* near the real line
by identifying the proper harmonic majorant. The standard properties of the vector-valued functions
in the Hardy class H?(ID) imply the entropy bound for the spectral measures and theorem 1.1 follows
immediately as a corollary.

In the second part of the paper, we study operator (1.2) and the wave equation
(1.6) ugy = div(l + V)Vu, u(z,0) = fo(z), wui(z,0) = fi(x),

which corresponds to, e.g., the propagation of acoustic waves in the medium described by potential V.
Formally, the group e*V? defines the solutions to (1.6) if D is given by (1.2). The operator (1.2) is
non-negative under very mild assumptions on V so v/D is well-defined by the Spectral Theorem and
the evolution VD preserves the L2(R3) norm. Our central contribution is the following theorem.

Theorem 1.2. Suppose V satisfies conditions:

(L.7) Ve <1,V =divQ, Q € C*(R), Jmax, ID7Q2z+y,00 < 0.

Then, the following wave operators exist
(1.8) W*(VD,\/Ho) % s — limy_, e’V Pe~itVHo

and the limit is understood in the strong sense.
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Existence of wave operators, in a standard way, implies that D, restricted to the ranges of W¥ is
unitarily equivalent to Hy = —A and that guarantees the infinite multiplicity of the a.c. spectrum
of D.

Another application of our technique has to do with, perhaps, the most natural and basic question
about the long time behavior of solution to equation (1.6): given some fy and f1, does the solution
propagate ballistically like in the unperturbed case? In view of possible eigenvalues embedded into
the continuous spectrum, the answer to the general question should be negative (indeed, if ¥ is an
eigenfunction for eigenvalue £ = 1, we observe that function cost - U(x) solves the problem with
fo =", f1 = 0 but does not propagate at all). However, we have the following theorem.

Theorem 1.3. Suppose V satisfies conditions of theorem 1.2, f is compactly supported, nonnegative,
and is not zero identically, then a nontrivial part of f propagates ballistically. More precisely, we can

write f = hy + ho, where hy L ho,hy # 0 and
TPy — e (W) T Ry = 0.

lim e
t—+o0

To clarify the statement, h; is chosen as the orthogonal projection of f to the range of W+ and

ho is hy’s orthogonal complement in L?(R3). Since hy L hy, we also have e~itVDp, | e~itVDp,

and, therefore, part of the wave propagates ballistically. We notice carefully that not all of eitvD f

is necessarily propagating: if hy is not equal to zero, then part of the wave can be localized around

the origin (e.g., oscillate like in the example with eigenstate discussed above or undergo even more
complicated dynamics if singular continuous spectrum is present).

The classes of potentials considered in this paper are ubiquitous, in fact. In both (1.1) and (1.2),
we let V' decay at infinity slowly and oscillate. More precisely, this is expressed in the following way:
V = divQ where Q is C(R?) vector-field that decays at infinity. For example, one can think of

) (sinz1,0,0) COS T1 —1.5-26
V =div ((|$|2 F1)02545 ) ([2]2 + 1)0-25+0 +0(|z| );0>0.

More generally, take Q(z) = q(|z|)P(z), where P is any C?(R?) vector-field satisfying Z?:o |DIP|o <

w and g€ C?(R") and ¢, ¢/, ¢" € L*(RY). ( For instance, take P as any trigonometric polynomial in

z and let ¢(r) = (r? + 1), v > 1/4. Then, V = ¢(|z|) div P + Vi, where V; is short—range.)

Another motivation to consider slowly-decaying and oscillating potentials comes from random mod-
els studied, e.g., by Bourgain [4] and Rodnianski-Schlag [36]. Following [13], consider the following
potential. Take any ¢ which is infinitely smooth function supported in By (0). Consider

Vo =D ajb(x —ay),

jeN
where {z;} are points in R?® that satisfy minj, »;, |z;, — zj,| > 2 (e.g., one can take the elements of
the lattice 2Z3). Then, choose {a;} in such a way that

Vo(2)| S (L+[a]) 727 e > 0.
Now, consider V in (1.1) or (1.2) given by “randomization” of Vp, i.e.,

(1.9) V(z) = Z a;&o(r — ;) ,

jeN
where {{;} are real-valued, bounded, and odd independent random variables. In [13], it was proved

that V' can be written in the form V = div @ where Q satisfies (1.7) almost surely.
The idea was based on writing the formula

_ . V(y) . j z—y
V =AATV = —divV, | —Z—dy = divQ, =| —Z _V(y)d
Ve | T — g Y ivQ, Q(z) o Tl — g (y)dy
and proving that @ satisfies |Q(z)| < C(1 + |z])~"/27“,¢; > 0 with probability 1. This implies, in
particular, that theorem 1.2 holds true almost surely.

In [13], it was proved that the operators H = —A + V with potential given by (1.9) satisfies
0ac(H) = [0,00) almost surely. The multidimensional random models with slow decay were considered
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in [18, 36] (on R, > 2) and [4] (on Z?) and existence of wave operators was proved. In the current
paper, we go beyond establishing a.c. spectral type (the main result in [13]) by showing that the wave
operators (1.8) exist. In contrast to [4] and [36], we proved deterministic results and then showed that
the random potential satisfies the conditions of the theorem almost surely.

To avoid some unessential technical issues (e.g., the correct definition of the operator H) we assume
that both @ and V are bounded and that they decay at infinity as follows:
(1.10) swp V(@) e PO, s [Q)] € ().

n—1<|z|<n n—1<|z|<n

This decay, similar to (1.3), is also L?-like and that makes our results optimal (i.e., changing ¢? to
P p > 2in (1.10) leads to absence of a.c. spectrum in general). The oscillation of the potential is also
crucial for our analysis of Green’s function asymptotics. Indeed, even in the one-dimensional case this
asymptotics contains the nontrivial WKB correction if the potential V' does not decay fast or does
not have some oscillation. In [10, 29], the WKB correction was studied in the three-dimensional case.

The problems considered in this paper are classical to scattering theory of PDE and the references

to older results are numerous. If the potential V' is short-range, i.e.,
C

(1 + [a])r+o”
the limiting absorption principle (see [3],[46]) implies that the positive spectrum of H = —A + V is
purely absolutely continuous. For elliptic problems written in the form (1.2), the limiting absorption
principle was studied in [15, 20, 21, 22]. As far as existence of wave operators is concerned, another
very effective tool, the Enss method, has been widely used to analyze the scattering problem in the
case when potential is short-range. We recommend the monograph [46] as a reference that contains
most of the classical results in scattering theory that are relevant to our paper. In comparison to
short-range case, potentials that satisfy (1.10) are too rough for the spectrum to be purely absolutely
continuous. In fact, the a.c spectrum can coexist with rich singular spectrum and thus the standard
methods (limiting absorption principle or Enss method mentioned above) become ineffective. The
technique we use allows to overcome this obstacle.

The scattering theory for the wave equation (1.6) was developed in [15, 22, 48] under the as-
sumptions that V' decays at infinity fast. In this context, see also [27] for the classical treatment of

V(z)| < §>0,

the scattering problem for wave equations. Our method to control evolution VD is based on the
well-known formula that expresses it as a contour integral of the resolvent (see, e.g., [45] where this
approach is discussed). This allows us to prove existence of wave operators and obtain the stationary
representation for them. In [8, 9, 11], the analysis of the stationary scattering problem has been used
to study the existence of wave and modified wave operators in the one-dimensional case. The current
paper develops this technique and puts it into the multidimensional setting.

The basis for our analysis is the method of a priori estimates for some Helmholtz-like equations and
this technique is different from standard perturbation theory developed in [13], where the pointwise
bounds |Q| < C(|z|+1)7%57¢, |V| < C(|z|+1)7%57¢ were required in (1.4). For Helmholtz equations,
a priori estimates used in [30, 31] in a different context. In [12], analogous a priori bounds were used
to study hyperbolic pencils related to Schrodinger operator. The idea to control the asymptotics of
G(z,y, z) in the L%(S?) topology is not new, it was used by Agmon [1] for the short-range case. We,
however, consider the functions Ay (o,y,k) in (1.5) as elements of the L?(S?)-valued Hardy space and
that allows us to obtain necessary estimates on the boundary behavior. These bounds become crucial
in the proof of existence of wave operators (1.8).

We finish this introduction by making a remark that we considered the three-dimensional case
only to avoid unessential technicalities. We believe our approach works in any dimension after minor
modifications. It is also conceivable that all results obtained in this paper can be generalized to V
that can be written in the following form:

V= %sc+%r;
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where Vs, the slowly decaying and oscillating part, is like in theorems 1.1 and 1.2 and Vg, the
short-range part, satisfies
HV|‘21(Z+),L°° < Q0.

We do not pursue this direction here.

Notation

e B,.(z) denotes closed ball centered at x and radius r and S,(z) is the corresponding sphere,
o def
S* = 51(0).
o If A is a self-adjoint operator defined on the dense subset of the Hilbert space H and z does
not belong to its spectrum (e.g., z ¢ o(A)), then R, = (A — 2)~! denotes the resolvent of A
at point z. If R, is given by the integral operator, i.e., if

(R.f)(x) = f Gl(z,y.2)f(v)dy,

R3
then we will call the integral kernel G the Green’s function of A. For example, if A = Hy = —A
and H = L?(R3), then ([32], formula (9.30), p. 73)

gikle—y]

G (z,y, k?) keCt.

~drly — gyl
e Sobolev spaces over the domain U with square integrable derivatives up to order [ are denoted

by H!(U). The space of compactly supported infinitely smooth functions is denoted by C*(U).
e The symbol d, denotes the Dirac delta-function at point y € R3.

e The symbol o, stands for surface measure.
def

e If reR3 and x # 0, then 7 = z/|x|.
e The symbol Pg+(k, &) stands for the Poisson kernel in the upper half-plane, i.e.,
Imk
Ps (k&) = .
e+ (k,¢) m(Rek — )2 + Im> k)
In general, if © is the domain in C with piece-wise smooth boundary 0f2, then the Poisson
kernel will be denoted by Pq(k,£), k € Q, £ € 0Q. Thus, for every f € C(Q), harmonic in Q,

we have

£(k) = LQ Po(k,€)f(€)dl¢]

with d|¢| being the arc-length measure.
e Given [a,b] such that 0 ¢ [a,b], we define I1(a, b, h) < {k € C*,Rek € (a,b), Imk € (0, h)}.
e For two non-negative functions f ), we write f; < f2 if there is an absolute constant C' such
that
fi<Cfs

for all values of the arguments of fi(). We define 2 similarly and say that fi ~ fa if fi S fo
and fy < fi simultaneously.

o If (Q(2), p11(2)) are two measure spaces and A is a linear operator, bounded from LP*(Qy, 1)
to LP2(Q, p2), then its operator norm is denoted by |A[y, p,. In general, if X,y are two
Banach spaces and A is a linear bounded operator from X; to Xy, then | A x, x, will denote
its operator norm.

e For shorthand, we will use | f||, to indicate the LP(R*) norm of the function f. Similarly, L?
will refer to LP(R?).

e The Fourier transform of function f will be denoted by

Ff=FO | jwemeod

and the inverse Fourier by f or F71f.
e Given self-adjoint operator H with spectrum o(H), we define the following set
S(H) Y (ke Ct k¢ o(H)).
We will often write ¥ dropping H.
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e The averaging of function f over the sphere centered at x with the radius r is denoted by
ef 1
M (£)(@) = s = ot | F(E)do.
@18 @ s
e Potential V is called short-range if there is 6 > 0 such that |[V| < (1 + |z])~1~°.
e The symbol C' denotes the absolute constant which can change the value from formula to
formula. If we write, e.g., C'(«), this defines a positive function of parameter «.

2. PART 1. SCHRODINGER OPERATOR WITH DECAYING AND OSCILLATING POTENTIAL

2.1. Formulation of main results. Consider stationary Schrédinger operator H given by (1.1)
H=-A+V, zreR?

with real-valued potential V' that satisfies the following properties

. def
(2.1) V=divQ, QeC'®R’), [V]= [V]eg:.r=+ |Qle@:) s <o.

We notice that both V' and @ converge to 0 as |x| — co0. Since lim|;|_o V() = 0, it is known from
Weyl’s Theorem ([34], p.117) that oess(H) = [0,0). The question what decay assumptions at infinity
imply that o,.(H) = [0,00) is more delicate and has been extensively studied lately, especially in
one-dimensional case (e.g., [14]).

In the first part of the paper, we study the spatial asymptotics of the Green’s function G(x,y, z)
when z ¢ o(H) and introduce “an amplitude”, which is L?(S?)-valued analytic function in z. We
study its properties and establish the absolute continuity of the spectrum of H as a corollary.

The following quantity will play the key role. Let
Ay, k) < drle —yle G @,y 1)

for k € ¥. This formula is easy to understand, in fact

_ G(z,y,k?)

- GO(z,y, k?)

thus the comparison is made to free Green’s function. We will take |z| — oo while keeping y fixed and
study the asymptotical behavior. This is related to the concept of Martin boundary in the theory of
harmonic functions, potential theory, and elliptic PDE (see, e.g., [28]) in the case when k € iR™ and

has large absolute value.
The main results of the first part of this paper are listed below.

Ax,y, k)

Theorem 2.1. Let V satisfy (2.1). For every I(a, b, h), we have
1 C(a,b, h,|y|,V)

sup — Az, y, k)|doy, < ———2—20 2

r>1j1) 72 le—y|=r Az, y. Bl Im* &
as long as k € U(a, b, h).
Theorem 2.2. Let V satisfy (2.1). There is the function Ax(0,y,k), defined for everyy € R3, ke 2.
It is L?(S?) vector-valued function in o and it is analytic in k € ¥ (as an L?(S?)-valued function).
Moreover,

TILH(}O HA(y +ro,y, k) - AOO(Ua Y, k)HL2(S2) =0.

For the short-range potentials, Agmon proved analogous result in [1].

Theorem 2.3. Let V satisfy (2.1). Ay (0,y,k) has the following asymptotics in sectors of C*:
HAOO(O',y,kJ) — 1HL2(S2) =0

lim
|k|—00,argke(5,m—3)

for every § > 0. In particular, this implies that Ay is not identically equal to zero in 3.

Take any f € L?(R?) and assume that it has compact support. Let oy be its spectral measure
relative to H. The proofs of theorems 2.2 and 2.3 give continuity of Ax(c,y,k) in y in L2(S?)
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topology. So, we can define h¢ (o, k):
(2:2) h(o,k) < | Aw(o,y, ke ™0 f(y)dy.
R3
Theorem 2.4. Let V satisfy (2.1) and [a,b] < (0,00). Then
b2
(2'3) th (0'7 k)H%ﬂ(Sﬂ < C(CL,, blv a,b,V, f) (1 + ) P+ (k’ \/ﬁ)daf(n)>

a

for all intervals (a’,b') C (a,b) and all k € II(d’, ¥, 1).

Remark. The last theorem implies that
C(a,b, f, V)

e ke (a,b,1)

[y (0, k)7 252y <
for every [a,b] < (0,00).
Theorem 2.5. Under the conditions of the previous theorem, if we assume that f is non-negative
(and not identically equal to zero), then hy is not identically equal to zero and

b
J log U}(E)dE > C(a,b,V, f)

a

for every [a,b]. As a corollary, we have o,.(H) = [0, 00).
The result about absolute continuity is sharp in the following sense.

Lemma 2.6. For every p > 2, there are potentials V' that can be written in the form
V =div Q, HVHZP(Z+),L:XZ < O, HQHZP(ZJF),LW <0, p> 2
and oq.(H) = .
The plan of the first part is as follows. We start with proving sharpness, lemma 2.6. The next
section will contain some auxiliary results. In section 4, we study properties of linear and bilinear

operators used later in the text. Section 5 contains the proofs of theorems 2.1-2.5. The harmonic
majorant for Ay (o,y, k) is found in the last section.

