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Abstract. We apply inverse spectral theory to study Sobolev norms of solutions to the nonlinear

Schrödinger equation. For initial datum q0 ∈ L2(R) and s ∈ [−1, 0], we prove that there exists a

conserved quantity which is equivalent to Hs(R)-norm of the solution.

1. Introduction

In the last two decades, the theory of polynomials orthogonal on the unit circle (OPUC) has been

used to obtain some of the strongest results in the spectral theory (see, e.g., [9, 17, 18]). In [3], the

authors of the present paper have applied OPUC techniques to characterize existence and completeness

of wave operators for the Dirac evolution on the half-line. One area where scattering theory for Dirac

systems �nds applications is the so-called inverse scattering approach to the nonlinear Schrödinger

equation (NLS). Below, we develop a general framework that enables one to use the theory of Krein

systems (a continuous analog of OPUC [13]) in the context of NLS. To illustrate our approach, we

study the Sobolev norms of solutions to NLS adding to the area which attracted much attention

in recent years [5�7, 15, 19�21, 23]. Our Theorem 1.2 stated below is not new and can be deduced

from the results of Koch and Tataru [21] or by using an alternative method of Killip, Visan and

Zhang [19]. However, we have developed a new and promising approach to that problem which adapts

the technique from [3] to the setting of NLS and shows, in particular, that the sharp regularity class

used to characterize scattering in the Dirac system can be studied in the context of Sobolev spaces.

Then, we employ our analysis to obtain Theorem 1.2 which represents the �rst step in applying

methods of [3] to NLS. In the current paper, we also develop a convenient language which we hope

can be used by the spectral theory community to further study NLS dynamics.

Turning to the actual content of the paper, consider the classical defocusing nonlinear Schrödinger

equation (NLS) [14,26,30] on the real line,{
i∂q∂t = −∂2q

∂ξ2 + 2|q|2q,
q
∣∣
t=0

= q0,
ξ ∈ R, t ∈ R. (1.1)

It is known that for su�ciently regular initial datum q0 the unique classical solution q = q(ξ, t) exists

globally in time. For example, if q0 lies in the Schwartz class S(R), then q(·, t) ∈ S(R) for all t ∈ R.
The long-time asymptotics of q is known [10,11,29]. For less regular initial datum q0, one can de�ne

the solution by an approximation argument (see, e.g., [28]):

Theorem 1.1. Let q0 ∈ L2(R), and let q0,n ∈ S(R) converge to q0 in L2(R). Denote by qn(ξ, t) the

solution of (1.1) corresponding to q0,n. We have

lim
n→+∞

∥qn(·, t)− q(·, t)∥L2(R) = 0, t ∈ R,

for some function q(ξ, t) : R2 → R that does not depend on the choice of the sequence q0,n.

The function q in Theorem 1.1 is called the L2�solution of (1.1) corresponding to the initial datum

q0 ∈ L2(R). It is clear that such a solution is unique. The total energy of the solution is its L2(R)-norm
and it is conserved in time:

∥q(·, t)∥L2(R) = ∥q0∥L2(R), t ∈ R .
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By Plancherel's formula, it is equal to ∥(Fq)(·, t)∥L2(R) where F stands for the Fourier transform. In

this paper, we work with Sobolev spaces Hs(R), s ∈ R. The Hs(R)-norm of a function f ∈ S(R) is
de�ned by

∥f∥Hs(R) =

(∫
R
(1 + |η|2)s|(Ff)(η)|2dη

) 1
2

. (1.2)

The space Hs(R) is the completion of S(R) with respect to this norm. Equivalently, one can de�ne it

by

Hs(R) = {f ∈ S ′(R) : (1 + |η|2) s
2Ff ∈ L2(R)} ,

where S ′(R) is the space of tempered distribution.

In contrast to the linear Schrödinger equation for which all Sobolev norms are conserved, the

solutions of NLS can exhibit in�ation of Sobolev norm Hs(R) for s ⩽ − 1
2 (see, e.g., [8,20] for details).

Speci�cally, given an arbitrarily small positive ε and s ⩽ − 1
2 , there exists a solution q to (1.1) that

satis�es

q0 ∈ S(R), ∥q0∥Hs(R) ⩽ ε, ∥q(·, ε)∥Hs(R) ⩾ ε−1 , (1.3)

see [8] for that construction. This result is related to the �high-to-low frequency cascade�. It occurs

when for initial datum q0 ∈ S(R), a part of L2(R)-norm of q, when written on the Fourier side, moves

from high to low frequencies as time increases. The Sobolev norms with negative index s can be used

to capture this phenomenon. Indeed, since ∥q(·, t)∥L2(R) is time-invariant and the weight (1 + η2)s in

(1.2) vanishes at in�nity when s < 0, the transfer of L2-norm from high to low values of frequency η

makes the Hs(R)-norm grow.

For NLS, the in�ation of Hs(R)-norm can not happen for s > − 1
2 . In [21], Koch and Tataru

discovered the set of conserved quantities which agree with Hs(R)-norm up to a quadratic term for a

small value of ∥q0∥Hs(R) and s > − 1
2 . As a corollary, they obtained the bounds on ∥q(·, t)∥Hs(R) that

are uniform in time:

∥q(·, t)∥Hs(R) ⩽ C(s)

{
R+R1+2s, s > 0,

R+R
1+4s
1+2s , s ∈ (− 1

2 , 0) ,
R = ∥q0∥Hs(R) . (1.4)

In [19], Killip, Vi³an, and Zhang proved a similar estimate using a di�erent method. The estimates

on the growth of Hs(R)-norms are related to questions of well-posedness and ill-posedness of NLS in

Sobolev classes which have been extensively studied previously, see, e.g., [5�7,15,19�21,23].

In our paper, we use some recent results in the inverse spectral theory [1�3] to show that there are

conserved quantities of NLS which agree with Hs(R)-norm provided that s ∈ [−1, 0] and the value of

∥q0∥L2(R) is under control. We apply our analysis to prove the following theorem.

Theorem 1.2. Let q0 ∈ L2(R) and let q = q(ξ, t) be the solution of (1.1) corresponding to q0. Then,

C1(1 + ∥q0∥L2(R))
2s∥q0∥Hs(R) ⩽ ∥q(·, t)∥Hs(R) ⩽ C2(1 + ∥q0∥L2(R))

−2s∥q0∥Hs(R), (1.5)

where t ∈ R , s ∈ [−1, 0], and C1 and C2 are two positive absolute constants.

This result shows, in particular, that for a given function q0 : ∥q0∥L2(R) = 1 whose L2(R)-norm is

concentrated on high frequencies, we will never see a signi�cant part of L2(R)-norm of the solution q

moving to the low frequencies. That limits the �high-to-low frequency cascade� we discussed above.

The close inspection of construction used in [8] shows that the function q0 in (1.3) has Hs(R)-norm
smaller than ε but its L2(R)-norm is large when ε is small. Hence, the bounds in Theorem 1.2 do not

contradict the estimates in (1.3) when s ∈ [−1,− 1
2 ]. We do not know whether Theorem 1.2 holds for

s < −1.

The main idea of the proof of Theorem 1.2 is based on the analysis of the conserved quantity a(z),

Im z > 0, which is a coe�cient in the transition matrix for the Dirac equation with potential q = q(·, t).
We take z = i and show that log |a(i)| is related to a certain quantity K̃Q (see the Lemma 3.3 below)

that characterizes both size and oscillation of q. Using K̃Q in the context of NLS is the main novelty

of our work. We study K̃Q and show that it is equivalent to H−1(R) norm of q with constants that

depend on its L2(R)-norm. That gives the estimate (1.5) for s = −1 and the intermediate range of

s ∈ (−1, 0) is handled by interpolation. Our analysis relies heavily on the recent results [1�3] that

characterize Krein � de Branges canonical systems and the Dirac operators whose spectral measures
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belong to the Szeg® class on the real line. We also establish the framework that allows working with

NLS in the context of well-studied Krein systems.

Notation

• The symbol I stands for 2× 2 identity matrix I = ( 1 0
0 1 ) and symbol J stands for J =

(
0 −1
1 0

)
.

Constant matrices σ3, σ±, σ are de�ned in (2.2).

• For a measurable set S ⊂ R, we say that f ∈ L1
loc(S) is f ∈ L1(K) for every compact K ⊂ S.