2.2. Sharpness of /2 condition.

Proof. (of lemma 2.6). Consider

Vi)™ divQ, QX q(jl') (21,72, 3).
where
(2.4) q(r) €Y ane(r —nl),
n=2

an def n~7,v e (0, %) and ¢ is smooth function (a “bump”) supported on [—1, 1] which is not identically

zero. Differentiation gives

V(z) = ¢(r) + 2‘17@7 r 4 Ja).

Clearly, V satisfies conditions of lemma 2.6.

By the theorem 7 from [6] and Relative Trace-class Perturbation Theorem (theorem 8.8, [47]), we
know that o,.(—A + V) = 04.(H;) where H; = —A + V,x € R3\B;(0) with Dirichlet boundary
condition on S%. Since V is radially symmetric, H; is unitarily equivalent to

d? B

“ar e

defined on L?([1,00), L?(S?)) with Dirichlet boundary condition at » = 1. The symbol B denotes
Laplace-Beltrami operator on L?(S?). Thus, in the orthogonal basis of spherical harmonics, H is a

+ V(r)
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direct orthogonal sum of one-dimensional operators {L,,} (counting multiplicity)

2

def  d An 2q(r)
L, = d2+—+q()+—r ;neN

with Dirichlet boundary conditions at » = 1, where {)\,} are eigenvalues of B. In [25], theorem 1.6,
the following potential ¢; was considered
2 a;W(x — ;)

where W is non- negative supported on [—1, 1] and lim;_,o, a; = 0,1im;_,o x;/2;41 = 0. Then, it was
proved that 37, a5 = oo implies 04.(—d?/dz? + 1) = & for every boundary condition at zero. The
proof of this result however, extends to sign-indefinite potentials without efforts and this gives

Oac(—d*/dr® +¢) = &,

where ¢ is defined in (2.4) and the Dirichlet condition at r = 1 is assumed. For the perturbation in
L,,, we have

2n + Z(r) e L'[1,0),
r

2

r

which makes it a relative trace-class perturbation that leaves the absolutely continuous spectrum

intact. To summarize, we have o,.(L,) = & for all n and so the absolutely continuous spectra of H;
and H are empty.

O

2.3. Basic estimates for Green’s function. In this section, we will be mostly interested in the
general properties of the Green’s kernel for bounded potential. First, we need to make sure that this
kernel exists. To do that, we start with lemma.

Lemma 2.7. IfV e L®(R3) and z ¢ o(H) U [0,0), then R, f € H?(R3) for every f € L?(R3).
Proof. Before proceeding with the proof, we recall two main identities from the Perturbation Theory:
R.=R - R, VR?=R? - RWR,, z¢o(H)uo(Hy),

where V = H — Hy, and
R.,=R.,+(z—2)R.R.,, 2z,20¢0(H).
We will be using them multiple times in this paper. To prove lemma, we write R, f = ROf — ROV R, f

and notice that R, maps L*(R3) to itself, R? maps L*(R?) to H%(R3). Since V is a multiplier in
L?(R3), we have the required property. O

Since H2(IR?) is continuously embedded into L*(R3), Corollary 2.14 from [5] can be applied to get
representation

r) = f G(z,y.2)f(y)dy, sup f Gz, y, 2)Pdy < o
R3 zeR3 JR3

forall z ¢ o(H)u|[0,00). In the case when |V < oo, we get [0,0) € o(H), so it is sufficient to require
only z ¢ o(H).
We continue with simple and well-known symmetry result.
Lemma 2.8. If V e L®(R3), then G(x,y,2) = G(y,,z) for each z ¢ o(—=A + V).
Proof. The perturbation series for the resolvent
G(l’, Y, k2) = GO(:E7 Y, k2) - Go(x7 51; k2)V(£1)G0(§17 Y, k2)d£1 + ...
R3
converges absolutely if Imk > L where L is large enough. This implies G(x,y,z) = G(y,x,z) for

these k. However, both of these functions are analytic in C\o(H) so the identity can be extended to
the domain of analyticity. O

Lemma 2.9. IfV € L®(R?), then G(x,y,%) = G(v,y,2) if 2 ¢ o(H). Then, A(z,y,—k) = A(z,y,k)
ifkey,



SPATIAL ASYMPTOTICS OF GREEN’S FUNCTION FOR ELLIPTIC OPERATORS AND APPLICATIONS ... 9

Proof. Since ((H — z)*l)* = (H —z)7!, the previous lemma gives
G(z,y,2) = G(z,9,7) .
The identity for A now follows from its definition. O

Lemma 2.10. Suppose V satisfies (2.1). Take y € R® and consider

Q@) = Q@ —y), Vyle) = divaQp(e).-
Then,
Viglezz+y,ce ST+ 1yl 1Qulle@tyLe S1+yl-
Proof. We trivially have

no—1

sup Q)| < Y] sup |Q(x)]

ny <|z|<ng j=n1 ji<|z|<j+1
Since

sup  |Qpyy(2)] < sup Q)]
n<|z|<n+1 max(0,n—[y]—1)<|z|<n+[y]+1

we get the statement of the lemma from triangle inequality in £2. The estimates for V' can be obtained
similarly. O

We will need to truncate potentials in the following ways. Given p > 1, consider smooth «, (), z €
[0,00) such that 0 < a, < 1 for all z, a, =1 on [0,p], a, = 0 for > p + 1. Take V that satisfies
(2.1) and define

(2.5) Qi (@) L a,(j2)Q(x), Vi L divQ, .

Similarly,
def def
QY =EQ-Qp, VWEV-V,.
Notice that ||V, | < [V and its support is restricted to B,1(0). For V() we have
V@I < V], lim V@) =o0.
p—

Let us consider the corresponding operator by H,) = —A + V{
function G, (,y, 2).

p)s its Tesolvent R(,), and the Green’s

Lemma 2.11. Assume that V satisfies (2.1). If f € L*(R3) and z ¢ o(H), then
Jim, IRy, f —R:f[2=0.
Proof. Since lim, o, [V |55 = 0, we have o(H(,)) — o(H) in the Hausdorff sense if p — oo. This

follows from the general perturbation theory. For every z ¢ o(H), we can take p large enough and
write

R(p)zf = sz_R(p)zV(p)sz'

Since limsup,, ., | R(,)_ 2.2 < o0 and lim,o, [V R, f[2 = 0, we get the statement of the lemma. [J

Given f € L*(R3), we can define the spectral measure o of f relative to H. Similarly, we introduce
Of(p)- The immediate corollary of the previous lemma is

Lemma 2.12. Assume that V satisfies (2.1). If f € L*(R®), then
Of(p) —0f, 05 p—> 0
in the weak-(*) sense.

Proof. Indeed, since
dog (A dor(N)
_ (p) . _ of
R f By = [ 192 o gy = [ 10
as p — o for every z € C, we get the statement of the lemma because continuous function with

compact support can be approximated by its Poisson integral (imaginary part of the Cauchy integral).
O
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Lemma 2.13. If V € L®(R3), then
sup |Gy, 2) = G*(w,9,2)| < Cu(z, [V ]0)

z,yeR3

for all z ¢ o(H) v [0,0). Moreover, for every a,b,h, we have

(2.6) Ci(z, [V]w) < C(a,b, h) (';Q'Ij + L;i)
if = = k2 and k € Ti(a, b, h).
Proof. Write
G(z,y,2) = G(2,y,2) — » G(x,& 2)V(6)G°(&,y, 2)dE .
Since |GO(-,y, k|2 S (Imk)~Y2 and | R, |22 < C2(2), we get

Ve Colz
(2.7) Gy, 2) = Gy, )]s < W Ca)
Imk

Now Cauchy-Schwarz inequality and symmetry of the kernel yield

R3

;
< IV IG Gy 2alCe - e S 2 (14 (V).

More careful analysis of the constant gives (2.6) because

C(a,b,h)
(2.8) Ca(2) < TImk

if k € I(a, b, h). O
The previous proof immediately yields the following lemma.
Lemma 2.14. Assume that V satisfies (2.1). If z ¢ o(H), then
lim sup |G, (7,y,2)—G(z,y,2)| =0,

P=X g yeR3

(29) ph_{%o HG(p) (Jf, Y, Z) - G(JZ‘, Y, Z)|‘H2(T1<|zfy\<7‘2) =0
Jor all ryg): 0 <ry <rs.

Proof. Fix z ¢ o(H). We can take p large enough to have z ¢ o(H(,)). The second resolvent identity
gives

G(p) (1‘, Y, Z) - G(ZC, Y, Z) = \L@ G(p) (ZC, 57 Z)V(p) (E)G(Ea Y, Z)df .
Now, Cauchy-Schwarz inequality along with (2.7) provide
|G o) (2,9, 2) = G2,y 2)| <[V Gy (s 2) |2 G, 2) 2 < Cla, [V o) [V oo -

Since |V, — 0, we have the first statement of the lemma.

To prove (2.9), denote u(x) def G(z,y,2), u)(z) ef G (p)(z,y,2) and write

—Au+Vu=zu, —Auy + Vyup) = 2up
for x : |z —y| > 0. Taking du = u — u,), we have
—A(du) + Vu = zéu + (Vi) — V)ug,) -

Since lim, o [0u] £ (7 <|o—y|<ry) = O uniformly, we have lim, o [A(6u)| L0 (r) <|z—y|<rp) = 0 uni-
formly. The Interior Regularity Theorem for elliptic equations ([17], p. 309) then implies (2.9). O

Lemma 2.15. If V € L°(R3) then

1 1 2
(2.10) - G, 0, 2)2dor, < S H Vi) G (x,0, 2)|2dx
2 2
7 Jlz)=r r r—l<|z|<r+1
and
1 1 2
(2.11) L 1060, 2)2do, < LEEF Vi) G (z,0, 2)|2dx
2 ~ 2
r |z|=r r r—l<|z|<r+1
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uniformly inr > 2 and z ¢ o(H).

Proof. Indeed, we notice that for each ball B,(§) that does not contain 0 we have
IAG(-0,2)|L2(B, () < (2] + V) IG(,0,2)[L2(5, ()

as follows from the equation

(2.12) — A,G(2,0,2) + V(2)G(z,0,2) = 2G(x,0,z), x#0.

Now, it is sufficient to consider balls {Bgg(z;),7 = 1,...,N} such that |z;| = r and S,(0) <
U;Boo(r;). We can take N ~ r2. In each ball By(z;), G(x,0, z) solves an elliptic equation

AG(z,0,z) = (V — 2)G(2,0,z2).
Therefore, by Interior Regularity Theorem, we have
|G (2,0, 2) 92 (Boo () S (1 + 2] + [V]) |G (2,0, 2) | L2 (5, () -

Then, we can use the theorem about restricting the H!(B;) functions to hypersurfaces (in L*(B; n
Sr(0)) norm in our case, see [17], p.258) to write

j | ‘ (J? 0 z | dO';E ZJ‘ Boo ) .T 07Z)|2d0x 5ZHG(%O’Z)”?-LQ(BM(%)) 5
z|=r rNB50.9(Tj 7

(L+ 12| + V1) Y 1G (@, 0, 2) 2y ) S (1 |2 + \|V|\w)2J |G(,0,2)*da.

F r—l<|z|<r+1

Since |VGl31(Boo(e;)) S |Gln2(Boo(a,)), We can write analogous bounds for VG. This will give
(2.11). 0

As a corollary we immediately have the following lemma.

Lemma 2.16. If V € L®(R3) and k € I1(a, b, h), then

| . A+ VIe) (1 IVIE
. —_— T <
(2.13) 5 fl G 0K Pl < st = EYREEYSE
and
1 A+ V] (L VI
2.14 : ?)*do, < 5
( ) r2 |z|=7 10-G(x, 0, k°)do Cla, b, h) r2 Imk * (Imk)3

uniformly in r > 2.

Proof. The proof follows from the previous lemma, (2.7), and (2.8). O

2.4. Study of auxiliary operators. We start with simple technical observation.

Lemma 2.17. Let {a;},1 =0,...,5 —1, a; > 0 are given and x € R satisfies
! < Z alxl
1=0
Then,
(2.15) <j Z A
Proof. We have
) < Z az! < jmlax{alxl}, so x<jW mlax{(al)l/jxl/j},

which implies the lemma. O
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We introduce the weight

def 1, |z| > 1
(2.16) w(z) = { -2, ol <1

and say that f e L2 (R3) if

et 1/2
1fl2w = (J |f|2wdx) < 0.
R3
We will start with three model equations. In all of them, we assume that k€ C*.
ezk\x\ fl
9.17 — Auy — K2uy = ( 2di (—))
(2.17) uy U ] |z|*div 2]

where f; € L?(R?) and the both sides are considered as tempered distributions.
The second one is

2.18 Ay Ky =
(- ) — AUz — u2_m2’
where fy € L2 (R3).
The third one is
(2.19) — Aug — Kuz = Z = (|:E|Vf3)

and HVH£2(Z+)$LCG < OO,f3 € LQ(RS).
In each case, the solutions u;(2 3y will be understood by applying (—A — k?)~* to the right hand
side. We can write

ik|x| , ‘
e—(\x|2div(£>> = ekleldiv f — e”’ml%fl
|z |z ||
and
(2.20)
iklz—y| iklz—yl iklz—y|
wy = f T ikl iy fy dy — J Gkl Yy f ikl Yy
rs 47|z —y| yl<ri/2 Amle =yl Yl yl=ri/2 ATle =yl Jyl
The first integral is understood as convergent integral if we write it as
etklz—yl ) etklz—yl )
2.21 —f ——— (Ve frd —f \Y% () ekl frdy .
( ) R3 47T|517_y|( Yy )f Y RS Yy 47T|$—y| f Y

The second integral in (2.20) converges absolutely since f; € L?(R?). It represents a smooth function
inze{z:r <|z| <mr}. Thus, uy € H(r1 < |z| < ry) for any 0 < r; < ry. The theorem about
restriction to hypersurfaces implies that u;(ro) € L?(S?) for every r > 0. Here, we have written x =
ro, o € S? in spherical coordinates. The formulas (2.20) and (2.21) show that if lim,, ||f1(n) —fil2=0
and fl(n) e CP(R?), then Hugn) — U1 |21 (ry <|2|<rs) — 0 @s n — 00. This observation makes it possible
to always assume that f; € C%(R3) when obtaining the estimates for u; in H!(r; < |z| < r2), the
space we will be interested in later on. Then, equation (2.17) is understood in the classical sense. The
same reasoning can be applied to uy(s).

We introduce
def  U1(2,3)

H1(2,3) = O, 0.1%) ~ (4W)|$\@_ik|$|ul(2,3)-

Then,
) 1 . (fi
2.22 —Apy =2 | ik — —— ) 0rpq = |z|?div( 0
1
(2.23) — A/J/Q -2k - —— aT/,LQ = fg, z#0,
47 |x|

1
(2.24) “Aps—2(ik— —— ) dps = x|V s, z#0.
47 ||
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Having explicit expression for (—A — k?)~!, we can write representations

ik(—r+|ro—y|+|y|
(2.25) m = BM(f1) = rfRs (M) (|y|2div<|§))dy’

<eik(r+|ray+y

(2.26) pa = B = |

R3

) hw)dy,

drlro —ylly|

<eik(r+r0y|+y|

(2.27) po = BOW ) = [

Al — Viy)d
e ) WAV iy,

thus defining operators B,(,j ), 7 =1,2,3. In the definition of Bﬁl), we can again integrate by parts to
get convergent integral or assume that f; € C%(R3).
We also need to define the fourth operator

ik(—r+|ro—y|+|y|
B (fa) = TJ (e

) |y|d1V f4dy )
R3

drlro —ylly|
where fy € L2 (R3). Notice that

BM(f1) = BV (f1) — B (fl . |z>

or

(2.28) B (f,) = BO(f,) + BP <f1 - ;) .

Similarly to Bﬁl), integration by parts defines convergent integral

etk(=r+lro—yl+|yl
(2.29) B (fa) = —TJ Vy () ady
RS

dr|ro — y|
and this is how we will understand B for fi€ L2 (R3).
The following lemma will be important later in the text.

Lemma 2.18. For every k€ C*, we have

1 1 k| k| 1 \"?
(2:30) sup (1 o)) (|k:2 TR T me)p2 T Qmke Imk) £z
1 1 1 1 1z
230 sl < (5 + e ¢ e ) e
(2.32)

1/2
1 1 1 1

S Ve w .

2 sl ez 5 (|k:|2 TPk T Rz k|(Imk)2> Vleao) =15l

Proof. We will give all detail for the first estimate. The others can be proved similarly. One way to
obtain the estimates of this type is to go on the Fourier side in ¢ in formula (2.25) and control the
convergence of the resulting integral in |y|. However, it is more instructive to proceed differently. By
the standard approximation argument, it is enough to assume that f; is smooth and is supported on
annulus {z : a; < |z| < az,a; > 0} and | fi1|2 = 1. Having made these assumptions, we immediately
obtain

(2.33) lim p1y =0, Vi € L%(By,2(0), € L*®(R3), lim Vyu; =0.

|| —00
Consider the following five quantities: m,my, M, M ,A.
def _ def _
mn) = f aPdos,  ma(r) < e f (0 pua*do
|z|=r lz|=r
and

[V |?

BE dx .

r+1 P
MY supJ m(p)dp, M 2 sup m(r), A def J
R3

r>0 Jr r>0
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From (2.33), we get
(2.34) limm =0, my(r)e L*(0,a1/2).

r—0

Notice that
Su%’ lpa(r, o) 22y = VM
>

and our goal is to estimate M. Consider (2.22), multiply both sides by fi;/|x|? and integrate over the
annulus {x : r; < |z| <12} where r; > 0.

Apfi 1\ f10: .
(2.35) —f 1 ZJ <zk = ) AL gy — J dlv(£>ﬂ1d:ﬂ.
rI<r<ry |x| rI<r<rz |x| |'r| r1I<r<rg |]"
Let 71 < a;. Then, integrating by parts in the last integral gives
Vi _
J div<£>ﬂ1dx = —J hVin dx + f hi ndoy
r1<r<rg |$ r1<r<rg |£C| |z| =72 |{E|
and n is a normal vector at z. Integrate by parts in the first integral in (2.35), to get
Ay fi Vi ]? fi10r
(2.36) —f ‘“f%m:f Vin| dm—2f LA A
r<r<rs |93| r<r<rs |1‘| ri<r<rg |='17|
where

I = TEZJ p10rprdog, I = TfQJ [i10ppir1doy .
r=r2 r

Notice that the second term in the right hand side of (2.36) will cancel the same term in the second
integral in (2.35). We get
Vi )? [i10y Vi [i
(2.37) f | “12‘ dx—2ik P9 o = 12—11—f hVin dx+f LT
r1<r<rs |£L'| ri<r<rg |z|="7s

r1<r<rg |"'II"|2 |x|

Divide this formula by —ik and take the real part of both sides. Making use of the identity
f P10r 1 + p10rfiy
r1<r<reg

dx = m(ry) — m(ry),

|z [?
we get
Imkf Ak 2| + |11
dx + m(ry) < m(r) + ———
k12 Jri<rary  |2f? k|
(2.38) + 1 f hViu dx‘ + € J L ndoy| .
|k| r1<r<ro |£17| ‘k| |z|="7s |$‘

This bound will play the crucial role. We start by estimating A. For that purpose, we send r; — 0
and 73 — 0. Since py € L®(R?) and limy,_,o gy (z) = 0, we get lim,, o Io = 0. Applying Cauchy-
Schwarz inequality to I; we get
1/2
|| < (m(rl)ml(rl)) .

The bounds (2.34) give lim,, o I; = 0. For the last term in (2.38), we get
Ji

||

lim ndo, =0
270 Jiz|=ry
because f; is compactly supported. Dropping the nonnegative term lim,., ,o m(r2) and applying

Cauchy-Schwarz inequality along with || fi]2 =1 to

f IV g,
r1<r<rg |.’17|

Imk 1
—AS VA, AZ
|| ||

< filvVA = VA

give us
k|
(Im k)2

(2.39)
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Consider (2.38) again. Drop the first term, send r; — 0, and average in ry over (r,r + 1). This gives

r+1 r41 r41 —_
1 1 Vi
m(re)dry < —f |I2|drs + —f J dx|dry +
»[” |k| r ‘k| r |z]<re |‘T|
r+1 —
i f f hity ndo,| drs .
|k| r |z|=r2 |$|
We use
r+1 r+1 r+1 r+1 1/2
f |Ix|dr < f vm(re)my(re)dre < (J m(rg)drgf ml(rg)drg) <
0 1/2
(MJ m1(r2)dr2> § \/MA
0
and
r+1 A 2 i1 1/2
f f L/ ndoy|dry < J | f1]?dx (J m(rg)dr2> < VM
T lz|=r2 |$‘ r<l|z|<r+l r
to write

m(re)dry <
, ||

Taking supremum of both sides over r € (0, ) gives an estimate on M

(2.40) M < |1?| (x/Z+ VM + \/AM) .

J”l VAM + VA+ VM

Substituting the bound (2.39) gives
1 1 1
<
SR T GmrE ik

We are left with estimating M. Recall that

m(r) = L? |1 (r, o) 2do, .

M

Differentiation in r gives

r+1
] <2 [ (o) (. )ldor, S Ny, | 'l S VAIVA.

Writing for every r > 0

m(r) = mip)+ [ @it mir) < | " mo)dp + | [ i ©1atap < a1+ vina

T

and taking supremum in 7 of both sides, gives
(2.41) M <M+ +VAM.

This yields (2.30). The estimates (2.31) and (2.32) can be obtained in a similar manner. For reader’s
convenience, we state the estimates for A, M, M.

(1). For pg, we bound
J f2'u22 dx
r<|z|<ra ‘x|

by Cauchy-Schwarz inequality. This gives.

2wVM = VM

S/

VM +VAM

A< Moar g i

~ Imk

Solving these inequalities (using, e.g., lemma 2.17) gives

| 1 | |
A< —(1+—), Mm<— (14—
NImk( +Imk)’ > |k2( +Im2k)

and (2.41) implies (2.31).
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(2). For us, the estimates are identical to those for ps. In fact, for

V faTi
f f3M3 de
ri<|z|<ra |$|

v 1/2
< | f5ll2 (J (sup IV(:B)I)Qm(T)dT> SVM|V @) L

r1 |x|=r

we write

f V f3hs
ri<|z|<re |£I?|

and the rest follows. O

Remark. Notice that the estimates for M are better than for M. In fact, we can summarize them

as
r+1 1 1 1
(242 sup [ oo < (s + e + g ) 101
r+1 1 1
(243 sup [l )y S (s + g ) Vel
r+1 1 1
(244 sup [ . s < i + ) 1V 1B Ll

After taking account of (2.28), these lemmas and remark immediately imply the following theorem.

Theorem 2.19. For every k € C*, the operators Bﬁj) are linear bounded operators from the corre-
sponding Banach spaces to L*(S?) and

r+1 1/2
[ 1B emte) < LN,

r

215 swplBO (e < I s (
>

>0

1/2

r—+1
| IB,S”(f)|2m<sz>dp) < WIS

T

2w

(246)  sup|BO()] ey < Colk)|flzmer sup(
r>0 r>0

(2.47)
1/2

r—+1
sup 1B V)i < Ca®lfalVieer sup ([ 15O (Dlsenydo) < NSVl

r

(2.48)

r+1 1/2
sup | B (1) |12(e2) < (C1(0)+Calk) | o s_gg(f IIBS")(f)%Z(sz)dp) < (CLI+CHN S |-

T

and the estimates on Cy(a,3) can be obtained from (2.30), (2.31), (2.32) (01(2 3) from (2.42), (2.43),
(2.44) by taking the square root).

Having taken f as a function with compact support in the last theorem, we can send r — o0 in the
formula for each B,(~J ) to get the limiting operators when r — o0

Q49 B - BY() =~ | (f; k(G- a>) (1) fy
R3
i | - 0'7/\ )
B BE() = () | D iy,
R3 |y|
BE(f) = B (f) = (4m) ! f MA@V fdy,
R3

B (f) —» BY(f) = —(47r)_1ikj (5 — o) =@D) £y
R3

and this convergence is uniform in o € S2. Moreover, to estimate the limiting operators, we can use
the bounds from the remark above. Thus,

(2.50) IBL ()2 S k) fl2e 4 =1,....4,
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if we keep assumption that f is compactly supported.

If the condition on the support of f is dropped, the integrals in the right hand sides of (2.49) do not
have to converge absolutely for given o. However, being defined on the set of smooth functions with
compact support, which is dense set in L?(IR?), these operators are bounded from the corresponding
spaces to L%(S?) as follows from (2.50). Thus (2.50) hold for all f € L?(R?).

We will also need the following standard result on so-called “strong convergence”:

Lemma 2.20. For each j =1,...,4 and k € CT, we have

lim [BY(f) = BE ()]l 122 = 0,
where f is taken from the corresponding spaces, i.e., f € L*(R3) for j = 1,3 and f € L?(R3) for
j=24.

Proof. We will prove lemma for j = 1, the other cases are similar. Given any € > 0, we take Rs so
large that | fx|s>r, 2 < (C1)~'€/3. Having fixed this R;, we notice that Bfnl)(fx‘mkpb) converges to
Bgol)(fx|z|<R2) uniformly on S? as r — oo. For the tails, we have

IBO(FXjar= )2 < /3, IBS (FXjap-ma) 2 < /3
and the first bound holds uniformly in . This finishes the proof of the lemma. O

2.5. The proofs of main results. Consider u that solves
(2.51) —Au+Vu=Fku+f,
where V € L®(R?), k € ¥ and

o cither | f|2 <1, supp(f) € Bg(0), where R = Ry is not fixed and can depend on f.
e or f = dy in which case u = G(z,0,k?). We can let R = 0 in that case.

To control the asymptotics of u(z, k) for large = we will employ the strategy used in the previous
section already.
Define

(2.52) L def Arr|x|e~Rlely
We have the following integral equation for pu:
(2.53) e 1) = e )~ |

where

|| ik (z—yl+lyl~ =)

lz —yllyl

Vu(y, k)dy,

(2, k) — 1, if f = do,
HOUL B =\ dn|ale—i*lelROF, if  f e L2(R?).
This p solves

1
(2.54) —AM—2<ikz—x|)ur+Vp:0, |z| > Ry .
As before, for each r > Ry, we introduce

m(r) def r_QJ

|z|=r

|ul?doy,  ma(r) S J | |*dos
|z|=r
and
|Vl
z|>r |£L"2

Clearly m and m; are always finite since u € 7—[2(B1%L+5) for any € > 0 and M, ]/\4\, A might be infinite.

p+1 .
M(r) « SUPJ m(t)dt, M(r) 4 sup m(p), A(r) def J e
|

r<p Jp r<p

In the next lemma, we will estimate A.

Lemma 2.21. Suppose V' is compactly supported and k € 3. Then,

(255 A(r) = le 'Z:ledx < —Lﬂ V:'Z'idx T () + 1 (s (r))12))
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for every r > Ry.

Proof. Consider (2.54), multiply by ji/|z|* and integrate over the annulus {z : 71 < |z| < ro} where
T > Rf.

Aufi 1 Y 2
(2.56) —f Lﬁdw—2j (m-) a /;d:c—i—f v, o,
r1<r<ry |x‘ rI<r<rg |I| ‘x| r1<r<ry |I|

Arguing as before, we get

2 - 2
(2.57) f Vi g it Pl g + f v e o1,
r1<r<ra ‘.’L‘| r1<r<rg ‘.’L‘| r1<r<rg |x|
with
(2'58) I, = ng ‘[ /JrﬂdO', L = r;2J /—lrﬂda
r=ro r=ry
and
Ika |V u|? Imkf |)? (Ig—h)
2.59 ——dx +m(ry) + —5 V——dx = m(r1) — Re - .
S T N N Tl I ok i
We take r; = r and use
(2.60) lim Vu=0, peLl*(B%)
72 —00

to establish that

lim I, =0.

T9—00

(Indeed, we have

Gla,y. k) = G,y 1) f GO, &, KV ()G, y, K)de

supp(V)
From (2.7), |V (€)G(&,y,k?)|2 < o0, and we can take |x| — o0 to establish asymptotics
6ik|gc|

Gl ) = (e - |

- 47T|I| supp(V)

e FEOV(G(E, y, k?)dE + 0(1))

for G and analogous statement for the gradient. This gives (2.60) )

Sending ry — o0 in (2.59) gives us

I 2 I 2
(261)  nk J Vi 4 4 (o) + iff VI 4o < mr) + ORI (m(ryma ()2

after applying Cauchy-Schwarz inequality to I;. O

Assuming positivity of V', we can get rid of the assumption that V' is compactly supported as can
be seen from the following Corollary.

Corollary 2.22. Suppose V € L*(R3) and V > 0. Then,

||? |x]? Imk

for every z = k*> ¢ o(H) U [0,0) and r > Ry.

(2.62) L | VL g+ Ll y il g, < O (m(r) + [k (m(r)m1(7°))1/2>

Proof. Consider V(,) = Va,(|z|) (see the formula right before (2.5) for the definition of a,) . Then,
assuming that supp(f) © Bg(0) again and comparing two solutions u and u,

—Au+Vu=zu+ f, —Au, + Vi pyu, = zu, + f

we get
Jim, luw = wpll Lo () = 0, Jim, 1A = Aup| o) = 0
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for every K, a compact in (Bry)®. ( The proof of that fact is easy but we will present it. Assume
f € L?(R?). Subtracting two equations, we get
u—u, = Gpy(z,8, 2)VPyde .
R3
Cauchy-Schwarz implies

lu =l pon sy < sup |G, -, 2) 2|V u -

The last factor converges to zero as p — c0. For the first one, we can apply (2.7) to get

1G oz, 2)]2 S C(2) |Vl
independently of p. Thus, lim, e ||u — up| o ®s)y = 0. Then, [A(u — u,)|r=x) = 0 follows from the
equations. The case when f = §p can be handled similarly.)

Therefore, lim,_,x ||u — u, |32y = 0 for every annulus U in B%(0). From the definition of p, u,,
we obtain [p — ppl42 @y — 0 and application of the previous lemma yields

Vi) ” J 1) | Clk|? . 1/2
2.63 j ————dr+ V, dr < m(r) + |k me,(r)m r
) | o T TS T () B O ) )

with any R; > r. Taking p — oo first, we get

|V,“|2 |M|2 C’|]f|2 -1 1/2
(2.64) J dzx + Vi—sdr < m(r) + [k|7 (m(r)my(r)) .
r<|z|<R: |Z‘|2 r<|z|<R; |J}|2 Im#k ( ! )
Now it is only left to take Ry — c0.
]
Lemma 2.23. If V satisfies (2.1), k€ X, and r > Ry, then A(r), M(r) < o and
M) |Qlle2(pr),00), 1
(2.65) A(r) S M(P)|QUZ2 (7,000, + m Lo +m(r)|Qllez((r),00),L
|2 m(r)ma (r)
+Imk: m(r) + ] ,
< Imk M (r)]|Qlle2 ((r),00), 12
M(r |k|2 (V PQle2(r,0),20 + m(r)Qle2(pr),00), + m ) +
Vm(r L VMG
(2.66) m(r) +
|k| Ikl
For J/\/I\(r), we have a bound
(2.67) M(r) S M(r) + /A(r)M(r).
Proof. We first consider truncations V|5, defined as in (2.5). Given k € X(H), we have k € Z(H(R))
when R > Ro and Ro is large enough. Our first goal is to prove the estimates (2 65),(2.66), and (2.67)

for V( ) with all constants independent of R. Then, we will take the limit as R— .