• The Fourier transform of a function f is de�ned by

(Ff)(η) =
1√
2π

∫
R
f(x)e−iηx dx.

• The symbol C, unless we specify explicitly, denotes the absolute constant which can change

the value from formula to formula. If we write, e.g., C(α), this de�nes a positive function of

parameter α.

• For two non-negative functions f1 and f2, we write f1 ≲ f2 if there is an absolute constant C

such that f1 ⩽ Cf2 for all values of the arguments of f1 and f2. We de�ne ≳ similarly and

say that f1 ∼ f2 if f1 ≲ f2 and f2 ≲ f1 simultaneously. If |f3| ≲ f4, we will write f3 = O(f4).

• Symbols {ej} are reserved for the standard basis in C2: e1 = ( 10 ), e2 = ( 01 ).

• For matrix A, the symbol ∥A∥HS denotes its Hilbert-Schmidt norm: ∥A∥HS = (tr(A∗A))
1
2 .

2. Preliminaries

Our proof of Theorem 1.1 uses complete integrability of equation (1.1). In that framework, (1.1)

can be solved by using the method of inverse scattering which we discuss next following [14].

2.1. The inverse scattering approach to NLS. Given a complex-valued function q ∈ S(R), de�ne
the di�erential operator

Lq = iσ3
d

dξ
+ i(qσ− − qσ+), (2.1)

where we borrow notation for constant matrices σ3, σ± from [14]:

σ3 =

(
1 0

0 −1

)
, σ+ =

(
0 1

0 0

)
, σ− =

(
0 0

1 0

)
, σ = σ− + σ+ =

(
0 1

1 0

)
. (2.2)

The expression Lq is one of the forms in which the Dirac operator can be written. In Section 3, we

will introduce another form and will show how the two are related. Let us also de�ne

E(ξ, λ) = e
λ
2i ξσ3 =

(
e

λ
2i ξ 0

0 e−
λ
2i ξ

)
,

as in [14]. In the free case when q = 0, the matrix-function E solves L0E = λ
2E, E(0, λ) = I. Since

q ∈ S(R), it decays at in�nity fast and therefore one can �nd two solutions T± = T±(ξ, λ) such that

LqT± =
λ

2
T±, T± = E(ξ, λ) + o(1), ξ → ±∞, (2.3)

for every λ ∈ R. These solutions are called the Jost solutions for Lq. Since both T+ and T− solve the

same ODE, they must satisfy

T−(ξ, λ) = T+(ξ, λ)T (λ), ξ ∈ R, λ ∈ R, (2.4)

where the matrix T = T (λ) does not depend on ξ ∈ R. One can show that it has the form

T (λ) =

(
a(λ) b(λ)

b(λ) a(λ)

)
, detT = |a|2 − |b|2 = 1. (2.5)

The matrix T is called the reduced transition matrix for Lq, and the ratio rq = b/a is called the

re�ection coe�cient for Lq. One can obtain T in a di�erent way: let Zq = Zq(ξ, λ), ξ ∈ R, λ ∈ C be

the fundamental matrix for Lq, that is,

LqZq =
λ

2
Zq, Zq(0, λ) = ( 1 0

0 1 ) . (2.6)
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Then, we have Zq(ξ, λ) = T±(ξ, λ)T
−1
± (0, λ) and the pointwise limits

T−1
± (0, λ) = lim

ξ→±∞
E−1(ξ, λ)Zq(ξ, λ) (2.7)

exist for every λ ∈ R. Moreover, we have T (λ) = T−1
+ (0, λ)T−(0, λ) on R.

The coe�cients a, b, and rq were de�ned for λ ∈ R and they satisfy |a|2 = 1+ |b|2, 1− |rq|2 = |a|−2

for these λ. However, one can show that a(λ) is the boundary value of the outer function de�ned in

C+ = {z ∈ C : Im z > 0} by the formula (see (6.22) in [14])

a(z) = exp

(
1

πi

∫
R

1

λ− z
log |a(λ)| dλ

)
, z ∈ C+,

which, in view of identity 1− |rq|2 = |a|−2 on R, can be written as

a(z) = exp

(
− 1

2πi

∫
R

1

λ− z
log(1− |rq(λ)|2)dλ

)
. (2.8)

That shows, in particular, that b de�nes both a and rq, and rq de�nes a and b.

The map q 7→ rq is called the direct scattering transform and its inverse is called the inverse

scattering transform. These maps are well-studied when q ∈ S(R). In particular, we have the following
result (see [14] for the proof).

Theorem 2.1. The map q 7→ rq is a bijection from S(R) onto the set of complex-valued functions

{r ∈ S(R), ∥r∥L∞(R) < 1}.

The scattering transform has some symmetries:

Lemma 2.1. If q ∈ S(R) and λ ∈ R, then

(dilation): rαq(αξ)(λ) = rq(ξ)(α
−1λ), α > 0 ,

(conjugation): rq(ξ)(λ) = rq(ξ)(−λ) ,

(translation): rq(ξ−ℓ)(λ) = rq(ξ)(λ)e
−iλℓ, ℓ ∈ R ,

(modulation): re−iβξq(ξ)(λ) = rq(ξ)(λ+ β), β ∈ R .

(rotation): rµq(ξ)(λ) = µrq(ξ)(λ), µ ∈ C, |µ| = 1 .

Proof. Indeed, the direct substitution into (2.3) shows that if T±(ξ, λ) are Jost solutions for q(ξ),

then

(a) T±(αξ, α
−1λ) are the Jost solutions for αq(αξ),

(b) T±(ξ,−λ) are the Jost solutions for q(ξ),

(c) T±(ξ − ℓ, λ)E(ℓ, λ) are the Jost solutions for q(ξ − ℓ),

(d) E(−ξ, β)T±(ξ, λ+ β) are the Jost solutions for e−iβξq(ξ),

(e)
(
1 0
0 µ

)
T±(ξ, λ)

(
1 0
0 µ

)
are the Jost solutions for µq(ξ), |µ| = 1.

Now, it is left to use the formula (2.4) which de�nes T . A computation using (2.5) shows how a and

b change under symmetries (a)�(e). For example, the translation does not change a and it multiplies

b by e−iλl. The modulation e−iβξq(ξ), however, gives ae−iβξq(ξ)(λ) = aq(ξ)(λ + β). Then, the claim

follows from the de�nition of the re�ection coe�cient rq = b/a. □

The next result (see formula (7.5) in [14]), along with the previous theorem, shows how the inverse

scattering transform can be used to solve (1.1).

Theorem 2.2. Let q0 ∈ S(R) and let rq0 = rq0(λ) be the re�ection coe�cient of Lq0 . De�ne the

family

r(λ, t) = e−iλ2trq0(λ), λ ∈ R, t ∈ R. (2.9)

For each t ∈ R, let q = q(ξ, t) be the potential in the previous theorem generated by r(λ, t). Then,

q = q(ξ, t) is the unique classical solution of (1.1) with the initial datum q0. Moreover, for every

t ∈ R, the function ξ 7→ q(ξ, t) lies in S(R).

The solutions to NLS equation

i
∂q

∂t
= −∂2q

∂ξ2
+ 2|q|2q (2.10)



NLS 5

behave in an explicit way under some transformations. Speci�cally, we have

(a) Dilation: if q(ξ, t) solves (2.10), then αq(αξ, α2t) solves (2.10) for every α ̸= 0.

(b) Time reversal: if q(ξ, t) solves (2.10), then q(ξ,−t) solves (2.10). In particular, if q0 is real-

valued, then q(ξ, t) = q(ξ,−t).

(c) Translation: if q(ξ, t) solves (2.10), then q(ξ − ℓ, t) solves (2.10) for every ℓ ∈ R.
(d) Modulation or Galilean symmetry: if q(ξ, t) solves (2.10), then eivξ−iv2tq(ξ − 2vt, t) solves

(2.10) for every v ∈ R.
(e) Rotation: if q(ξ, t) solves (2.10), then µq(ξ, t) solves (2.10) for every µ ∈ C, |µ| = 1.

These properties can be checked by direct calculation (see, e.g., formula (1.19) in [15] for (d)) and

a simple inspection shows that the bound (1.5) is consistent with all these transformations. The

statements of Theorem 2.2 and Lemma 2.1 are consistent with these symmetries as well.

Now, we can explain the idea behind the proof of the Theorem 1.2.