In the calculations below, from the formula (2.68) to (2.76), all functions involved depend on R
and we suppress this dependence to make reading easier. We notice that [Viz [ < [V and this will

provide the necessary independence of R. We start by proving (2.65). Consider (2.55). Integration

by parts gives
2 2 2
\Y
r<|z| |’JS‘ r<|z| | | |z|=r r

|z[?
For I3, I3 S m(r)| Q| ¢2([r],00),z - The integral can be estimated we follows

1/2 1/2
2 2 2 2 2
[T Py T T R T
r<|z| |1?| | | r<|z| |JU‘ r<|z| |1?| r<|z| |1‘|

(2.68)
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For the first integral,

|Q|2‘/’L|2d <M J- 2 M 2
W 2 S (r) >, swp QP = MM)QI% (00,1
r<|z

n=[r] n<|z|<n+1

and

2 o0

1
[ s me y sup Q)| S MO+ 1)1 QU 10,00
r<|T

n=[r] n+ ]‘ TL<‘$|<7L+1

Collecting the estimates, we write
(2.69)

Iul
AL
L<|z| \$|2

Substituting into (2.55) and solving inequality for A, we get (2.65).

m(r)[Qllez(r),00), 22 + /A M@l ez (1,000, + M (r)(r +1)72|Q 2 ([11,00), 1.

Consider (2.59) and take r1 = r. Then, we drop the first term and average in 7 from p to p + 1
assuming p > . We use (2.69) to get

Pt  Imk M(r)|Qllez(r,00), 2
dro <m 2([p o + 2 ([
[ meirs £ mie) + o (VAOIMEIIQU e DL (1) Q.
Pt m(r)ms (r)
2. A/ m -
( 70) |k|J- 7”2 mq 7“2 d?"2+ |]€|
We apply Cauchy-Schwarz estimate to get
p+1 p+1 1/2
Vm(ra)mq(ra)dra < (J m(rg)dm) AV2(r) < AJA(M(r).
p p

Taking supremum in p of both sides in (2.70), we get an estimate

< Imk M) QL (0091
M |k|2 (\/7HQH€2 ([r],00),L*® + m( )HQHZZ ([r],00), L% + \/m ) +

Vm(r L VM@
(2.71) m(r) + |k:| |k| )
which is (2.66). The proof of (2.67) is identical to (2.41). Notice that it is the support of V' being
compact that allows us to say that M (r) < co. Thus, we proved (2.65),(2.66), and (2.67) for truncated
potential V( ) assuming k € X(H). Let us study the first two estimates. Fixing k € %, we can
take r(k, V) so large that inequalities take the following simpler form for all » > r(k, V) because of
lim, o0 [Ql ¢2 (1,00, = 0.

M) |Qle2(1r,00),L

(272) Al) S MOIQU oy + —— S
(273) IR (m(r) + K (e ()2)
(2.74) M(r) Sm(r) + \/m(]z?nl(r) + \/M|(/:|)A(r)
Substituting the first estimate into the second gives

1 m(r)mq (r)
(2.75) M(r) < <1 + Imk‘) (m(r) + |k|> ,

Ll m(r)m(r)

(2.76) A(r) < Tmk (m(r) + |k:|> ,

if r > r(k,V) and r(k, V) is large enough. Now, we will send R — 0. To do that, we first notice that
lemma 2.14 implies

Ahm ”,u(ﬁg) (ka) - ﬂ(ka)|‘7-t2(r1<|w|<r2) =0
R—0

),Loo> +
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for every ry(g) : Ry <71 <12 < 0. Therefore, m(ﬁ)(p) - m(p),ml(ﬁ)(p) — my(p) and

Vi g l? 2
(2.77) f #dm - Vil
r<|z|<ra ‘JZ| ri<|z|<ra |Z‘|
Taking r > r(k, V) and sending R— o0 in (2.75) and (2.76), we obtain (2.75) and (2.76) for V itself.

This implies that M(r) < oo and A(r) < oo for all r > Ry. Then, we can send R— o in (2.65) and
(2.66) and this proves the lemma. O

Now, we are ready to prove the main results of the first part of the paper.

Proof. (of Theorem 2.1) Notice that given y, we can consider V{,)(z) = V(z —y). By lemma 2.10,
Vi leez+y,oe ST+ [yl

Thus, we can assume that y = 0 without loss of generality.

Take (2.51) with f = §y. Having fixed II(a, b, h), we examine the estimates (2.65), (2.66), (2.67). By
taking ro(a, b, h) sufficiently large, we can guarantee (2.72) and (2.74) for all k € TI(a, b, h). Therefore,
(2.75) and (2.76) hold as well and we only need to obtain upper bounds for m(rg) and m4 (ro) uniformly
over k € II(a, b, h). Recall that (check (2.52))

1 = Arn|zle”*IG(x, 0, k).
Thus, the lemma 2.16 implies

1 \4F
2. < b,h — (1 -
(2.78) (o) < Clab VI o (14 i
and
1 VI,
2. b, h, — (1 .
(2.79) (o) < Clasbh V1) g (1+ g
Substitution into (2.75), (2.76) gives
C(a;b,h, |[V]) C(a, b, b, [V])
M(ro) S ——F+—=, A(rg) S ——F+—=
(ro) 5 Im* & (ro) 5 Im* &
and these estimates can be extended to all 7 > Rf + 1 because we can use the estimates from lemma
2.16 for r € [Rf 4+ 1,79]. Now, (2.67) finishes the proof. O

Proof. (of Theorem 2.2) We again assume that y = 0 without any loss of generality. Now, we can
write

(2.80) (e, k) =1-— ng

where

||tk (lz—yl+ly|— =)

lz = ylly|

Vu(y, k)dy =1- IO -1 ;

Iy = f Vuly,k)dy, I = J Viu(y,k)dy .
lyl<1 |z — ylly] ly|>1 lz —yllyl

Clearly, we only need to consider the limiting behavior of I;(ro) where x = 70,0 € S and r — o
since Iy has all required properties. To this end, we write

Vi = (div Q) = [yldiv (Quly| ) — blQ 2 ot
and, after integration by parts in the first term,
(2.81) L=hLy+ha+his+ i,
where,

I . |J etk(lz—yl+lyl— IxI)Q( Vi, Kynd
1,1 = x y)ply, naocy ,
=t T —yllyl Y

etk(jz— y\+\y\ 1) w(y, k) @) < )
. dy = 47 B! . .
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gik(ia—yl+ly|— o)) ® (g VI
Iy = —|a| () QW)Vyuly, k)dy = —4r B, <Q, X|y>1> , (see (2.27))
=1\ 7= yllyl .

eik(lz—yl+ly|~|z])

y 1y
[ (EEY b iy ae (0,25,
lyl>1 lz — yllyl |yl |yl

if we denote r = |x|. The term I;; clearly has required asymptotics as r — o so we focus on the
other terms. Lemma 2.23 gives

k 1
(2.82) T ¢ Bi0). sup e, <o
T x|=r
for every k € X. Therefore,

H c My c
Qm e L*(B5(0)), o € L*(B§(0))
and lemma 2.20 gives the claimed convergence. The analyticity of the limit follows from the analyticity
of G(z,y,k%) in k e X.
O

Proof. (of Theorem 2.3) We again assume that y = 0 and argk € (6, 7 — ). The proof will proceed in
two steps. Consider (2.65) and (2.66) when |k| is large and argk € (6,7 — d). In our case, Ry = 0. We
send r — 0 so we need bounds for lim sup,_,,m(r) and limsup,_,,m1(r). That will allows us to get
estimates on M (0) and A(0). Then, we will write

|| ik (=l +lyl= =)
2.83 wz, k) =1 —f
(2:83) (k) R |z — ylly|

and will use theorem 2.19. To this end, we first write

plak) =1 |

R3 |z —yl

Vu(y, k)dy

|| etk (lz—yl—lzl)

G(y,0,k%)dy .

Lemma 2.13 implies
(2.84)

¢ik(la—y|=Iz) , o= Imk(z—yl-|zl) /o TmEly
[ S vewo >dy\ Sl ( + O, |V||w>) dy
s | — Y R3 |z —y| |y

where the last expression is bounded when x — 0. Thus, lim,_,om(r) = 1. For the gradient,

Vily, k)dy — 2]V ( |

)

o [ ek(z—yl+lyl—lz]) cik(lz—y|+ly|~lz])

V= Vu(y7k)dy> =Ji+J2.

ol Jes dmlz —ylly s 4|z — ylly|

We have

e—2Imkly|
limsup |J1| < J
z—0 R3

00
e WValdy S Ve [ e |
[l 0

Thus, applying Cauchy-Schwarz, we get

o0
lpldr < HV||OOJ e_QTIIIm«/m(T)dr.
) 0

(0

| - VMOV
limsup |J;| S +—F———.
z—0 A% Imk
For J3, simple upper bounds for the integral (similar to (2.84)) and the identity
1
lim |z = dy S lim [z|[log|z|[ =0
|z]—0 ly|<1 |z — y|?[yl |z|—0

imply lim,_,g Jo = 0. That yields

: MOV,
< 217 llo
(2.85) 111:1j(l)lpm1(7‘) S mr
The bounds (2.65) and (2.66) give
A0) <C([VINA + M) + [k]),  M(0) < C([VI)(L+ +/A0)M(0)/|K])
when |k| — o0 and k is in the sector. Then, M(0) < C(|V])), A(0) < C(|VIDI|k|-
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The next step will be to use these two bounds to control the integral in (2.83) when |k| is large.
We consider the representation (2.80). The estimate on M (0) immediately gives
im limsup | I =0
|k|—0,argke(8,m—0) ‘$|Hoop H OHL2(82)
after applying Cauchy-Schwarz inequality. The same is true for I; ; in representation (2.81). In the
representations for Iy o, I 3, and I 4, we use estimates (2.50) and the bounds for A(0) and M (0) to
get

, : %4))
limsup I; o = limsup | B® ( el ) < O(|VINCL(R)IV M2 (0) < ,
msupI; » = limsup | B Q|y‘X|y|>1 l2(s2) < CUIVI)CL(R)[V][217=(0) N
© o e (14),
limsup I1 3 = limsup || By Q.Y o1 ) ey < CUVICHR)V]AY2(0) < ;
r—sco ro [yl Vx|
®) / 1720y < CUVID
limsup I; 4 = limsup | B} | @, " ‘3X\y|>1 |L2(s2y < C(|V])C5(k)[|V|MY=(0) < i
7—00 T7—00
since C4(k) < k|71, Cy(k) < O (k) + Ch(k) < |k|~Y/? as follows from (2.42), (2.43), and (2.44) upon
taking the square root. That finishes the proof. O

Consider again the truncated potential V( R) defined as in (2.5) and the corresponding function
Ao()(fg) (0’7 Y, k) = Ay (07 y, k, Vé) .
We need the following stability lemma.

Lemma 2.24. Consider any K, a compact in R® and Ky, a compact in &. If ke X,
(286) I%lm HAI(R) (Uv Y, k) - AOO(J7 Y, k) HLQ(SQ) =0
—00

and convergence is uniform in y € K and k € Ky. The function Ay (0,y,k) is continuous in y and in
k in L?(S?) topology.

Proof. If Iy (z,y,k) = A(ﬁc) (z,y,k), we can write

A N ) ik|€|(1 <175>)V P
00(1?3)(0":% ): _JRSTM (ﬁg)(f)ﬂ(ﬁb)(&ya )f:

s 1= e €29, k) — f e € (€. e
. — —_— ) y, k — = V(R Hey(S, Y,
ey dmg R oy dmg O

with any p > 0. For the third term,

(2.88) o

L2(s5?)

61k|§|(17<‘77£>)
f Ve Or@) &y, k)dE
[€1>p [3

as p — oo uniformly in ﬁ, y € K, and k € K;. This follows from the estimates on the operators Bfg)

obtained in (2.50) and bounds contained in lemma 2.23. The second term in (2.87) converges to

eikl€l(1—(e,8))
f O T ()€, ke
El<p ¢l

in the uniform norm in o for every fixed p when R — o0. This convergence is uniform in y € K and
k € K. It is now sufficient to notice that

GiHIEl(1—o.E)) (k1. E))
f O T ()€, ke — f O (e y k), p— .
lel<p €]

This convergence is in L?(S?) and it is uniform in y € K and k € K;. Indeed,

=0
LZ(SZ)

lim
p—0

GiklEl(1—(o,6))
f O () ule,y k)de
El>p €
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similarly to (2.88). Thus, we first choose p large enough to have integrals over || > p small (uniformly
in R) and then, with fixed p, send R to infinity. O

At that moment, it is important to make the following remark. When defining A (o, y, k) we first
restricted A(x,y, k) to the sphere S, (y) centered at y and then took a limit as r — co. We introduce
another quantity now
d;f G(SL’, Y, k2)

GO(x,0,k2)’
The results on convergence of a(ro,y, k) and stability lemma, similar to lemma 2.24, can be proved
in the similar manner (taking f = d, in (2.51)). This yields

(2.89) a(z,y, k) keX.

[ )
1
sup —J la(ro,y, k)|2da <
r>lyl+1 77 JS,.(0)

for all k € II(a, b, h).
e Moreover,

Cl(a,b,h,V,y)
Im? k&

711—>Holo Ha(’f‘07 Y, k) - aOO<U? Y, k>HL2(S2) =0

and ao (0, y, k) is L2(S?)-valued vector-function analytic in k € X.
e If Vj is truncated potential and ac (R) is an associated function, then

(2.90) I%im lace gy (0,y, k) — ax(0,y, k)| r2(s2) = 0.
—w

These results imply the following lemma.

Lemma 2.25. For every k € X,
(2.91) aoo(0,, k) = e~ TV A (0,9, )

Proof. In the case, when the potential is compactly supported, this is straightforward so
aOO(fQ) (Ua Y, k) = 67ik<a7y>AOC(]’%) (Ua Y, k) ‘

Now, we only need to send R — o0 and use stability lemmas for A and a, i.e., (2.86) and (2.90). O

Proof. (of Theorem 2./). Recalling the definition of hy and using the previous lemma, we get

hf((77 k) = f(y)aoo(a,y,k)dy, hf(fg) (Uak) = f(y)aoo(ﬁ)(o,y,k)dy.
R3 R3
The stability lemma implies that
(2.92) Alim th(ﬁ) - thLz(Sz) =0.
R—
In ([47], p. 40-42, see also [13], formula (4.2)), it was proved that
(2.93) o (K H ) = Cklhg gy (0, k)| T2, k>0

with an explicit absolute constant C whose actual value is not important for us at that moment.
Consider the following function p ﬁ)(k) = Hh( fz)f(a, k)| 2(s2) - It follows from the absorption principle

for short-range potentials [47] that pg is continuous in k& € II(a,b,h). It is also subharmonic and

satisfies the following estimate, uniform in R:
C(a,b,h, f,V)

(2.94) P (k) < m2 k

as follows from the analyticity of a, and the main result of theorem 2.1. Now we use the following
argument (see, e.g., [23]). Consider an isosceles triangle T, (a,b) with the base [a,b] and the two
angles equal « (Figure 1).
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Y
I(a, b, h)
a a I(a’, b, ') v b
0]
Figure 1

Then, since PR is subharmonic,

p(ﬁ)(k) < f

0

. PTa(a,b) (k, 5)17(1%) (©)d|¢]

at any interior point k. The behavior of Pr_ at the corners & = a,b is governed by the following
estimates

IPr (k&) < C(a, ¥/, 1, @) min(J¢ — a| ")/, |¢ — p|me)/e)
uniformly over all k € II(a’, b, h’') < T,,. These bounds can be obtained by conformal mapping to the
disc. Provided that « is small enough, (2.93) and (2.94) imply inequality

b
(2.95) Dy (k) < C(d' W, a.b, £.V) (1 +f P (k. €) U}(SQ,Hg)d§>

since
Pr, (k&) < C(d', V', W) P+ (k,€)
uniformly over £ € [a/,b'] and k € T(a’,¥’,h’). Using the Cauchy-Schwarz inequality and changing

variables, we get
b b2 1/2
J PC+(k7§)\/U}(€27H§)d§ < <J2 PC+(k7\/ﬁ)de(n7Hﬁ)> .

a
This gives us

b‘Z

1/2
Py (k) < Ca b ab, £.V) [ 1+ ( P (k,\/ﬁ)daf(n,HR)>

a

Fixing k € II(a/, ¥, h') and sending R — o, we can apply lemma 2.12 to the right hand side and (2.92)
to the left hand side to get the statement of the theorem when k € I1(a’, V', h’). However, the function
P(y is uniformly bounded in the domain k € [a',b'] x [W,1] so we can easily extend the result to
I(a’, v, 1).

O

Proof. (of theorem 2.5)If f is non-negative then (hy(-,id), 1>2L2(SQ) > 0 for d large enough (by theorem
2.3). Thus, {hs,1)* is not identically zero in ¥. It is analytic in every II(a,b,h) and (2.3) holds.
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We can map II(a’,b’',h’) conformally to the unit disc by w = ¢(k),w € D,k € II(a’,b',h'). Then
Chy(c 07 H(w)), 1)3, (s2 1s analytic in D and its absolute value has a harmonic majorant there due to
the bound

th(" k)a 1>L2(82) |2 < pQ(k)
and the estimate (2.3). Therefore, (hy(-, ¢ (w)), 1)12(s2) € H*(D) and it is not identically zero. It
has non-tangential boundary value at a.e. point on T and the following logarithmic integral converges

J log [(hy (-, 671 (e'), 1)p2(g2y|df > —o0.
T

Mapping it back to II(a’, ¥, ') and taking any interior subinterval (a1,b1) < (a’,b") gives an estimate

b}
f logo"/f(nPH)dn>C(a17b17‘/7f)'

aiy
This argument is quite standard in the Nevanlinna theory of analytic functions [19].
]

The existence of harmonic majorant for h; implies in the standard way the existence of the strong
boundary values for hy when Imk — 0. We recall how that can be achieved. Fix (a,b) € (0,0)
and (a/, V') C (a,b). Then h(w) = h(¢~*(w)) belongs to vector-valued Hardy class H2(D) if ¢ maps
II(a’, b, 1) conformally to the unit disc D. This follows immediately from (2.3) because
b2

| Por (67 (2), yi)dos (0)

is its harmonic majorant in D. It is known ([35], p. 80, Theorem A, p. 84) that functions in Hardy
space H?(D) with values in Hilbert space (L?(S?) in our case) have strong boundary limit, i.e., there
is h(e?) e L?(S?) for a.e. 6 € [0,27) so that

linﬁ |\l~z(rew) - }Nl(eia)HLz(gz) =0

Cl-‘rCzJ

a

and [|h(2) —h(e?)|2(2) — 0 as z — ¢? for a.e. 6 € [0,27), the limit in 2 being non-tangential. Notice
that (o, z) can be understood as h(o, z) = 2. hj(z)s;(0), where {s;} are spherical harmonics on S?,
|h(a, z)Hiz(S) =2 \ﬁj(z)|2 and ﬁj(z) are scalar functions from Hardy space H?(D). Transplanting
these results back to II(a’, b, 1) we get existence of hy(a) for a.e. a € R. Moreover, the non-tangential
limit
Jim [y (k) — hy(0) e = 0
holds for a.e. o € R because a’,b" are arbitrary.
The lemma 2.9 gives the symmetry

and (2.93) yields
(2.96) op(a?, H) = Clal|h(a) |22 g

for a.e. a.

2.6. Harmonic majorant for A, (c,y, k). The first three theorems we proved had to do with the
function Ay (o,y, k) and its properties as vector-valued function analytic in k. However, we obtained
the harmonic majorant only for hy with f being compactly supported L?(R3) function. The main
obstacle to finding a majorant for A is that it was defined through the solution to equation

—Au+ Vu = ku + 6,

and we can not make sense of {u, d,) because u is not regular enough if the dimension is higher than
one. However, we can overcome this problem by regularization. Take, e.g., y = 0 and consider

(2.97) (H? — k") = (26N (H - k)" = (H+K*) 7).
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Notice that in the three-dimensional case G(z,0, k%) — G(x,0,—k?) is continuous in z for all k that
satisfy argk € (0,7/4) provided that V € L®(R3). This is so because

eik:|x\ 67k|:b|
] ]

is continuous at x = 0 and the terms

J eiklw_y‘V( )Gy, 0,k)d f
R3 |$—Z/| R3 \fﬂ—y|

are both continuous at x = 0 by lemma 2.13. We now define

(2.98) m(k) S ((H? = k)60, 80) -

Approximating §y with any y—generating sequence {f,}, fn € L?(R?), we obtain
Imm(k) = 1in30<(H2 — kN oy fa) >0

e_kll‘_yl

V(y)G(y7 0, _k2)dy

and m is analytic in the sector 0 < argk < 7/4. By the Nevanlinna representation (see, e.g., [35], p.
141, Theorem B), we have for every k € C*:

1 1 t
2. Y4y — ¢ + 4+ = J
( 99) m(k‘ ) C1 Cgk‘ . : 2 1 t2

where p is a positive measure on R that satisfies

[
r1l+1

We can prove the following analog of (2.93).

Lemma 2.26. Assume that V € C*(R3). Then,

(2.100) 327k () = | A (0,0, k) 722y, k>0,

)du(t), cit€R, >0

where u is the measure from (2.99).
Proof. Start by taking k in the sector argk € (0,7/4). Let u = (H? — k*)71f, i.e., u solves
(—A+V - k) (-A+V +k)u=(H? -k )u=f,

where f is any test function, i.e., f € C*(R?). Multiply this equation by 7 and integrate over Bg(0)
with R so large that supp(f) < Bg(0).

(2.101) J -| R((—A LV oK) (A V k2)u)ﬂdx - JRS fadz .

Now we send k — k € RT where —x?2

We can write

(2.102) u=(2K*) "N (H - k)" f = (H+EHLS).

The term (H + k?)~!f decays exponentially in space variable. For the other term, the absorption
principle and integration by parts give

in not an eigenvalue of H and take imaginary part of both sides.

Im ((—A+V—52)(—A+V+/<;2)u)ﬂda: =
|z|<R
Im ((—A +V)? — m4)u>ﬂdx =Im ((—A + V)Q)u)ﬂdx =
|z|<R |z|<R
Im ((—A + V)u) ((—A + V)E) dz + Im ((Au)m - (Au)ﬁr)dam

|z|<R |z|=R
The first term is zero, so
(2.103) Im ((Au)rﬂ — (Au)ﬂ,)ddw = ms (%), for ae. K,

|lz|=R

where y5 is the spectral measure of f relative to H?. The asymptotics of u at infinity is given by

ik|z|
_1€

u(z, k) = (2k%) (JRS aw (0, y, &) f(y)dy + o(l)) , | >0, >0

47 ||
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as follows from the formula (2.102). Moreover, this asymptotics can be differentiated in z. Notice
that both Ay (0,y, k) and ax (0, y, k) are continuous in k € Il(a,b, h). This continuity follows from
the limiting absorption principle. Now, substitute this asymptotics into the previous formula (2.103)
and send R — oo to get identity

=)
327’(‘2 S2

Taking f = f, where {f,} is dp-generating sequence yields

1
s L A (0,0, m)|2do = g ()

with some absolute constant C. O

2
jm a0,y ) Fy)dy| do = mrply ().

Example. In the free case, one has m(k) = (1 +¢)/(87k), A = 1.
Having established the formula (2.100), we immediately get the analog of theorem 2.4.

Theorem 2.27. Let V satisfy (2.1) and [a,b] < (0,00), then

a

bt
(2104) ”AOO (07 Y, k)HQLQ (S?) < C(CLI, bla a, b7 V’ y) (1 + f4 P(C* (k’ 771/4)dﬂy (W))

for all intervals (a/,b') € (a,b) and all k € (a’,¥',1). The positive measure i, is related to 6, by
(2.98) and (2.99) .

Proof. The proof of this result repeats the proof of theorem 2.4. O

Now that we found the harmonic majorant for Ay, we immediately get

e improved estimate on the possible growth at the boundary:

C(a,b,V.y)
(2.105) [ Ao (0,4, k) |72 g2y < —4 o kell(a,b),
e existence of the strong non-tangential limit Ay (0,y, ) € L?(S?) for a.e.k € R, i.e.,
(2.106) %152 |Aw (0, y, k) — A (0,4, k)| L2(s2) = 0

for a.e. xk and the limit is non-tangential. Secondly,
b
lim [ [[Ax(0,y, 5 + i€) — A (0,3, k)72 (g2ydr = 0

for every [a, b] not containing zero.

Analogous results hold for ay (0, y, k).
Remark. In (2.2), we defined hy(o, k) as

hi(ok) = [ Aoy e oD f(g)ay

and, by lemma 2.25,
hilok) = | anloy W)y, ke,
R3
Then, we proved that both hy and as have non-tangential boundary value in k. However, we didn’t
prove the continuity of Ay (0,y, k) or ax(0,y, k) in y. Instead, we can show that

(2107) i) = [ anloy )iy
in the sense of L?(S?,[a,b]) functions. Indeed, the maximal function
def .
M(a) (y7 H) = Ssup HCLOC (07 Y,k + ZG)HLQ(SZ)
e€(0,1)

satisfies
M(a) (y’ ’i) € Lz(av b)
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as follows from the properties of the non-tangential maximal function of the scalar H?(D). Moreover,
b
supf |M(a) (y, n)|2dn < o0
yEK a

where K is any compact. Therefore, by the Minkowski inequality and Dominated Convergence The-
orem, we have

=0
L2(82),[a;b])

lim
n—0o0

JRS fy) (aoo(o, Y,k + in—l) — ax(0,y, n))dy

and (2.107) follows.

Remark. Studying asymptotical behavior of A(ro,y,k) for large r and k € ¥ is an interesting
problem. For example, the following question is natural: can one improve lim,_,o, |A(y + ro,y, k) —
Ax(o,y, k)2 s2) = 0 to limy o0 |[A(y + 70,9y, k) — Ax(0,y, k)|l r(s2) = 0 with p > 27 In [13], this was
answered affirmatively for p = oo in the case when

QIS A +]al) 57, VIS Ao ="

with some § > 0.
We conclude the first part with a list of questions:

(1). In (2.96), does equality hold for a.e. k?

(2). Consider the boundary value Ay (0,7, k), x € R. Is it continuous in y as a function in L?(S?)?
Is the zero-measure set of £ on which M, (y,x) = o independent of y? We have weak
continuity of Ay (o, y, k) in y, considered as a function in o and x. This follows from continuity
of A in y for fixed k e CT.

(3). Does theorem 2.5 hold for any compactly supported f € L?(R3)?

3. PART 2. ELLIPTIC OPERATORS IN THE DIVERGENCE FORM: WAVE EQUATION AND WAVE
OPERATORS

3.1. Formulation of main result. In this part, we will be concerned with the following operator
Df = —div((1+V)Vf), zeR?

We will assume that V' satisfies conditions that are a little stronger than those assumed in the first
part:

. ef .
(3.1) Vi <1,V =div@Q, Qe C2(R), [V] ' max [D/Qlae)pe < 0.

We will also need the following notation

def 1
V) = jmax, 1D’ Q| e2([r],00), 1 -

Conditions |Vl < 1, VV € L®(R?) allow us to define D as a positive operator by Kato-Rellich
Theorem [5].

The plan of this part is as follows. We will first establish the asymptotics of the Green’s function
for D by mimicking the arguments in the first part. This will require only slight modification. Then,
we will consider the wave equation

uge + Du =0, u(x,0)=fy, w(x,0)= ivDf,

where f is assumed to belong to the domain of v/ D. Recall, that our main result is existence of wave
operators.

Theorem 3.1. IfV satisfies (3.1), then the following wave operators exist
WE(VD,V/Ho) & s — lim;_, 4 0 eVPeitvVHo

and the limit is understood in the strong sense.
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Remark. This implies in the standard way that ranges of W* belong to the a.c. subspaces of
D [33]. Moreover, when restricted to those ranges, D is unitarily equivalent to Hy and thus has a.c.
spectrum of infinite multiplicity. We want to mention here that the infinite multiplicity of the a.c.
spectrum for multidimensional Schrédinger operator with slowly decaying potential was established
in [26], p. 614, remark 4. The completeness of wave operators, i.e., the statement that ranges of W+
are equal to Dy, the a.c. subspace of D, is an interesting question which we do not address in this
paper.

The theorem 1.3 about long time behavior of solution to wave equation from the Introduction will
be proved at the very end of this part of the paper after we obtain stationary representation for wave
operators.

Remark. The general problem u; + Du = 0 with initial data u(z,0) = g1, ui(x,0) = g2 where
g2 € range(v/D) can be reduced to studying VD since the function u = eit“/ﬁfl + e‘it\/ﬁfg solves
the wave equation and the initial conditions are

w(z,0) = fi + f2.  w(2,0) = iVD(f1 — fo)

so, given gy (2) the corresponding fi(2) can be found and the problem solved.

Definition. The following subset of Schwarz class S(R3) will be used later in the text: A is the
set of all functions f € S(R?) such that f € C*(R?) and dist(0, supp(f)) > 0.

Clearly, N is dense in L?(IR3). This subspace will be convenient for us because it has the following
property: if f € N, then V[, |A|*f € N for every o € R. Indeed, since f has compact support which
is separated from 0, we have |4A’|°‘\f = [¢]22f € C*(R3) = S(R®) and its support is separated from 0
as well. The same argument works for V f.

3.2. Basic properties of wave equation. For the free evolution, we can write the solution exactly.
In fact (see, e.g., [42], theorem 3.6, p. 191 or p. 211), the solution to

uttZAua U/(.TI,O) =f17 Ut(l‘,o) =f2
is given by Kirchhoff’s formula

u(e,t) = (M) + 1M f2) = ( (L) + L) + VA - 2)) )

If we assume that, e.g., fi(2) € S(R3), then

Se(z)

tM;(f2)(z) = ﬁ (Lz fa(y)dy + 0(1)) , t— o0,
lz| 1,3

where the integral represents the Radon transform R fo(|z| — ¢, Z) of fa (see [42], p.201) and Pl, -, =
{¢ e R3:(£,7) = a, a € R,y € S?} denotes the plane over which the function is integrated. Similarly,

O(tMy(f1)(z)) = ! <JPl z-Vii(y)dy + 0(1)> , t— .
jol—t,2

Ant

In particular, if fo = i|A|Y2f; and fi = f where f € A then f;(2) € S(R?) and

32 (V) @)= ( fp (=2 Vi@ +i(1a12F) ) dy + om) Lt

uniformly over z. Another way to get this asymptotics is to write up the dispersion relation for wave
equation and apply the method of stationary phase. Since eV preserves L?(IR?) norm, we get

(3.3) lim limsupf| - ‘(eitﬁf) (x)‘gdx =0
z|—t|>R

R—® {00
for every f e L?(R3).
Remark. Consider the general problem
ug + Du=F, u(z,0)=f1, u(z,0)=fs.
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We will need the Duhamel formula (e.g., [44], p.67)

(3.4) u = cos(tV'D) f1 + Mﬁ + _[: sm((t—\/ﬁr)\/ﬁ)

i3} F(r)dr

later on.
3.3. Auxiliary results. The following key lemma allows to control the long-time behavior of eitVA

if the large = asymptotics of the Green’s function G(z,0, k?) is known for k away from the spectrum.
Let [a,b] < (0,00) be any positive interval. Consider the following contour

def
Fa,b = Ya Y Vo YUY+ U Y-

where 7y, {k:Rek =a,|Imk| < 1}, v def {k:Rek =b,|Imk| < 1}, v+ def {k:Imk =+l,a <
Rek < b}.