The idea of the proof for Theorem 1.2. One can proceed as follows. First, we assume that

q0 ∈ S(R) and notice that conservation of |r(λ, t)|, λ ∈ R, guaranteed by (2.9), yields that log |a(i, t)|
is conserved, where a(z, t) is de�ned for z ∈ C+ by (2.8). Separately, for every Dirac operator Lq with

q ∈ L2(R), we show that log |a(i)| is equivalent to some explicit quantity K̃Q that involves q. That

quantity was introduced and studied in [1�3]: it resembles the matrix Muckenhoupt A2(R) condition
and it is equivalent to H−1(R) norm of q provided that ∥q∥L2(R) is under control, e.g., ∥q∥L2(R) < C

with some �xed C. Putting things together, we see that SobolevH−1(R) norm of q(·, t) does not change
much in time provided that the bound ∥q(·, t)∥L2(R) < C holds. Since ∥q(·, t)∥L2(R) = ∥q0∥L2(R) is

time-invariant, we arrive to the statement of Theorem 1.2 for q0 ∈ S(R) and s = −1. For s = 0, the

claim of Theorem 1.2 is trivial. The intermediate range of s ∈ (−1, 0) is handled by interpolation

using Galilean invariance of NLS. The general case when q0 ∈ L2(R) follows by a density argument if

one uses the stability of L2-solutions guaranteed by Theorem 1.1.

There are other methods that use conserved quantities that agree with negative Sobolev norms.

The paper [19] uses a representation of log |a(i)| through a perturbation determinant. Then, the

analysis of the perturbation series allows the authors of [19] to obtain estimates similar to (1.4). It is

conceivable that this approach can provide results along the same lines as Theorem 1.2.

To focus on the Dirac operator with q ∈ L2(R), we �rst consider this operator on half-line R+ in

connection to Krein systems that were introduced in [22].

2.2. Operator Lq and Krein system. Let A : R+ → C be a function on the positive half-line

R+ = [0,+∞) such that ∫ r

0

|A(ξ)| dξ < ∞,

for every r ⩾ 0. Recall that we denote the set of such functions by L1
loc(R+). The Krein system (see

the formula (4.52) in [13]) with the coe�cient A has the form{
P ′(ξ, λ) = iλP (ξ, λ)−A(ξ)P∗(ξ, λ), P (0, λ) = 1,

P ′
∗(ξ, λ) = −A(ξ)P (ξ, λ), P∗(0, λ) = 1,

(2.11)

where the derivative is taken with respect to ξ ∈ R+ and λ ∈ C. Let also{
P̂ ′(ξ, λ) = iλP̂ (ξ, λ) +A(ξ)P̂∗(ξ, λ), P̂ (0, λ) = 1,

P̂ ′
∗(ξ, λ) = A(ξ)P̂ (ξ, λ), P̂∗(0, λ) = 1,

(2.12)

denote the so-called dual Krein system (see Corollary 5.7 in [13]). Set

Y (ξ, λ) = e−iλξ

(
P (2ξ, λ) iP̂ (2ξ, λ)

P∗(2ξ, λ) −iP̂∗(2ξ, λ)

)
. (2.13)

The matrix-function Zq, which was de�ned in (2.6) for q ∈ S(R), makes sense if we assume that

q ∈ L1
loc(R). In the next lemma, we relate Y to Zq.
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Lemma 2.2. Let q ∈ L1
loc(R), A(2ξ) = −q(ξ)/2 on R+, and Y be the corresponding matrix-valued

function de�ned by (2.13). Then, Zq(ξ, 2λ) = σY (ξ, λ)Y −1(0, λ)σ for ξ ⩾ 0 and λ ∈ C.

Proof. The proof is a computation. We have

Lq̄Y (ξ, λ) =λσ3Y (ξ, λ) + iσ3e
−iλξ d

dξ

(
P (2ξ, λ) iP̂ (2ξ, λ)

P∗(2ξ, λ) −iP̂∗(2ξ, λ)

)
+ i(q̄σ− − qσ+)Y (ξ, λ),

=2iσ3e
−iλξ

(
iλP (2ξ, λ)−A(2ξ)P∗(2ξ, λ) −λP̂ (2ξ, λ) + iA(2ξ)P̂∗(2ξ, λ)

−A(2ξ)P (2ξ, λ) −iA(2ξ)P̂ (2ξ, λ)

)
+ i(q̄σ− − qσ+ − iλσ3)Y (ξ, λ).

Notice, that

i(q̄σ− − qσ+ − iλσ3)Y (ξ, λ) = ie−iλξ

(
−iλ −q

q̄ iλ

)(
P (2ξ, λ) iP̂ (2ξ, λ)

P∗(2ξ, λ) −iP̂∗(2ξ, λ)

)

= ie−iλξ

(
−iλP (2ξ, λ)− qP∗(2ξ, λ) λP̂ (2ξ, λ) + iqP̂∗(2ξ, λ)

q̄P (2ξ, λ) + iλP∗(2ξ, λ) iq̄P̂ (2ξ, λ) + λP̂∗(2ξ, λ)

)
.

Using relation 2A(2ξ) + q̄(ξ) = 0, we obtain

Lq̄Y (ξ, λ) = ie−iλξ

(
iλP (2ξ, λ) −λP̂ (2ξ, λ)

iλP∗(2ξ, λ) λP̂∗(2ξ, λ)

)
= −λY (ξ, λ).

Since σσ3σ = −σ3 and σσ±σ = σ∓, one has σLq̄σ = −Lq. Therefore,

Lq(σY (ξ, λ)σ) = λ(σY (ξ, λ)σ).

It follows that matrix-valued functions Zq(ξ, 2λ) and σY (ξ, λ)Y −1(0, λ)σ solve the same Cauchy prob-

lem and thus Zq(ξ, 2λ) = σY (ξ, λ)Y −1(0, λ)σ, as required. □

Lemma 2.3. Let q ∈ L1
loc(R), let A(2ξ) = q(−ξ)/2 on R+, and let Y be the corresponding matrix-

valued function de�ned by (2.13). Then, Zq(−ξ, 2λ) = Y (ξ, λ)Y −1(0, λ) for ξ ⩾ 0 and λ ∈ C.

Proof. Recall that matrices σ3, σ±, σ are de�ned in (2.2). Using relations σσ3σ = −σ3 and σσ±σ =

σ∓, we see that Lq̃Z̃q = λ
2 Z̃q, where q̃(ξ) = −q(−ξ) and Z̃q(ξ, λ) = σZq(−ξ, λ)σ. Then, previous

lemma applies to q̃, Zq̃(ξ, 2λ) = Z̃q(ξ, 2λ) and A(2ξ) = −q̃(ξ)/2 = q(−ξ)/2. It gives Z̃q(ξ, 2λ) =

σY (ξ, λ)Y −1(0, λ)σ. Returning to Zq, we get Zq(−ξ, 2λ) = Y (ξ, λ)Y −1(0, λ). □

Given q ∈ L2(R), we de�ne the continuous analogs of Wall polynomials (see [16] and Section 7 in [13])

by

A± =
P±
∗ + P̂±

∗
2

, A±
∗ =

P± + P̂±

2
, B± =

P±
∗ − P̂±

∗
2

, B±
∗ =

P± − P̂±

2
, (2.14)

where P±, P±
∗ , P̂±, P̂±

∗ are the solutions of systems (2.11), (2.12) for the coe�cient A+(ξ) =

−q(ξ/2)/2 from Lemma 2.2 and the coe�cient A−(ξ) = q(−ξ/2)/2 from Lemma 2.3, correspond-

ingly. Functions P±, P±
∗ , P̂±, P̂±

∗ are continuous analogs of polynomials orthogonal on the unit

circle, they depend on two parameters: ξ ∈ R+ and λ ∈ C and they satisfy identities (see formula

(4.32) in [13]):

P±
∗ (ξ, λ) = eiξλP±(ξ, λ), P̂±

∗ (ξ, λ) = eiξλP̂±(ξ, λ) (2.15)

for real λ.

We will use the following result (see Lemma 2 in [12] which contains a stronger statement).

Theorem 2.3. Let A ∈ L2(R+), and let P , P∗ be the solutions of system (2.11) for the coe�cient A.