Lemma 3.2. If A is self-adjoint non-negative operator defined on the Hilbert space and t > 0, then
integration over I'y , counterclockwise gives us

) oo [ e ik = g, (VA
mi Jr,,

where

(3.6) pn(k) = (k—a)"(k—0)", gn(k) = —X(ap) (k)pn(k)/(2k)

and n € N.

Proof. The proof is immediate if the residue formula is applied in the Spectral Theorem representation.
From the same Spectral Theorem, we have

[(A = &)~ < Cla, b)(Im k)"

if k € v, and, since n > 1, the integral converges absolutely in the operator norm, i.e.,

JFQ bHe*itk(A — kz)ilpn(k)Hd|k| .

O
Lemma 3.3. If [V < 1,|VV]x < 00, then
7wy < CUVIo, IVV1) (1D + 1£12)
Proof. Indeed,
IDfll2 2 11+ V)AFl2 = [VVIc[V 2 = (1 = V) [Afl2 = [VVIeA[Afl2]f]2 2
A= VI ALz = 2IVV (e Afl2 + €t f]2).
where € is an arbitrary positive number. Taking e sufficiently small, we finish the proof. 0

Lemma 3.4. Assume V € CY(R?) and limp,_,oo V = 0,limy o VV = 0. Suppose a(E) € C(R) and
lim| g a(E) = 0. Then, if the functional sequence {1, } satisfies the following conditions

e sup,, [¢n2 < o,
o limp o imsup,, o [¥n]r2(Br0)) =0 (“escape to infinity in L*(R*) norm”),

then
(3.7) lim [ (a(D) — a(Ho))¢n|2 — 0.

n—o0
Proof. We notice that
(3.8) R.—-R’=-R.V1R?, Vi=VHy—VV -V, z¢R.
Therefore, (3.7) holds for a(E) = (E — 2)7 !, z ¢ R because

o sup, |RY¢n 2 < o0,
o limp o0 limsup,, . [R2¢n|r2(By(0)) = 0
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and the same holds for VR%),. The linear span of the following functions

J
SO R}
j=1 Zj — FE
can approximate any given «(F) in the supremum norm over R (by convolving with Poisson kernel

and discretizing the Riemannian sum). Therefore, by the Spectral Theorem, we have statement of the
lemma. 0

Remark. We will often apply this lemma in the case when e'tvHo f, f € L*(R3) is taken as v, (the
generalization from n € N to ¢ € R is obvious). The both properties of the sequence will be satisfied
due to properties of free evolutions, i.e., lemma 3.3.

In the next three lemmas, we will study the basic properties of the Green’s function G(z,y, z), z ¢
[0, 00). Its existence can be deduced similarly to lemma 2.7 from, e.g., | Rz 12(rs) 12rs) < 0, H*(R?) =
L*(R3) (see Corollary 2.14, [5]).

Lemma 3.5. Assume |V]p < 1,|VV e < 0 and denote Ao < |V + |[VV|eo. If k € T(a, b, 1),

then

(3.9)
sup HG(:L’, Y, kz)”Li(R:”) < C<a’a b, >‘0)| Imk|717 sup ”G(CE, Y, k2)“7—li(3f(y)) < C(aa ba A0)| Imk|71 .
yeR3 yeR3

In general, for k € CT, we have

(310) sup HG(I7y7 k2)HL§(R3) < O, sup HG(I7y’ k2)H7~[§(BlL(y)) <0
yeR3 yeR3

and

(3.11) sup |G(y, 2, k)| L2@®s) < 0, sup |Gy, 2, k?) |z (Be(y)) < ©-
yeR3 yeR3

Proof. Let f : | fle <1andu def (D—Fk?)~1 f. Then, by the Spectral Theorem, |ulz < C(a,b)|Imk|!.
From lemma 3.3, we get |u]y2®s)y < C(a, b, Ao)|Imk|~!. By duality,

(3.12) sup |G(x,y,k*)|L2@s) = sup [{(D—k*)"10,,9)| = sup [{(d,,(D—k*)"'g)| <
yeR3 lgll2<1 lgll2<1

16y l13-2 () [(D — k)~ gl 12 sy < C(a, b, Ag)(Im k)~

as claimed. For the second inequality, denote v(x) def G(x,y,k?) and consider equation

f<(1 FV)AU + vvvv) — k2, T Ay,

from which we get the statement (e.g., by the Interior Regularity Theorem for elliptic equations). The
proof of (3.10) is identical and to get (3.11) we only need to notice that

(3.13) G(z,y,2) = G(y, 7, 2)
since (D —2)™1H)* = (D —z)~L.

We now state the analog of lemma 2.16 from the first part.

Lemma 3.6. Assume |[V]o < 1,[|VV]y < 00 and denote Ao 2 |V + |VV] . If k € II(a,b,1),

then

C(a,b, Xo)
r2Tm? k
C(a,b, Xo)

r2Im? k

)

sup 12 J |G(z,y, k*)|*do, <
yeR3 r>|y|+1 S-(0)

sup r*zf 10,G(x,y,k*)*do, <
YER3 ,r>|y|+1 S, (0)
Proof. This follows from the previous lemma after estimating the traces on the hupersurfaces in a way
which was used to prove lemma 2.15 (we now have an estimate somewhat stronger than lemma 2.16
since we didn’t use (2.7)).
O
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If we define Q(,) by (2.5), then the analog of lemma 2.9 holds true.

Lemma 3.7. IfV satisfies (3.1), then

p—0
and
(315) ph~>nolo HG(p) (fﬂ, Y, Z) - G(CE’ Y, Z)||H2({w:r1<|w—y\<r2}) =0

for all ry(2) : 0 <71 <7y and z ¢ [0, c0).

Proof. To prove (3.14), we can argue as in (3.12):
HG(x,y,k2) - G(p) (5573/, k2)HL§(R3) = Ssup K(sz - R(p)k2)§y7g>| = sup |<(5yv (REQ - R(p);;2))g>|

lgl2<1 lgll2<1

For the difference of resolvents, we can write
R.— R, = R, (-VWH, - VV©® . V)R,
with V() =V — V(). Thus,
I(R. = Ry )glnz ey < IR(p) | p2a) sz e IV oo | Hollrzmo), 2 ma) +
IVVO oo |V 22 @3y, L2 @3) | Rell L2 @), 242 ) | 22 R

and this expression converges to 0 as p — oo because V satisfies (3.1). This gives (3.14). (3.15) follows
after comparing equations satisfied by Green’s kernels and using the Interior Regularity Theorem for
elliptic equations. O

Remark. Property (3.15) allows us to conclude that

(3.16)
lim G(z,y,k%) — G,y (@,y,k%)*do, = 0, lim 0,G(z,y, k%) — 0,G () (x,y,k*)*do, = 0
=0 Js,.(0) =% Js,.(0)

for all r € (Jy|,00). This follows from the theorem about existence of the traces on the hypersurfaces.

We conclude with discussion of one technical issue. In the next section, we will need to know
the local regularity of V,G(z,y, k?) in z around y. To study this problem, notice that we can write
equation Du = k*u + f, f € L*(R?) in the form

e f VVVu o, Vu
A==ty ey
Assume that V,VV, (1 + V)~ e L®(R?). Then,
1 \A% |4
_ po L - k2
RZ—RZ(1+V+1+VVRZ z1+VRZ>, s =k
and
GO,y 2) V()
3.17 Glz,y,2) = —=2 _ 2| G%x,&,2)——2—G(&,y, 2)dé+
(3.17) (2,9,2) T N (§>1+V(§) (& y, 2)d€
VV(§)
GY ——=VG ,2)dE

where this identity is understood in the weak sense, i.e., by integrating with test function ¢(y) €
C®(R?). Taking gradient in 2 of both sides, we get

(3.18) VG = fi + fo + Ba(VG),

where operator B, is defined as

VV(§)

Buf = || V26 (.65 s FO)d

and
B VGO (z,y, 2) B 0 V(§)
e N PR s (R
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For every z ¢ [0,0), we have f; € L'(R3) and f, € L?(R?) by lemma 3.5. Now, consider B, and notice
that it is a contraction in L!'(R3) and in L?(R3) for k = id where d is positive and large. Indeed, it
follows from

—1

~

‘ e_dlwl

|| L1(R3)

Therefore, the equation (3.18) has a unique solution and VG € L! + L?. To show that this is true for
all z ¢ [0, 0), we write the first resolvent identity

R, =R, + (z—20) R, R,

where zg = —d?. This gives

G($, ZU:Z) = G(xay7 20) + (Z - ZO)J G(.’II,g,ZO)G(f,y, Z)d§ :
R3
By (3()) and HRZO HL2(]R3),H2(]R3) < C(Z(]), we get

V| G(x,&2)G(E,y, 2)dE € L*(R3).
R3

Finally, we have
(3.19) V.G(z,y,2) € L'(R?) + L*(R?)
for all y € R3.

3.4. Asymptotics on the Green’s function. Following the notation in part 1, we define
(3:20)  A(ro,y,k) = G(ro +y,y,k*)/G%(ro + y,y,k*), a(ro,y, k) = G(ro,y,k?*)/G*(ro,0,k?)
where r > 0, o € S%. For the free case,

a’(ro,y, k) = G°(ro,y, k*)/G"(ro, 0, k%) .

Theorem 3.8. Assume V satisfies (3.1). If k € II(a, b, 1), then

(3.21) sup |a(ro,y,k)|r2s2) < Cla, b, |y, V)(Imk) ™5,
r>[y|+1
(3.22) lim  sup [a(ro,y, k) —a’(ro,y, k)| 2@s2) = 0.

[VII=0 r>|y|+1
The convergence in (3.22) is uniform in y € K where K is any compact in R3.
For each k€ C* and y € R?,
(3.23) lim Jla(ro,y, k) = ax (o, y, k)| L2(s2) = 0

and this convergence is uniform in y € K and in k € Ky, Ky is arbitrary compact in C.

Proof. The proof is nearly identical to proofs of lemma 2.23 and theorems 2.1, 2.2 in the first part.
We write equation for u e (x,y,k?) in the following form

1+ V)Au+VV -Vu+Eku=0, |z|>]y.
If ef a(x,y, k), then

1+ V)Ap+ 201 + V) (ik — 7Y — K2V + VVVu + Vep(ik — 1) =0,

where 7 %' |z| > |y|. We now proceed as in the proofs in part 1. We multiply equation by fi/|x|?> and

integrate over the annulus m < |z| < 79 where r; > |y|. Dividing by ik, integrating by parts, and
taking the real part of both sides give us (after several cancellations)

Im k 1+ V)|Vul? 1
(3.24) o f de + = (1+V)|pulPdo, =
r1I<r<rg

Ll |z[? 73 Jal=rs

i r<lel<rs |22 |[? EE

1 Vip? Im k 2
7J (1—|—V)\u|2daw+1mk:f il gy f v e
|z]=r1 r<|z|<ra
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1 1+ V) 1 1+ V)
I = Re —2J OEVIit gy N 1= Re | - zf Wt Vit g )
Zkrl lz|=r1 “T| Zkr2 |z|=r2 |x|

Comparing this inequality to (2.59), we introduce

m(r)difr_2j ulPdoy, ma(r) < r? J | [*dors,
|z|=r ‘

z|=r

and

2 p+1 P
A(r) def j N Vil dx, M(r) Lef supj m(t)dt, M(r) 4 sup m(p) .
r<|xr

|z |2 p>rJp p>r

\%4 2
J |u2| i
r<|z|<ra ‘I|

as in (2.68). In view of approximation (3.16), we can repeat arguments in the proof of lemma 2.23
(by approximating with V) first and then sending p — c0) which gives us

We estimate

m(ry) + /m(ry)mq(ry)
Imk

m(r) [Vl ry,00) + VAE)M @)V 7y c0) + M (r)(r + 1)_1/2HVH[7-1,00))

(3.25) A(r1) < Clabyy)( [V ey M 1)+

and

(3.26) M(r) < C(a,b,y) (m(rl) +/m(ri)ma(ry) + Im k| V|, o) M(r1)+
1 (1) V1, ) + N AOM DV Loy + M)+ D72V, + VA )).

Next we choose 71 large enough to make V| [, ») sufficiently small to be able to solve these equations
and get
(3.27)

M(r) < C(a,b,y,V) m(r1) 4+ ~/m(ri)ma(ry)

m(ry) + /m(r1)mq(ry)

A(r1) < Ca,b,y,V)

Imk ’ Imk
This r; depends on a,b,V and y only. Then, following the proof of (2.67), we get
= +
(3.28) M(r) < M(r) + /A M(r) < m(r) m(r)ma(r) .

Imk
Lemma 3.6 then yields (3.21). Notice that although we obtained these bounds in any II(a,b,1), we
can write .
A(r) < C(k, [y, V), M(r) < C(k ly[,V), r>ly[+1
for every ke C*.

To prove (3.22) and (3.23), we notice that (3.17) provides
feiklo=vl=lel) 0 [gleik(e—el+lel-lal) y
(kM e o e
j [feik(la—gl+lel-ls) gy vudgﬂ'kf (feit(a—el+lel-la) v " §—J et o—Sted v,
Tﬂﬁis caiﬂltz ;efv|1|ri§t|ten almer ' : e e “ el v
(3.29) a=a"+1L +...+ I,
7, % _ |z|eFz=yl=lzD) V7 (y)
lz—yl  1+V(y)

and Io,..., I5 are defined respectively.

Before we proceed with the analysis of every term, we split integral in the definition of each
I;,j = 2,...,5 to integrals over |¢{| < |y| + 1 and over |£] > |y| + 1. The former has necessary
asymptotics since G € L*(R?), VG € L'(Bj,;1(0)) by (3.19). Thus, we can assume that integration
is done over |£] > |y| + 1, the domain on which we established the bounds for A and M.
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The first term I; obviously has the required asymptotics. Having estimates (3.25) and (3.28) on
and Vu, we will apply theorem 2.19 to each of I, ..., I5. For example, to handle I, we write

1XV“_m(au+vf”Q)_m&VO%mflw> K@V<m0+v0

Recall the definitions of operators {B)} from subsection 2.3. The contributions from the first and
second terms can be estimated by bounds on B®) and B®), respectively. Then, for each k € C*, we

can bound, e.g.,
202
J 2|H| Q e
le|>lyl+1 [P+ V)
by using (3.28) and (3.1). The L? norm HV <

can be estimated similarly.

k)
[€1(1+V) LZ(B\Cy|+1

The terms Iy(5) can be handled similarly considering that
§ ) 2V
€/ g

The contribution from the first term is handled as I and from the second one is estimated using the
bound for B(?)
For I3, we write

V, =div (

VV el VvV Vi
1+V 1+V ¢
and the estimate for B can be used along with
\Y
[ e <ty
g1>lyl+1 1§

as follows by (3.27) and (3.28). Finally, we get (3.23) and clearly this convergence is uniform in y and
in k.
Consider (3.29). Sending |V| to zero in the estimates for {I;}, we get (3.22).
O

In the same way, the estimates for A(ro,y, k) and its asymptotics can be obtained.
We now turn to the question about finding the harmonic majorant for ||as|z2(s2y and [Ae | £2(s2)-
Let us focus on Ay, the analysis of ay is similar. We will need the following statement first.