Then, the limit

Π(λ) = lim
ξ→+∞

P∗(ξ, λ) (2.16)

exists for every λ ∈ C+. That function Π is outer in C+. If λ ∈ R, the convergence in (2.16) holds in

the Lebesgue measure on R where Π(λ) now denotes the non-tangential boundary value of Π.
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That theorem allows us to de�ne

a±(λ) = lim
ξ→+∞

A±(ξ, λ), b±(λ) = lim
ξ→+∞

B±(ξ, λ) (2.17)

for every λ ∈ C+ and for almost every λ ∈ R. Moreover, Corollary 12.2 in [13] gives

|a±(λ)|2 = 1 + |b±(λ)|2 (2.18)

for a.e. λ ∈ R. For every λ ∈ C+, we de�ne

a(λ) = a+(λ)a−(λ)− b+(λ)b−(λ) .

Proposition 2.1. The function a is outer in C+.

Proof. We can write

a = a+a−(1− s+s−), s± =
b±

a±
.

It is known that a± are outer (see the formulas (12.9) and (12.29) in [13]) and that s± satisfy |s±| < 1

in C+. The function 1− s+s− has a positive real part in C+ and so is an outer function. That shows

that a is a product of three outer functions and hence it is outer itself. □

Proposition 2.2. Let q ∈ L2(R) and let Zq be de�ned by (2.6). Then, the limits in (2.7) exist in the

Lebesgue measure on R. The matrix T (λ) = T−1
+ (0, λ)T−(0, λ) has the form (2.5) where

a = a+a− − b+b−, b = a−b+ − b−a+ , (2.19)

and a±, b± are de�ned Lebesgue almost everywhere on R by the convergence in (2.17) in measure.

Proof. If q ∈ L2(R), the fundamental matrix Zq and the continuous Wall polynomials (2.14) are

related by the formula

Zq(ξ, 2λ) =


e−iλξ

(
A+(2ξ, λ) B+(2ξ, λ)

B+
∗ (2ξ, λ) A+

∗ (2ξ, λ)

)
, ξ ⩾ 0,

eiλξ

(
A−

∗ (−2ξ, λ) B−
∗ (−2ξ, λ)

B−(−2ξ, λ) A−(−2ξ, λ)

)
, ξ < 0.

(2.20)

Indeed, it is enough to use Lemma 2.2, Lemma 2.3, and the fact that Y −1(0, λ) = 1
2

(
1 1
−i i

)
. Our next

step is to prove that the limit

T−1
+ (0, 2λ) = lim

ξ→+∞
E−1(ξ, 2λ)Zq(ξ, 2λ) (2.21)

exists in Lebesgue measure when λ ∈ R. From (2.15), we obtain

E−1(ξ, 2λ)Zq(ξ, 2λ) =

(
1 0

0 e−2iλξ

)(
A+(2ξ, λ) B+(2ξ, λ)

B+
∗ (2ξ, λ) A+

∗ (2ξ, λ)

)
=

(
A+(2ξ, λ) B+(2ξ, λ)

B+(2ξ, λ) A+(2ξ, λ)

)
,

for every ξ ⩾ 0 and λ ∈ R. Similarly,

E−1(−ξ, 2λ)Zq(−ξ, 2λ) =

(
e−2iλξ 0

0 1

)(
A−

∗ (2ξ, λ) B−
∗ (2ξ, λ)

B−(2ξ, λ) A−(2ξ, λ)

)
=

(
A−(2ξ, λ) B−(2ξ, λ)

B−(2ξ, λ) A−(2ξ, λ)

)
.

Hence, the limits

T−1
± (0, 2λ) = lim

ξ→±∞
E−1(ξ, 2λ)Zq(ξ, 2λ) (2.22)

exist in Lebesgue measure on R by Theorem 2.3. Moreover,

T (2λ) = T−1
+ (0, 2λ)T−(0, 2λ) =

(
a+(λ) b+(λ)

b+(λ) a+(λ)

)(
a−(λ) b−(λ)

b−(λ) a−(λ)

)−1

(2.18)
=

(
a+(λ) b+(λ)

b+(λ) a+(λ)

)(
a−(λ) −b−(λ)

−b−(λ) a−(λ)

)
=

(
a(λ) b(λ)

b(λ) a(λ)

)
and the proposition follows. □

We end this section with a few remarks on re�ection coe�cients of potentials in L2(R). We have

|a|2 − |b|2 = 1 almost everywhere on R due to the fact that detT±(0, λ) = 1 almost everywhere on R.
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That can also be established directly using (2.18). Proposition 2.2 then allows to de�ne the re�ection

coe�cient rq = b/a for every q ∈ L2(R). The Lemma 2.1 holds for rq in that case as well. However,

not all results about scattering transform can be generalized from the case q ∈ S(R) to q ∈ L2(R).
For example, scattering transform is injective on S(R) by Theorem 2.1, but it is not longer so when

extended to L2(R) (see Example 6.1 in Appendix).

3. Another form of Dirac operator, q ∈ L2(R), and the entropy function.

Suppose q ∈ L2(R). The alternative to Lq form of writing Dirac operator on the line is given by

an expression

DQ : X 7→ JX ′ +QX, Q =

(
− Im q −Re q

−Re q Im q

)
. (3.1)

DQ is densely de�ned self-adjoint operator on the Hilbert space L2(R,C2) of functions X : R → C2

such that ∥X∥2L2(R,C2) =
∫
R ∥X(ξ)∥2C2 dξ is �nite. DQ and Lq de�ned in (2.1) are related by a simple

formula:

DQ = ΣLqΣ
−1, Σ =

1√
2

(
1 1

−i i

)
, Σ−1 =

1√
2

(
1 i

1 −i

)
.

One way to study DQ is to focus on Dirac operators on half-line R+ �rst. Given q ∈ L2(R+), we

de�ne D+
Q on L2(R+,C2) by

D+
Q : X 7→ JX ′ +QX, Q =

(
− Im q −Re q

−Re q Im q

)
(3.2)

on the dense subset of absolutely continuous functions X ∈ L2(R+,C2) such that D+
QX ∈ L2(R+,C2),

X(0) = ( ∗0 ). We will call D+
Q the Dirac operator de�ned on the positive half-line with boundary

conditions X(0) = ( ∗0 ) or simply the half-line Dirac operator. Set A(ξ) = −q(ξ/2)/2 for ξ ∈ R+, and

let P (ξ, λ), P∗(ξ, λ) be the solutions of Krein system (2.11) generated by A. The Krein system with

coe�cient A and Dirac equation (3.2) are related as follows (see the proof of Lemma 6.1 in Appendix):

if NQ solves the Cauchy problem JN ′
Q(ξ, λ) +Q(ξ)NQ(ξ, λ) = λNQ(ξ, λ), NQ(0, λ) = ( 1 0

0 1 ), then

NQ(ξ, λ) =
e−iλξ

2

(
1 1

i −i

)(
A+

∗ (2ξ, λ) B+
∗ (2ξ, λ)

B+(2ξ, λ) A+(2ξ, λ)

)(
1 −i

1 i

)
,

where the continuous Wall polynomials A+,B+,A+
∗ ,B

+
∗ were de�ned in (2.14). The Weyl function of

the operator D+
Q coincides (see Lemma 6.1 in Appendix) with

mQ(z) = lim
ξ→+∞

i
P̂∗(ξ, z)

P∗(ξ, z)
, z ∈ C+. (3.3)

It is known (see Theorem 7.3 in [13]) that the limit above exists for every z ∈ C+ and de�nes an

analytic function of Herglotz-Nevanlinna class in C+. The latter means that mQ(C+) ⊂ C+. In the

next theorem, ImmQ(λ) denotes the nontangential boundary value on R which exists Lebesgue almost

everywhere. It is understood as a nonnegative function g = Imm on R and it satis�es g/(1 + λ2) ∈
L1(R).

Theorem 3.1. Let q ∈ L2(R+) and let Q, D+
Q, mQ be de�ned by (3.2), (3.3). Denote by NQ the

solution of the Cauchy problem JN ′
Q(ξ) + Q(ξ)NQ(ξ) = 0, NQ(0) = ( 1 0

0 1 ), and set HQ = N∗
QNQ.

De�ne also

K+
Q = log ImmQ(i)−

1

π

∫
R
log ImmQ(λ)

dλ

λ2 + 1
, (3.4)

K̃+
Q =

+∞∑
k=0

(
det

∫ k+2

k

HQ(ξ) dξ − 4

)
. (3.5)

Then, we have

c1K+
Q ⩽ K̃+

Q ⩽ c2e
c2K+

Q (3.6)

for some positive absolute constants c1, c2.
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Proof. Lemma 6.1 in Appendix shows that mQ coincides with the Weyl function for the canonical

system with Hamiltonian HQ. Then, the bounds in (3.6) follow from the Theorem 1.2 in [2] (see also

Corollary 1.4 in [2]). □

The quantity K+
Q will be called the entropy of the Dirac operator on R+. We now turn to (3.1) to

de�ne the entropy for the Dirac operator on the whole line. Take q ∈ L2(R) and let A+(ξ) = −q(ξ/2)/2

and A−(ξ) = q(−ξ/2)/2, ξ ∈ R+ be the coe�cients of Krein systems associated to restrictions of q to

the half-lines R+ and R−. As in (3.3), the half-line Weyl functions m± satisfy

m±(z) = lim
ξ→+∞

i
P̂±
∗ (ξ, z)

P±
∗ (ξ, z)

, z ∈ C+. (3.7)

These Weyl functions m± can be used to construct the spectral representation for the Dirac operator.

Let

m(z) = − 1

m+(z) +m−(z)

(
−2m+(z)m−(z) m+(z)−m−(z)

m+(z)−m−(z) 2

)
, z ∈ C+. (3.8)

Using Imm±(z) > 0, one can show that Imm(z) is a positive de�nite matrix for z ∈ C+. In other

words, m is the matrix-valued Herglotz function. Therefore, there exists a unique matrix-valued

measure ρ taking Borel subsets of R into 2× 2 nonnegative matrices such that

m(z) = α+ βz +
1

π

∫
R

(
1

λ− z
− λ

λ2 + 1

)
dρ(λ), z ∈ C+,

where α, β are constant 2×2 real matrices, β ⩾ 0. The importance of ρ becomes clear when we recall

the spectral decomposition for DQ. Speci�cally, let NQ(ξ, z) be the solution of the Cauchy problem

J
∂

∂ξ
NQ(ξ, z) +Q(ξ)NQ(ξ, z) = zNQ(ξ, z), NQ(0, z) = ( 1 0

0 1 ) , z ∈ C, ξ ∈ R . (3.9)

Then, the mapping

FDQ
: X 7→ 1√

π

∫
R
N∗

Q(ξ, λ)X(ξ) dξ, λ ∈ R, (3.10)

initially de�ned on the set of compactly supported smooth functions X : R → C2, extends (see

Appendix) to the unitary operator between the Hilbert spaces L2(R,C2) and L2(ρ),

L2(ρ) =
{
Y : R → C2 : ∥Y ∥2L2(ρ) =

∫
R
Y ∗(λ) dρ(λ)Y (λ) < ∞

}
.

Moreover, DQ is unitary equivalent to the operator of multiplication by the independent variable in

L2(ρ) and the unitary equivalence is given by the operator FQ. In fact, these properties of ρ will not

be used in the paper, we mention them only to motivate the following de�nition. Let us de�ne the

entropy function KQ(z) by

KQ(z) = − 1

π

∫
R
log(det ρac(λ))

Im z

|λ− z|2
dλ, z ∈ C+, (3.11)

where ρac denotes the absolutely continuous part of the spectral measure ρ and it satis�es ρac(λ) =

limε→0,ε>0 Imm(λ+ iε) for a.e. λ ∈ R. The quantity KQ will play a crucial role in our considerations.

We �rst relate it to the coe�cient a of the reduced transition matrix T which was introduced in

Proposition 2.2.

Lemma 3.1. We have det ρac(λ) = |a(λ)|−2 for almost all λ ∈ R. In particular, KQ(z) = 2 log |a(z)|
for all z ∈ C+.

Proof. From the de�nition (or see page 59 in [24]), one has

det Imm(z) = 4
Imm+(z) Imm−(z)

|m+(z) +m−(z)|2
, z ∈ C+. (3.12)

Substituting expressions for

m±(z) = lim
ξ→+∞

i
P̂±
∗ (ξ, z)

P±(ξ, z)
= i

a±(z)− b±(z)

a±(z) + b±(z)
, z ∈ C+,
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into (3.12), we obtain

det ρac(λ) = lim
ε→+0

det Imm(λ+ iε)

= lim
ε→+0

(|a+(λ+ iε)|2 − |b+(λ+ iε)|2)(|a−(λ+ iε)|2 − |b−(λ+ iε)|2)
|a+(λ+ iε)a−(λ+ iε)− b+(λ+ iε)b−(λ+ iε)|2

=
1

|a(λ)|2
,

for almost every λ ∈ R and the �rst claim of the lemma follows. Then, the second claim is immediate

because a is an outer function as we showed in Proposition 2.1. □

Consider again the half-line entropy functions

K±
Q(z) = log Imm±(z)−

1

π

∫
R
log Imm±(λ)

Im z

|λ− z|2
dλ, z ∈ C+.

We see that K+
Q(i) coincides with the entropy (3.4) for the restriction of Q to R+ (that explains why

we use the same notation for the two objects), and K−
Q(z) = K+

Q−
(z) for the potential

Q−(ξ) =

(
− Im q(−ξ) Re q(−ξ)

Re q(−ξ) Im q(−ξ)

)
, ξ ∈ R+.

Our plan now is to relate K±
Q(i) with KQ(i) and then use the fact that the full line entropy KQ(i) is

conserved, see Lemma 3.1. That will eventually lead to the proof of Theorem 1.2.

Lemma 3.2. Let q ∈ L2(R) and let qℓ(ξ) = q(ξ − ℓ), where ℓ ∈ R and ξ ∈ R. Denote by Qℓ the

matrix-function in (3.1) corresponding to qℓ. Then, K+
Qℓ

(z) → KQ(z), K−
Qℓ

(z) → 0 as ℓ → +∞ for

every z ∈ C+.

Proof. Take z ∈ C+. We have

K+
Qℓ

(z) +K−
Qℓ

(z) = log
(
Immℓ,+(z) Immℓ,−(z)

)
− 1

π

∫
R
log
(
Immℓ,+(λ) Immℓ,−(λ)

) Im z

|λ− z|2
dλ,

for the corresponding Weyl functions mℓ,±. We also have

log |mℓ,+(z) +mℓ,−(z)|2 =
1

π

∫
R
log |mℓ,+(λ) +mℓ,−(λ)|2

Im z

|λ− z|2
dλ

by the mean value theorem for harmonic functions. From (3.12), it follows that

K+
Qℓ

(z) +K−
Qℓ

(z) = log

(
4
Immℓ,+(z) Immℓ,−(z)

|mℓ,+(z) +mℓ,−(z)|2

)
+KQℓ

(z).

Notice that KQℓ
(z) does not depend on ℓ ∈ R because the coe�cient a in Lemma 3.1 for the potential

Qℓ does not depend on ℓ. So, we only need to show that

K−
Qℓ

(z) → 0 and log

(
4
Immℓ,+(z) Immℓ,−(z)

|mℓ,+(z) +mℓ,−(z)|2

)
→ 0,

when ℓ → +∞ and z ∈ C+. The second relation follows from mℓ,+(z) → i, mℓ,−(z) → i, which hold

because qℓ tends to zero weakly in L2(R) as ℓ → +∞ and ∥qℓ∥L2(R) = ∥q∥L2(R) (see Lemma 6.2 in

Appendix). Moreover, relation mℓ,−(z) → i implies that K−
Qℓ

(z) → 0 if and only if

1

π

∫
R
log Immℓ,−(λ)

Im z

|λ− z|2
dλ → 0 . (3.13)

In the rest of the proof, we will show (3.13). Let a−ℓ , b
−
ℓ be the limits of continuous Wall polynomials

corresponding to Q−
ℓ . Consider s

−
ℓ = b−ℓ /a

−
ℓ . The formula (12.57) in [13] gives

s−ℓ (z) =
1 + imℓ,−(z)

1− imℓ,−(z)
, mℓ,−(z) = i

a−ℓ (z)− b−ℓ (z)

a−ℓ (z) + b−ℓ (z)
.
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It implies that Immℓ,−(λ) = |a−ℓ (λ) + b−ℓ (λ)|−2 when λ ∈ R and that s−ℓ (z) → 0 when ℓ → +∞ and

z ∈ C+. Now, we can write

1

π

∫
R
log Immℓ,−(λ)

Im z

|λ− z|2
dλ =

1

π

∫
R
log

(
1

|a−ℓ (λ) + b−ℓ (λ)|2

)
Im z

|λ− z|2
dλ

= log
1

|a−ℓ (z) + b−ℓ (z)|2
= log

1

|a−ℓ (z)|2
+ log

1

|1 + s−ℓ (z)|2
.