For § > 0, we define ws < (1 + |a|)1/2+9,

Lemma 3.9. Let § > 0 and assume that V e CX(R?) and |V < 1. Then, G(z,y, k?) — G%(z,y, k?)
can be continuously extended in k to R\O as L? _,(R®) function. The function Ay(o,y,k) can be
Ws

continuously extended in k to R\O as an L*(S?) function.

Proof. The main ingredient of our proof is the limiting absorption principle (LAP) for the operator
D = —div(1 4+ V)V with short range potential, studied in, e.g., [15, 48]. LAP claims that R, can
be continuously extended in z from C\[0,%0) to R + 40 as an operator from L2 (R?) to L2 L (R3).

This result is an extension of the LAP established by Agmon for the Schrodinger operators Wlth short
range potentials (see, e.g., [37, 46]).
For z ¢ [0,00), write (3.17) and integrate by parts in the third term

0z, y, 2z
(3.30) Gl 2) = St < | 6o 2) g Gl e~
. VV(§)
JRs G(&,y, z)dive (Go(aﬂ,ﬁ,z)l " V(§)> dg.

Notice that all integrals involved converge absolutely. Iterating this identity once (substitute the left
hand side into the third term on the right hand side) gives

O(z,y, 2
(3.31) G(z,y,z) = m - ZJ]R@ Go(z,f,z)%G(g,y,z)df

(&1,y,2) VV (&)
L31+V(>d Qy@g“)1+vgn>%r‘
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zf dive, (Go(x &1, )ZV&)J (61, & 2) oSG, 2)deades ~

1+ V(&)
: VV (&) , VV (&)
JRB dlvfl <GO($, 517 Z)1+‘/(§1)> J\Rg le§2 (Go(é'lv 523 Z):H“/(f2)> G(£27 Y, Z)d£2d€1 .
Recall that G(z,y, z) = G(y,x,Z). Changing the order of integration in the last two integrals gives
o Gy, z,z) _ 0 V() _
(332) G(ya x,Z) - 1 + V(y) Z RS G (xvé-? ’Z) 1 + V(f) (y 61 )dg
Go(glay,z) . 0 vv(&l)
Jo, T e (0w ey ) ao-
V(&) 7= . VV(&)
z J;R-’» WG(ya 527 Z)d€2 J]RS Go(fh £2a Z)d1V§1 (Go(x7 gla Z)HV(&)) dgl_
— . VV (&) \ . VV(&)
fn@ G(y7§27 z)d¢s J;W divg, (GO(£17§27 Z)1+V(§2)> divg, (GO(CU,&»Z)HV(&)> S

Now, we define three functions

A TAE [ 6% G kaive, (6006 k) T ) der
VV(&) \ VV (&)
§2 f d1V§2 ( 51’5% k2)1+‘/(£2)> legl (Go(l‘,§1, kQ)]W(fO) dgl )
e 1%
Fy(&2) € GOz, &, k2)1 + §§2(22) .

Since we have exact formula for G°(&1, &2, k?), simple estimates for the integrals show that Fy, F3 can
be extended in k continuously to R\0 as L?(IR?) functions in &. The most singular term in Fy can be

written as oV
1) | Va6, 60 Ve Gl & el 0™
R3

This expression can be continued in k to R\0 as LéQ (R3) function. However, since V¢, G* = =V, G°
and (—Ag¢, — k*)G(&1,n, k?) = §,), we can rewrite it in the following form

—a(&) fR Ve G606, KV G, &, k) a(&)dey = L+ 1,

Il = _k2q<§2) JRS Go(gla §2a k2)G0($7 617 kz)Q(&l)dgl - q2(£2>GO<xa 527 k2) )

I = q(&) ng Ve, G(6r, €0, k)G, €0, k2) Ve, q(€1)dE

Now, the elementary properties of the convolution and explicit form of G° show that F, can be
continued to R\0 as ng (R3) function. Notice that the calculation for I; can be performed on the
Fourier side as well.

Next, we consider (3.32) as equality for functions in y where x is fixed. Notice that compactness of
support of V' guarantees that Fy (5 3) € L2 (R*) and LAP for D shows that G(y,z,k?) — G°(y, z, k?)
can be continued to R\0 as an element of T2 g (R3). Then, the formula (3.30) implies that A(ro,y, k)

can be defined for all » > 0 and y € R? as L2 (S?) valued function continuous in k up to R\0. The

existence of Ay (o, y,k) and its continuity in k are immediate as well.
O

The formula (2.97) can be rewritten in the following form:
(D?* — kY™t = (D - K)(D+k*), keCh.
Thus,
(D? — kY7t = ng G(x, & k*)G(&,0,—k*)dE .
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Since G(&,0,—k?) € L{(R*) and Rj> maps L*(R?) to #*(R?) = C(R?), the function m(k) defined
by (2.98) has imaginary part positive in C* and has representation (2.99). The following analog of
lemma 2.26 holds true.

Lemma 3.10. Assume that V € C*(R3). Then,

327 p (1) = [ Acn (0,0, ) [Bzy, > 0.

Proof. Let u % (D2 —k*)=1f = (2k?)~Y(Ry2 — R_z2) f, where £ is any test function, i.c., f € C*(R?).
Multiply equation (D? — k*)u = f by u and integrate over Br(0) with large R. The analog of (2.101)
is

f ((div(l FV)V 4+ B2 (div(l + V)V — kz)u)ﬂd:ﬂ = | fude.

|z|<R R3

Take imaginary part of both sides and send k — x € R\0. After integration by parts, we have

f (6T((div(1 + VIV - k2))u> (1+V)a— (((div(l + VIV - k2))u> 1+ V)oude = | fadae.
|z|=R RS

Lemma 3.9 gives asymptotics
6ik|z|

= o z,y,k d 1 N
o ([ aeGa bt +o)) 1ol — e,
which holds in k up to R\0 and can be differentiated in . Substitute it into the identity to get
2
[ ] @t miswiay
sz |JRrs

do = 32m° ks (k7).
Taking {f,} — dp gives the statement of the lemma. O

u(z, k)

This lemma provides the harmonic majorants for |Aw(o,y,k)|r2(s2) and [aw(0,y, k)| r2(s2). In
particular, theorem 2.27 and (2.105), (2.106) hold for Ay (0,y, k). Repeating the proof of lemma 2.25,
we get (2.91) and thus there exists aq (0, y, k) such that

b
(3.33) llg(l) ) law(o,y, K + i€) — ax (0, y, k) H%z(gz)dn =0

for every y and every [a,b] not containing 0.

3.5. Proof of the main theorem.

Proof. (of theorem 3.1 ) Since N is dense in L2(R3) and ¢*VD ¢#VHo preserve L2(R®) norm, it
is sufficient to take f € A and prove that the limit limy_40e?®VPe #VHo f oxists in L2(R3). Let
¢ % etVHo - Consider
def _;
v E e Py

when t — +00. The case t — —o0 is similar.

To prove existence of the limit of ¥ in L?(R3), it is sufficient to show that

(A) Ast — 4o, 9(x,t) converges in L?(Br(0)) for every R > 0.

(B) {¥(x,t)} is “tight” in the following sense

A lim sup (2, 8)|z2(r5) = 0-

We start proving (A) by writing:
(334) e Pg= VP Hg, (\Ho)gy ' (VHo) f = ¢ P (VHo)e ™ oq (Vo) f

where ¢, is defined in (3.6) and parameters a, b are chosen such that supp(f) c{¢:0<a< ‘2% < b}.
If we denote f; = ¢, *(v/Hyp)f, then fi; € N by the choice of a and b. The parameter n will be chosen
later. From lemma 3.4, we obtain

(3:35) TP = e VP, (VHy)e Vo f = VP, (VD)gy + 1, lim [lerflo = 0,
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where ¢ def gitvHo f1. We performed this algebra to be able to write formula (3.5) for
(3.36) e ™Pg, (VD) = — | e (D — k) p,(k)pidk .
2mi Jp, ,
The properties of free evolution e?VHo ie., preservation of L2(R?) norm and estimate (3.3), allow us
to replace ¢; by a function

(3.37) é1 = prwp(|z| — 1),

where w,(7), 7 € R is smooth, even, nonnegative function that satisfies three properties:

e wy(r)=1, |[7|<p,
o w,(1)=0, |T|>p+1,
e 0<w, <1, TeR.

Since the operators g, (v D), e™VHo ¢=iVD are hounded from L*(R3) to L2(R3) and their norms are
uniformly bounded in ¢, the error made by that change can be made arbitrarily small by choosing p
large and then sending t — 0.

We collect now the properties of (El that will be important later on:

(P1) limp_o limsup,_,., [[¢1 — (El [2 = 0. We will fix p large enough and ¢-independent.
(P2) ¢, is supported on the annulus {z : [z| € [t — p — 1, + p + 1]}.
(P3) ¢1 has asymptotics (see (3.2))
: 1/2
(3.38) 51((1? + 7)o, 8) = wy(r) oR(V fi)(1,0) Z—;TZtR(‘A\ 2f)(r,0)
uniform in 7 € R and ¢ € S2. In particular, H(El oo < C(f)t1 for all t > 1.
(P4) ¢, is sufficiently smooth

+o(t™),

|DIgn | < Cit~%, jeN.
This follows from the definition of 51 and smoothness of f.

Consider the integral in (3.36) with ¢; replaced by 51. For I'y, we can write I'qp = F;b vl
where I‘;—rb e C*. We studied G(z,y, k?) assuming that k € C*, so, since (—k)? = k2, we will write

(339) (D=8 = | Gl (k)1 )y

for ke I', . Thus, we will need to control G(z, y, 3%) where 3 € -r,,cC".
We will start with writing the following estimate. For every R > 0,
(3.40)
1 ) ~
7J\ e*ltk(D_kZ)flpngbldk
Fa,b

211

gj emE sup (D = k) Gh, b [paldl]
L3(Br(0)) et 12l o =1

by duality. Since

(3.41) [¢1]e < C(HE, supp(n) & {a : ||la| — ] < p + 1},
and ((D — k?)~1)* = (D — k?)~!, we have

G-« A | ulde,

t—p—1<|z|<t+p+1

.y Where

for every keI’

u= (D-F) = w08 |l Eh)dy
lyl<r
as follows from the definition of a. If k € I‘(;b, then k € I',;, and we need to make modification as in
(3.39). We use estimate (3.21) on a(z,y, k) to obtain
1

(3.42) ff luldz < C(R, p, a,b)e™ ™kt I | =15
t t—p<|z|<t+p
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after applying Cauchy-Schwarz and |[h|2 < 1. This amounts to absolute convergence in k and uniform
boundedness of the integral

(3.4 [ e s D=l < Clp Reab ).
Fa,,b HhHL2(BR(0)):1
provided that n = 3 which is our choice of n from now on.
Now, we will show that for every k € I'y p, k # a, b, the integrand in (3.36) converges in L?(Br(0))
as t — +00. We have

(D=1 1)) = e | Glya k@) = e | Gla,y, )i (@)ds
R3 R3

by identity (3.13). We can write

eik‘ﬂa(mv Y, _E) ~

[ G,y )3 (@)de = ™ f 31 (2)dz
R3

ks 4rrl|

ifke F;b and

e *la(x, y, k) ~

e [ Gla, g, D)o (2)da = ’“f F1(x)de

R3 R3 47 ||
if keI, ,. Now, we use asymptotics of a (check (3.23)) and of ¢1 (check (3.38)) for r = 2| — o0 to
conclude that

(3.44) e | Gla,y K (2)dx — G,
RS

e 1 T Ty ikt . 1/2
Gk,y) < WL o (0,75 —F) Jpr(T)ek (—oR(Vf1)(7,0) + iR(IA|YV2f,)(7, 0))drdo

if t — o0 and this convergence is uniform in y € Bg(0) and k € K; where K7 is any compact in C™.
On the other hand, if ke I'_,, then

ekt | Gla,y, B ) (z)dz — 0
R3

uniformly in y € Br(0) and k € K; < C~. Together with the unform bound (3.43), we get

(3.45) (P, (WD)R0) = 5 || palRG(k)dk, 1 o

and this convergence is in L?(Bg(0)). Since p can be chosen arbitrarily large, we have (A).

Remark. It is now instructive to discuss the importance of the cut-off w, which one might consider
to be artificial. In fact, it is crucial for our proof. Indeed, the interior integral in the definition of G
represents a Fourier integral of a Radon transform which is not even well-defined if £ ¢ R unless we
introduce a cut-off. With w, present, we can now say that this interior integral is entire function of
exponential type and integrals in o and k can be controlled.

The following lemma is immediate from the proof given above and it will be used in the proof
of (B).
Lemma 3.11. If f € L?(R?), then
lim limsup Heiit\/ﬁe”\/ﬁ(’f — flz =0.

IVI=0 t—o0
Proof. We will use (3.22). Notice that |ax(c,y,k) — a%(0,y,k)|2 converges to zero uniformly in
k € K; and y € Bg(0) when |[V| — 0. Therefore, substituting “as, = a% + 9(1)” into the formula
(3.44) and recalling that e~ “VHoeitVHo f — ¢ we get
lim lim sup He_”ﬁeit‘/Hiof — fl2Broy) =0
[VI—=0 t—oo
for every R > 0. Since e~ VD and e*VHo both preserve the L?(R3) norm, we get the statement of

the lemma.
O
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We now recall the following notation. Given V', we define
VO =V -V,

and V{,) is defined in (2.5). Clearly
lim [V —0.
p—0

We now turn to proving (B) which is more involved. For fixed large R, we need to estimate the

following expression
(3.46) lim sup | o> e~V P G (1)] 2
t—+00

Take R;() - two large parameters that we will specify later. At that moment, we only require that
Rl < R2/2,R2 < R/2

Before giving the formal proof, we want to explain an idea. To show that (3.46) is small for large
R, we will prove that, given large ¢, the function e*”*ﬁDqﬁ(t) at 7 =t — Ry has L?(R®) norm localized
to Ber,(0) when ¢t and Ry are large enough and C' > 1 is an absolute constant to be specified later.
Then, we argue that in time increment A7 = Ry the function e’”\/ﬁqb(t) can not have significant
part of its L2(IR?) norm carried outside Br(0) by the group e~R2VD if R is much larger than R and
then the proof is finished because e‘iR?ﬁe_i(t_RQ)‘/BMt) = e‘“‘/ﬁgzﬁ(t)7 as needed. However, the
question remains: how do we show that e~ {¢=E2)VD(t) is localized to Beg,(0) with large C? To
do that we prove that the function e’i(t*&)‘@gb(t) depends very little on the value of potential V'
in the ball Bpg, (0) where R; is much smaller than Ry. This suggests that it makes sense to consider
new operator D; with potential V(1) and show that e*"(t’RQ)‘/Dfqu(t) has the right localization. For
that purpose, we write e~ #(t=F2)vVDig(4) — eitR2vD1e=itvDi (1) and notice that e~"VDP1¢(t) is close
to f in L2(R3) norm if Ry is large because of lemma 3.11. Since f is fixed, we conclude that e?*f2vDr
has small L?(R?) norm outside Bg(0) if R is much larger than Ry. Therefore, the question about
localizing e_i(t_RQ)‘/Bqﬁ(t) is resolved positively.

To carry out this program, two things are clearly needed. Firstly, we need to control the “speed of
propagation” of the function whose support is known. Indeed, that has been claimed several times in
the outline given above. Notice that although the general principle of “finite speed of propagation”
for hyperbolic equations ([17], p.395, theorem 8) does give some information in terms of Riemannian
metric, it is not sharp enough for us. Secondly, we need to make sure that the value of potential “far
from the solution” does not affect this solution. This will be achieved by employing the Duhamel
formula (3.4).