So, it remains to show that |a−ℓ (z)|2 → 1 as ℓ → +∞. That holds because ∥qℓ,−∥L2(R+) → 0 as

ℓ → +∞ and

∥qℓ,−∥2L2(R+) =
1

π

∫
R
log |a−ℓ (λ)|

2 dλ ⩾
Im z

π

∫
R
log |a−ℓ (λ)|

2 Im z

|λ− z|2
dλ = Im z · log |a−ℓ (z)|

2 ⩾ 0,

where the �rst equality follows from ∥qℓ,−∥2L2(R+) = 2∥Aℓ,−∥2L2(R+) and the formula (12.2) in [13].

Thus, (3.13) holds and we are done. □

As an immediate corollary of Theorem 3.1 and Lemma 3.2, we get the following estimate.

Lemma 3.3. Let q ∈ L2(R). Denote by NQ the solution of the Cauchy problem JN ′
Q(ξ)+Q(ξ)NQ(ξ) =

0, NQ(0) = ( 1 0
0 1 ), and set HQ = N∗

QNQ. Consider

KQ = KQ(i), K̃Q =
∑
k∈Z

(
det

∫ k+2

k

HQ(ξ) dξ − 4

)
. (3.14)

Then, we have

c1KQ ⩽ K̃Q ⩽ c2KQe
c2KQ (3.15)

for some positive absolute constants c1, c2.

Proof. By Lemma 3.2, we have KQ = limℓ→+∞ K+
Qℓ
. It remains to substitute Qℓ into the estimate

(3.6) and take the limit as ℓ → +∞ for ℓ ∈ Z. □

4. Proof of Theorem 1.2

The following result will play a crucial role in what follows. We postpone its proof to the next

section.

Theorem 4.1. Suppose q ∈ L2(R) and let NQ satisfy JN ′
Q + QNQ = 0, NQ(0) = I, where Q =(

− Im q −Re q
−Re q Im q

)
. Then,

e−C1R∥q∥2H−1(R) ≲ K̃Q ≲ eC2R∥q∥2H−1(R) , (4.1)

where R = ∥q∥L2(R) and C1, C2 are two positive absolute constants.

Proof of Theorem 1.2 in the case s = −1. First, assume that q0 ∈ S(R) and let q(ξ, t) be the

solution of (1.1) with the initial datum q0. We want to prove that

C1(1 + ∥q0∥L2(R))
−2∥q0∥H−1(R) ⩽ ∥q(·, t)∥H−1(R) ⩽ C2(1 + ∥q0∥L2(R))

2∥q0∥H−1(R) . (4.2)

We have ∥q(·, t)∥L2(R) = ∥q0∥L2(R) for all t, see formula (4.33) in [14]. Let a(z, t) denote the coe�cient

in the matrix (2.5) given by q(ξ, t). For each t ∈ R, de�ne Q by (3.2). Let K̃Q(t) be as in Lemma 3.3

and KQ(z, t) be de�ned by (3.11). Formulas (2.8) and (2.9) show that a(z, t) is constant in t and

Lemma 3.1 says that KQ(z, t) is constant in t as well. The bound (3.15) yields

c1KQ(i, 0) ⩽ K̃Q(t) ⩽ c2KQ(i, 0)e
c2KQ(i,0) . (4.3)

Assume �rst that R = ∥q0∥L2(R) ⩽ 1. Taking t = 0 in (4.3) and applying (4.1) to q0, we get

KQ(i, 0) ≲ 1 since ∥q0∥H−1(R) ⩽ R ⩽ 1. Hence, in that case (4.3) can be written as K̃Q(t) ∼ KQ(i, 0) .

By (4.1), ∥q(·, t)∥2H−1(R) ∼ K̃Q(t), and so ∥q(·, t)∥2H−1(R) ∼ ∥q(·, 0)∥2H−1(R).

If R = ∥q0∥L2(R) > 1, we use dilation. Consider qα(ξ, t) = αq(αξ, α2t) which solves the same

equation and notice that ∥qα∥L2(R) = α
1
2R .
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Let α = αc = R−2 < 1 making ∥qαc
∥L2(R) = 1. Then, for the Sobolev norm, we get

∥qα(·, t)∥H−1(R) = α
1
2

(∫
R

1

1 + α2η2
|(Fq)(η, α2t)|2dη

) 1
2

. (4.4)

Since
1

1 + η2
⩽

1

1 + α2
cη

2
⩽

1

α2
c(1 + η2)

, (4.5)

one has

α
1
2
c ∥q(·, α2

ct)∥H−1(R)⩽∥qαc
(·, t)∥H−1(R)⩽α

− 1
2

c ∥q(·, α2
ct)∥H−1(R) .

In particular, at t = 0 we get

α
1
2
c ∥q(·, 0)∥H−1(R) ⩽ ∥qαc

(·, 0)∥H−1(R) ⩽ α
− 1

2
c ∥q(·, 0)∥H−1(R) .

Since ∥qαc
(·, 0)∥L2(R) = 1, one can apply the previous bounds to obtain

∥qαc(·, t)∥H−1(R) ∼ ∥qαc(·, 0)∥H−1(R) .

Then,

α
1
2
c ∥q(·, α2

ct)∥H−1(R) ≲ ∥qαc
(·, 0)∥H−1(R) ≲ α

− 1
2

c ∥q(·, 0)∥H−1(R),

α
− 1

2
c ∥q(·, α2

ct)∥H−1(R) ≳ ∥qαc
(·, 0)∥H−1(R) ≳ α

1
2
c ∥q(·, 0)∥H−1(R).

Recalling that αc = R−2, we obtain

R−2∥q(·, 0)∥H−1(R) ≲ ∥q(·, t)∥H−1(R) ≲ R2∥q(·, 0)∥H−1(R)

for all t ∈ R. Finally, having proved (4.2) for q0 ∈ S(R), it is enough to use Theorem 1.1 to extend

(4.2) to q0 ∈ L2(R). □

Our next goal is to prove the estimate

C1(1 + ∥q0∥L2(R))
2s∥q0∥Hs(R) ⩽ ∥q(·, t)∥Hs(R) ⩽ C2(1 + ∥q0∥L2(R))

−2s∥q0∥Hs(R), (4.6)

where t ∈ R , s ∈ (−1, 0], and C1 and C2 are positive absolute constants. For s = 0, this bound is

trivial. To cover s ∈ (−1, 0), we will need some auxiliary results �rst. One of the basic properties of

NLS which we discussed in the Introduction has to do with modulation: if q(ξ, t) solves (2.10), then

q̃v(ξ, t) = eivξ−iv2tq(ξ − 2vt, t) solves (2.10) for every v ∈ R.

Lemma 4.1. Let q0 ∈ L2(R), t ∈ R. Then,

∥q̃v(·, t)∥2H−1(R) =

∫
R

|(Fq)(η, t)|2

1 + (η + v)2
dη.

Proof. It is clear that ∥e−iv2tf∥H−1(R) = ∥f∥H−1(R) for every f ∈ H−1(R) and t ∈ R, because e−iv2t

is a unimodular constant. We have F(eivξq(ξ− 2vt, t))(η) = (Fq(ξ, t))(η− v)e−2ivt(η−v), η ∈ R. Since
|e−2ivt(η−v)| = 1, it only remains to change the variable of integration in

∥q̃v∥H−1(R) =

∫
R

|(Fq(ξ, t))(η − v)|2

1 + η2
dη

to get the statement of the lemma. □

The next result is a standard property of convolutions.

Lemma 4.2. Let γ ∈ (− 1
2 , 1] and set ak = 1

(1+k2)γ for k ∈ Z. We have∑
k∈Z

ak
1 + (η − k)2

∼ Cγ
1

(1 + η2)γ
, η ∈ R.

Proof. After comparing the sum to an integral, it is enough to show that∫
R

du

(1 + u2)γ(1 + (η − u)2)
∼ Cγ

1

(1 + η2)γ
.
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The function on the left-hand side is even and continuous in η and γ, so we can assume that η > 1.

Then,∫
|η−u|<0.5η

du

(1 + u2)γ(1 + (η − u)2)
∼ 1

(1 + η2)γ
,

∫
|η−u|>0.5η

du

(1 + u2)γ(1 + (η − u)2)
≲ I1 + I2 ,

where

I1 =

∫
u<−η/2, u>3η/2

du

(1 + u2)γ(1 + (η − u)2)
≲
∫ −η/2

−∞

du

u2+2γ
+

∫
3η/2

du

u2+2γ
⩽ Cγη

−1−2γ ,

I2 =

∫
|u|<η/2

du

(1 + u2)γ(1 + (η − u)2)
≲ η−2

∫
|u|<η/2

du

(1 + u2)γ
≲ η−2γ .

Combining these bounds proves the lemma. □

Proof of Theorem 1.2, the case s ∈ (−1, 0). We can again assume that q0 ∈ S(R). Recall the

estimate (1.5) for s = −1:

C1(1 + ∥q0∥L2(R))
−2∥q0∥H−1(R) ⩽ ∥q(·, t)∥H−1(R) ⩽ C2(1 + ∥q0∥L2(R))

2∥q0∥H−1(R) . (4.7)

According to Lemma 4.1, we have

∥q̃v(·, t)∥2H−1(R) =

∫
R

|(Fq(·, t))(η)|2

1 + (v + η)2
dη (4.8)

for q̃v(ξ, t) = eivξ−iv2tq(ξ − 2vt, t). Let ak, k ∈ Z, be the coe�cients from Lemma 4.2 with γ = −s.

Then, (4.8) and Lemma 4.2 imply∑
k∈Z

ak∥q̃k(·, t)∥2H−1(R) ∼ Cs∥q(·, t)∥2Hs(R) . (4.9)

In particular, taking t = 0 gives∑
k∈Z

ak∥q̃k(·, 0)∥2H−1(R) ∼ Cs∥q0∥2Hs(R) . (4.10)

We now apply (4.7) to q̃k and use (4.9) and (4.10) to get

C1(s)(1 + ∥q0∥L2(R))
−2∥q0∥Hs(R) ⩽ ∥q(·, t)∥Hs(R) ⩽ C2(s)(1 + ∥q0∥L2(R))

2∥q0∥Hs(R) . (4.11)

If R = ∥q0∥L2(R) ⩽ 1, we have the statement of our theorem. If R = ∥q0∥L2(R) > 1, we use dilation

transformation like in the previous proof for s = −1. Consider qα(ξ, t) = αq(αξ, α2t) which solves

the same equation and notice that ∥qα∥L2(R) = α
1
2R . Let α = αc = R−2 < 1 making ∥qαc

∥L2(R) = 1.

Then, for the Sobolev norm, we have

∥qα(·, t)∥Hs(R) = α
1
2

(∫
R

1

(1 + α2η2)|s|
|(Fq)(η, α2t)|2dη

) 1
2

.

From (4.5),
1

(1 + η2)|s|
⩽

1

(1 + α2
cη

2)|s|
⩽

1

α
2|s|
c (1 + η2)|s|

.

Then, one has

α
1
2
c ∥q(·, α2

ct)∥Hs(R)⩽∥qαc
(·, t)∥Hs(R)⩽α

1
2−|s|
c ∥q(·, α2

ct)∥Hs(R) .

In particular, taking t = 0 gives us

α
1
2
c ∥q(·, 0)∥Hs(R) ⩽ ∥qαc

(·, 0)∥Hs(R) ⩽ α
1
2−|s|
c ∥q(·, 0)∥Hs(R) .

Now ∥qαc
(·, 0)∥L2(R) = 1 and we can apply the previous bounds to get

∥qαc(·, t)∥Hs(R) ∼ ∥qαc(·, 0)∥Hs(R) .

Then,

α
1
2
c ∥q(·, α2

ct)∥Hs(R) ≲ ∥qαc
(·, 0)∥Hs(R) ≲ α

1
2−|s|
c ∥q(·, 0)∥Hs(R),

α
1
2−|s|
c ∥q(·, α2

ct)∥Hs(R) ≳ ∥qαc(·, 0)∥Hs(R) ≳ α
1
2
c ∥q(·, 0)∥Hs(R).
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Recalling that αc = R−2 = ∥q0∥−2
L2(R), we obtain

∥q0∥−2|s|
L2(R)∥q(·, 0)∥Hs(R) ≲ ∥q(·, t)∥Hs(R) ≲ ∥q0∥2|s|L2(R)∥q(·, 0)∥Hs(R)

for all t ∈ R. □

Our approach also provides the bounds for some positive Sobolev norms. The following proposition

slightly improves (1.4) when s ∈ [0, 1
2 ), ∥q0∥Hs(R) is large, and ∥q0∥L2(R) is much smaller than

∥q0∥Hs(R).

Proposition 4.1. Let q0 ∈ S(R) and let q = q(ξ, t) be the solution of (1.1) corresponding to q0.

Then, for each s ∈ [0, 1
2 ), we get

∥q(·, t)∥Hs(R) ∼ Cs∥q0∥Hs(R) (4.12)

if ∥q0∥L2(R) ⩽ 1 and

∥q(·, t)∥Hs(R) ≲ Cs(∥q0∥1+2s
L2(R) + ∥q0∥Hs(R)) (4.13)

if ∥q0∥L2(R) > 1.

Proof. In the case when ∥q∥L2(R) ⩽ 1, the proof of proposition repeats the arguments given above

to get (4.11) except that the constants in the inequalities depend on s and can blow up when s → 1
2 .

Suppose ∥q∥L2(R) ⩾ 1. Then, for the Sobolev norm, we have

∥qα(·, t)∥Hs(R) = α
1
2

(∫
R
(1 + α2η2)s|(Fq)(η, α2t)|2dη

) 1
2

.

Take α = αc and write the following estimate for the integral above:∫
R

(
1 +

η2

R4

)s

|(Fq)(η, α2
ct)|2dη ∼

∫ R2

−R2

|(Fq)(η, α2
ct)|2dη +R−4s

∫
|η|>R2

(
1 + η2

)s|(Fq)(η, α2
ct)|2dη

≲ R2 +R−4s

∫
R

(
1 + η2

)s|(Fq)(η, α2
ct)|2dη .

We use ∥qαc(·, t)∥L2(R) = 1 and (4.11) to get ∥qαc(·, t)∥Hs(R) ∼ Cs∥qαc(·, 0)∥Hs(R). The previous

estimate for t = 0 yields ∥qαc(·, 0)∥Hs(R) ≲ 1+R−1−2s∥q(·, 0)∥Hs(R). Hence, ∥qαc(·, t)∥Hs(R) ⩽ Cs(1+

R−1−2s∥q(·, 0)∥Hs(R)). We can write a lower bound

∥qαc(·, t)∥2Hs(R) = R−2

∫
R

(
1 +

η2

R4

)s

|(Fq)(η, α2
ct)|2dη ≳ R−2−4s

∫
|η|>R2

(
1 + η2

)s|(Fq)(η, α2
ct)|2dη

so ∫
|η|>R2

(
1 + η2

)s|(Fq)(η, α2
ct)|2dη ⩽ Cs(R

2+4s + ∥q(·, 0)∥2Hs(R)).

Writing the integral as a sum of two:∫
R

(
1 + η2

)s|(Fq)(η, α2
ct)|2dη =

∫
|η|>R2

(
1 + η2

)s|(Fq)(η, α2
ct)|2dη+

∫
|η|<R2

(
1 + η2

)s|(Fq)(η, α2
ct)|2dη

and estimating each of them, we get a bound which holds for all t:∫
R

(
1 + η2

)s|(Fq)(η, α2
ct)|2dη ⩽ Cs(R

2+4s + ∥q(·, 0)∥2Hs(R)) .

That is the required upper bound (4.13). □

5. Oscillation and Sobolev space H−1(R).

In this part of the paper, our goal is to prove the Theorem 4.1. Let us recall its statement.

Theorem 5.1. Suppose that q ∈ L2(R) and let NQ satisfy JN ′
Q + QNQ = 0, NQ(0) = I, where

Q =
(

− Im q −Re q
−Re q Im q

)
. Then,

e−C1R∥q∥2H−1(R) ≲ K̃Q ≲ eC2R∥q∥2H−1(R) , (5.1)

where R = ∥q∥L2(R) and C1, C2 are two positive absolute constants.
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Theorem 5.1 is of independent interest in the spectral theory of Dirac operators. For example,

Lemma 3.3 shows that ∥q∥L2(R) and ∥q∥H−1(R) control the size of KQ.