Recall, that (see (3.35), (3.37))
e VPy = VP (VD)p1 + &1 = e VP, (VD)1 + €1 + €2,

where [€1]2 — 0 as t — o0, lim, o limsup,_, ., |e2]2 = 0 and ¢y satisfies four properties (P1)—(P4).
Thus, we only need to prove (B) for e=*VPq, (v/D)1(t) when p is fixed.

We split the proof into several steps:

(B.1) Consider xp,, (O)e’”\/ﬁqn(\/b)ggl(t) and prove that its L*(R®) norm is small for all 7: 0 <
T<t— RQ.

More precisely, we have

Lemma 3.12. For every 7 € [0,t — Ro] and n € N, we have

—ir ~ Cp, f,R1,n,a,b

(3.47) Wy 0 Pan (VDR < SO LT 2D
and

—iT e Clp, f, R1,n,a,b

(3.48) I 0 De ™ Paa(VD)dr ()], < C2 L T 0 D)

(t _ 7-)n—O.5
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Proof. From the integral representation (3.36) and estimates (3.40), (3.42), we get
e™ Im ke—t| Im k| |pn( )|

b, 0162 (VDYE (]2 < (R foash) | dl.

Lo |Tm k|15
Recall that p, has roots at £ = a and k = b of degree n, thus, the simple integration yields
(3.47).

The second inequality can be proved in the same way because

Defi‘r\/ﬁqn(\/ﬁ)al (t) = eiiTﬁQn<\/5) (Dgl (t)>

and D (t) satisfies the same properties as ¢ () since D = —(1+V)A—VVV is local operator
and ¢; is smooth (property (P4)). O

~

(B.2) Use Duhamel formula to show that the influence of V(gr,) on e_i(t_Rz)ﬁqn(\/E)qﬁl (t) is “neg-
ligible” if Ry is much larger than Ry and t — o0.

Lemma 3.13. Given any Ry and n € N, we have
lim limsup e~ "¢ F)VPg (VD) (1) — e " FIVPrg, (VD)gy ()], = 0,

Ry—®0 50

where Dy = —div((l + V(Rl))V)'

Proof. Define the function
k
dk) = ———.
(%) k2 +1
It is analytic inside each I'y 4, its restriction to R is continuous and decays at infinity. Its
inverse d!(k) is analytic away from zero. The introduction of d will be explained in the due
course. Repeating the arguments from the previous lemma, we get

. ~ C Rv 9 ab
(3.49) w0 P (VD (VDR < CLLEL LD,
(3.50) W, 00 P (VD (VD)) < CLLIILD,

and analogous estimates hold for D; evolution.

—ir — e C ) aR ,TL,CL,b
(3.51) N @67 DD O < ST

(t
—ir —_ / ~ C(p7 f7 Rl,’lL(l,b)
HXBRl(O)Dle md 1( V Dl)qn< Dl)qbl(t)HQ < (t — T)"70'5
for all 7 € [0, — Ry]. Indeed, the formula (3.5) can be rewritten for e="VPd=1(v/D)q, (v/D)
in the same way due to analyticity of d~—' away from zero. Then, the estimates from proof of
lemma 3.12 go through.
Now, consider two functions

w(a,7) e VPN (VD)g (WD), ui(m, ) L e VP d (\/D1)gn (VD1 -

They solve
Urr = —Du = 7D1U + F, F = (Dl - D)u, Ulrr = 7D1’U,1

and satisfy initial conditions
uo & u(z,0) = d*(VD)ga(WVD)d1, wr & ur(2,0) = —id " (VD)VDgn (VD)1 ,
U1o o uy (7,0) = =d! (v D1)gn (/D ¢1, U1 o uy-(z,0) = *id*l(v D1)\/D1gn(v Dl)égl

The Duhamel formula (3.4) written for u gives

o = conra/Biyug . SUEVDD) Lfsin((r—om)

D VD L
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Subtracting the identity
sin(74/D1)
= D + —
U1l COS(T 1)U10 \/Dil U1
from this equation gives us
Sin(T\/Dl) fT sin((r — §)v/D1)
— — — + R
Su = cos(74/D1)(ug — u1g) — D (w1 —u1q) , D,

where du % v — u1. Apply an operator d(+/D1) to both sides to get

d(n/D1)du = d(r/Dy) cos(m+/ D1 ) (ug — u1o)
e /D) ) +aD) [ Wﬂads.
Now, we can appreciate the role of auxiliary function d. Notice that
sin(TA)
A
are bounded uniformly in A and 7. From lemma 3.4,

F(&)dg,

d(X) cos(TA), d(N)

lim ug —uigll2 =0, lim Ju; —uiqfl2 = 0.
t—0 t—0
We estimate F' as follows
F=(H —Hu=-V®) - V)Au - VVE) —V)Vu = Vg, Au+ VV(g, Vu.
Notice that V(g,) is supported on Bg,;1(0). On the ball Br,12(0), we have estimates (3.49)

and (3.50) for u and Hu = —(1 4+ V)Au — VVVu in L?(Bg,;2(0)). By Interior Regularity
Theorem, we get analogous estimates on Au and Vu in L?(Bg,+1(0)). Thus, we have
1

t—Ro
lim |d(n/D1)ou(t — R2)|2 < Clp, f, R1,n,a,b) limsupf ——————dr <
t—00 (t — 7)n—0.5

t—0 0
Clp, f, Ry, n,a,b)Ry "
and

(3.53) lim limsup |d(v/D1)du(t — Ra)||2 =0

Ry—®0 o

because we have chosen n = 3. Recall that
A(/Dr)u(t—Ry) = d(/Dy) (e FVPa L (/D)g (VD) Gy —e - RVPIa (/D1 )gu (v/D1)d )

For the second term,

d(v/Dy)e VPG (/D1)gn(v/Di)dy = e VP, (/D)o

In the first one, we can not commute d(v/D7) with e~i(t=R2)VD, However, we can apply
lemma 3.4. Indeed, d(1/«) is continuous and decays at infinity. Consider

e~ i(t=R2)v/D1 g—1 (m)qn(m)$1 .
)

Take any two sequences {t(/)} and {Réj )} that converge to infinity such that lim; ., (") — Ry) = +oo.
Then, estimate (3.51), applied with 7 = t() — Réj ) and arbitrary R;, shows that

) ) _ Py j
i =RIWDL =1 (/D) gn (/D) n (¢9)

satisfies conditions of lemma 3.4 and we can commute the operators in the limit which gives
us

. _i(t@ _RpW ~ ; _i(t@ _RW ~ ;
lim e~ =FIVDP g (VD) (t0)) — e 1 =REIVD1g (/D) (tD) 5 = 0

J—00

Since {t()}, {R(] )} are arbitrary, we have the statement of the lemma. 0
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Remark. Since we proved the lemma for approximants qn(\/ﬁ)gl(t) with arbitrary p > 0,
we have
(3.54) lim limsup He_i(t_R2)‘/B¢(t) — ¢ =RV )|, = 0.
Ry—>© o0

(B.3) We can use
lim V)| =0

Ry—0

to make sure that e~ ""VDP1¢(t) is close to f in L2(R3).
More precisely, from lemma 3.11, we get

—ity/ D1 eit'\/

(3.55) lim limsup e Hog gl =0,

Ri—® ¢t
where, again, D; = —div (1 + V1))V and g € L*(R?).
(B.4) Now, we use the so-called intertwining property. Fixing Ry and taking g = ¢f2vHo f iy (3.55),
we get

(3.56) lim limsup |le # = F2)VPig(t) — ¢tFvHo g, —

R1>0 ¢
for every Rs.
(B.5) Compare (B.2) (in particular, (3.54)) with (B.4), (3.56), to conclude that e~ "= 2)VDg(t)
satisfies
(3.57) lim limsup He*i(t*Rz)@d)(t) —etRaVHo £, = 0.

Ry—®0 500

(B.6) Notice that the formula (3.57) is equivalent to

(3.58) lim limsup ||e_itﬁqb(t) — ¢"iR2VD (eiRzﬁf) [2=0.

Ry—® ¢t

Consider the second term. We can write
e~ eV iftevH f — o=iRavDa (VD) (Re) + €2,

where [€z]l2 — 0 when Rs and p go to infinity (see (3.37)).
We can now write formula (3.5)

e_iR“@qn(\FD)gﬁ(Rz) _ 1 eiR2k(D kz)—lpn(k)gl(Rg)dk:.

2mi Jp, ,

The estimates on the amplitude give us
1

— L e~k (D — k2", (k)1 (Ry)dk

_ k)|d|k|
< Ry m k | 1m k| [P (K) || K|
271 \C(f7p7R27a7b)f e e <

Lus | Tm k|15

C(f, p, Raym a,b)(r — By) =709,
provided that r > Ry + 1. This finally provides an estimate

(3.59) =YD, (VD)1 (Ra) |32 (55,0 < C(fs B2y pymya, )R-
which holds for R > 2R,. Thus, fixing Ry and choosing R large, we can make C(f, p, Ra, a,b) R*~2"

as small as we wish since n = 3 was our choice for n.

L2(5-(0))

Now, the claim (B) is proved. Indeed, given any € > 0, we chose p to make approximation
error in 51 smaller than e when limsup,_,., is taken. Then, we choose Ry large enough to
make the left hand side in (3.58) smaller than e. Finally, we choose R so that the right hand
side in (3.59) is smaller than e.

O

Remark. Notice that when ¢ — +o00, the integral over I', does not contribute anything. If
t — —oo, the roles of F:,b and ', change.
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3.6. Stationary representation for wave operators and orthogonal eigenfunction decom-
position. We start with a theorem.

Theorem 3.14. If f € N, then

N *meﬁﬂ aO’—HVHUﬂ'U
(3.60) WD) = gz | il [ o) Flna/2m)a
for every y.

Proof. From (3.45) and part (B) (tightness), we know that

(P (VD)) W) — — | pak)G(k, y)dk

271 Jp+ ,

lim
t—-+00

=0,

L2(R3)
where 551 approximates ¢; in L?(R3) as p — 0. The integral defines a function continuous in y. We
first fix y and p and then use formula for G, analyticity of ax(c,y, —k), and (3.33) to replace the
contour F:’b by [b,a] and write
1 1
PuIG )k = 5 | ()G e
a,b

T or

(3.61)

27 o
The boundary value of G on the real line is understood in the L?[a, b] topology for every y and every

[a,b].
In the formula for G, the interior integral is equal to

J}R wp(T)ei”T(fJR(Vfl)(T, o)+ iR(|A|1/2f1)(T, o)dr .

It converges to one-dimensional inverse Fourier transform of (—oR(V f1)(7, ) +iR(|A[Y2f1)(7,0) in
7, evaluated at point x/27. Since the function f; € NV, this convergence is uniform in « € [a, b], o € S%.
Take p — oo in the right hand side of (3.61). Using the formulas

~ ~ ~ ~

R(s,0) = f(s0), R(s,0) = f(s0)
(see [42], p. 204), we conclude (recalling the definitions of p, and g,) that

~

W= 1)) = 20 | dulof? | aclovg =i/ (2m))do

0
Notice that we obtained this formula for every fixed y and the right hand side of (3.60) belongs to
domain of D which is H2(R?) = C(R?). O

Remark. In the free case, a = e~ 50

1 o - =
o || bl [ oy =) (ko (2m)do
s 0 S2

1 o ) - 1 ) -

— | aklk? | e flko/(2m))do = = J ~KE) F(¢ /(2 ) dE —

o7 | R [ o Fhojemyie = o [ e flegema = 1)
by Fourier inversion formula, as expected.

Remark. One can get an analogous formula for W (compare with [46], formula (6.9), p. 247)

~

(362) WD) = gz | il |||l Flno 2m)aer

For every y € R3, we define the following functions

Ai (57 y) déf Qoo (07 Y, _271_/{)’ -AJr (g, y)

and & = |k|o is representation of £ in spherical coordinates. Clearly,

[ atenpie<e
7'1<‘£|<7'2

Can(o,y,2mr), €eR®

for every 0 <71 < 19 < 0.
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If g e C*(R3) and its support has a positive distance from the origin, we can define the map

W) = | A Eneode Wl - [ ATEna©e.
The following theorem gives the stationary representation for wave operators
Theorem 3.15. U+ are isometries from L*(R3) to L?(R3) and W+ = Y+ F+1.

Proof. This is immediate since W are isometries and Fourier transform is unitary from L?(R3) to
L?(R3). Thus, we can extend U+ to all of L?(R?). O

Now that we established that {A} form orthonormal systems, the next natural question is: do
{A*}, as functions in y, represent eigenfunctions of D in some sense (check formula (6.7), p. 246,
[46])7 In fact, we have (with ”-” below indicating the variable on which the operator D acts)

(3.63) Daw (0, k) = K2ax (0, -, K)

in the following weak sense.
Take any test function ¢ € CX(R?),k € C*, and h € L%(S?) and consider r so large that the support
of ¢ is inside B,.(0). Then, we can write

06, %5 [ Gl (Rm@e )y = 6.0 (5 [ Gl (D@ ) -
= Js,.(0) S-(0)

7 Js,.(0)

Notice that G(y,z,(—k)?) = G(x,y,k?). Substitute this identity into the previous formula, send
r — o0 and compare the main terms in asymptotics. This provides

(Do, L (. Fh(0)do) = Ko, L (o h(o)do.

We now take k for which the non-tangential limits of both sides exist (each one is a full measure
set). Comparing the limiting values, we get (3.63) in “weak” sense, which can be formulated as (the
conjugation can be dropped by the choice of h and ¢)

Lemma 3.16. Take any ¢ € C°(R®) and h € L*(S?). Then, for a.e. k € R, we have
D, |0l 1)h(o)do) = k20, | an(o,n)h(o)do.
§2 s

Remark. The obvious drawback of the given argument is that the set of “good” k for which
the non-tangential limits exist, might depend on both ¢ and h. Had we been able to establish the
y-independence of the set of “good” & in the definition of ay (0, y, k), we would have had

J§2 aw (0, y, K)h(o)do

being a weak (and then H?(R?)-regular, by Interior Regularity Theorem, [17], p.309) eigenfunction of
D. Notice, that we do not have this issue in the case when the problem is considered on ¢2(Z3).

Having obtained the stationary representation for wave operators, we can now prove theorem 1.3
from Introduction.

Proof. (of theorem 1.3) First, we suppose that for given f, its orthogonal projection to subspace
ran W is nonzero. Call it hy and write hy = f — hy. Since hy = WH (W)~ 1hy, we have

VP tWH (W) py by, - 40
and, since eitVD preserves L? norm,
le VHo (W) 1hy — e VPhy |y >0, t— 40

thus proving the lemma.
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Therefore, it suffices to show that orthogonal projection of f to ran W is nonzero. Suppose it is

zero. Then, using (f, WTg) = 0 for all g € L?(R3), formula (3.62) and weak continuity (as function

in

(3.

o, k) of ax(0,y, k) in parameter y, we get

) [ 1) [l [ actovs. mtna @mias = 0

0

for every g € N. This can be rewritten as

(3.

65) Ld“'“‘2L2 Flo,0)3(ro]@0)do = 0,  F(o,k) j F ()0, , )dy

if we change the order of integration. Now, note that F'(c,k) is analytic in k¥ € C* and positive on

iR

since f is nonnegative and aq (0, y, k) is positive there. Thus, F'(o, k), being boundary value, is

not identically zero as function in o € S? and x € R. This, however, gives a contradiction with (3.65)
since g is chosen arbitrarily in A" and A is dense in L?(R?). O

We finish the paper by formulating the following questions:
1. Are the wave operators W+ (+v/D,+/Hy) complete?
2. Can methods developed in this paper be generalized to Schrédinger evolution e®*#? The free
evolution for Schrédinger equation is very different from ¢tVHo and proving existence of wave
operators is a major challenge even in one-dimensional case.
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