The strategy of the proof is the following. In the next subsection, we show thatH−1(R)-norm of any

function can be characterized through BMO-like condition for its �antiderivative�. In Subsection 5.2,

we consider solution to Cauchy problem JN ′ + QN = 0, N(0) = I on the interval [0, 1] where zero-

trace symmetric Q and study the quantity det
∫ 1

0
N∗Ndx, which represents a single term in the sum

for K̃Q. The results in Subsection 5.3 show that small value of K̃Q guarantees that the �local� H−1

norm of Q is also small. This rough estimate is used in the proof of Theorem 4.1 which is contained

in Subsection 5.4.

5.1. One property of Sobolev space H−1(R). Observe that a function f ∈ L2(R) belongs to the

Sobolev space H−1(R) if and only if∫
R

∣∣∣∣∫
R
f(y)χR+

(x− y)e−(x−y) dy

∣∣∣∣2 dx < ∞. (5.2)

Moreover, the last integral is equal to ∥f∥2H−1(R). Indeed, recall that Ff stands for the Fourier trans-

form of f :

(Ff)(η) =
1√
2π

∫
R
f(x)e−iηx dx .

Then, from Plancherel's identity and formula

1√
2π

∫
R+

e−xe−ixηdx =
1√
2π

1

1 + iη
,

we obtain

∥f∥2H−1(R) = 2π∥(Ff)F(χR+
e−x)∥2L2(R) =

∫
R

|(Ff)(η)|2

1 + η2
dη

by properties of convolutions. We will need the following proposition.

Proposition 5.1. Suppose that f ∈ L1
loc(R) ∩ H−1(R). Let g be an absolutely continuous function

on R such that g′ = f almost everywhere on R. Then,

c1∥f∥2H−1(R) ⩽
∑
k∈Z

∫
Ik

|g − ⟨g⟩Ik |2 dx ⩽ c2∥f∥2H−1(R), (5.3)

where Ik = [k, k + 2], ⟨g⟩I = 1
|I|
∫
I
g(x) dx, and the positive constants c1 and c2 are universal.

Proof. Take a function f ∈ L1
loc(R) ∩H−1(R), and let g be an absolutely continuous function on R

such that g′ = f almost everywhere on R. Assume �rst that f has a compact support. The integral

under the sum does not change if we add a constant to g, so we can suppose without loss of generality

that

g(x) =

∫ x

−∞
f(s) ds, x ∈ R.

Upper bound. Given f , de�ne of by

of (x) = e−x

∫ x

−∞
f(y)eydy

and recall (see (5.2)) that

∥f∥H−1(R) = ∥of∥L2(R). (5.4)

Moreover,

o′f + of = f . (5.5)
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For each interval Ik, we use (5.5) for the corresponding term in the sum (5.3):∫
Ik

∣∣∣∣∣
∫ x

k

fdx1 −
1

2

∫ k+2

k

(∫ x1

k

f(x2)dx2

)
dx1

∣∣∣∣∣
2

dx

=

∫
Ik

∣∣∣∣∣
∫ x

k

o(x1)dx1 + o(x)− 1

2

∫ k+2

k

(
o(x1) +

∫ x1

k

o(x2)dx2

)
dx1

∣∣∣∣∣
2

dx

≲
∫
Ik

|o|2dx

after the Cauchy-Schwarz inequality is applied. Summing these estimates in k ∈ Z and using (5.4),

we get the upper bound in (5.3) for compactly supported f .

Lower bound. Integration by parts gives∫ x

−∞
f(y)e−(x−y) dy =

∫ x

−∞
f(s) ds−

∫ x

−∞

(∫ y

−∞
f(s) ds

)
e−(x−y) dy

= g(x)−
∫ x

−∞
g(y) e−(x−y) dy

=

∫ x

−∞
(g(x)− g(y)) e−(x−y) dy.

Therefore, ∫
R

∣∣∣∣∫ x

−∞
f(y)e−(x−y) dy

∣∣∣∣2 dx ⩽
∑
k∈Z

∫ k+2

k

(∫ x

−∞
|g(x)− g(y)|2e−(x−y) dy

)
dx

≲
∑
k∈Z

∑
j⩽k

e−(k−j)

∫ k+2

k

∫ j+2

j

|g(x)− g(y)|2 dx dy .

Using the inequality (x+ y + z)2 ⩽ 3(x2 + y2 + z2), we continue the estimate:

... ≲
∑
k∈Z

∑
j⩽k

e−(k−j)

(∫
Ik

|g − ⟨g⟩Ik |2dx+ |⟨g⟩Ij − ⟨g⟩Ik |2 +
∫
Ij

|g − ⟨g⟩Ij |2dx

)
.

Since ∑
k∈Z

∑
j⩽k

e−(k−j)

(∫
Ik

|g − ⟨g⟩Ik |2dx+

∫
Ij

|g − ⟨g⟩Ij |2dx

)
≲
∑
k∈Z

∫
Ik

|g − ⟨g⟩Ik |2dx ,

we are left with estimating ∑
k∈Z

∑
j⩽k

e−(k−j)|⟨g⟩Ij − ⟨g⟩Ik |2.

Applying the Cauchy-Schwarz inequality for the telescoping sum

⟨g⟩Ik − ⟨g⟩Ij =

k∑
s=j+1

(
⟨g⟩Is − ⟨g⟩Is−1

)
,

we get

|⟨g⟩Ij − ⟨g⟩Ik |2 ⩽ (k − j)
∑

j⩽s⩽k−1

|⟨g⟩Is − ⟨g⟩Is+1
|2.

Then,∑
k∈Z

∑
j⩽k

e−(k−j)(k − j)
∑

j⩽s⩽k−1

|⟨g⟩Is − ⟨g⟩Is+1
|2 =

∑
s∈Z

|⟨g⟩Is − ⟨g⟩Is+1
|2

∑
k,j: j⩽s⩽k−1

(k − j)e−(k−j).

We have ∑
k,j: j⩽s⩽k−1

(k − j)e−(k−j) =
∑
j⩽s

∑
m⩾1

(s+m− j)e−(s+m−j)

=
∑
j⩽0

∑
m⩾1

(m− j)e−(m−j) =
∑
j⩾0

∑
m⩾1

(m+ j)e−(m+j).
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The last sum is �nite and does not depend on index s. Now, the estimate

|⟨g⟩Is − ⟨g⟩Is+1 |2 =

∫
Is∩Is+1

|⟨g⟩Is − g+ g− ⟨g⟩Is+1 |2dx ⩽ 2

∫
Is

|g− ⟨g⟩Is |2dx+ 2

∫
Is+1

|g− ⟨g⟩Is+1 |2dx

proves that ∑
k∈Z

∑
j⩽k

e−(k−j)|⟨g⟩Ij − ⟨g⟩Ik |2 ≲
∑
s∈Z

∫
Is

|g − ⟨g⟩Is |2dx .

Hence, the lower bound in (5.3) holds for compactly supported f .

Now, take any f ∈ L1
loc(R) ∩ H−1(R). The de�nition (1.2) of H−1(R) implies that Ff can be

written as (1+ iη)(Fo) for some function o ∈ L2(R). Moreover, this map f 7→ o is a bijection between

H−1(R) and L2(R) and ∥f∥H−1(R) = ∥o∥L2(R). Taking the inverse Fourier transform of identity

Ff = (1 + iη)(Fo), one gets a formula f = o + o′ where o′ is understood as a derivative in S ′(R).
Since f ∈ L1

loc(R) and o ∈ L2(R), we have o′ ∈ L1
loc(R) and, therefore, o is absolutely continuous

on R with the derivative equal to f − o. Now, take on(x) = o(x)µn(x) and de�ne the corresponding

fn = on + o′n. Here, µn(x) is even and

µn(x) =


1, 0 ⩽ x < n,

n+ 1− x, x ∈ [n, n+ 1),

0, x ⩾ n+ 1 .

Then, {on} → o in L2(R) and so {fn} → f in H−1(R) because the mapping f 7→ o is unitary from

H−1(R) onto L2(R). Also, each fn is compactly supported and {fn} converges to f uniformly on

every �nite interval. De�ne gn =
∫ x

0
fnds, g =

∫ x

0
fds, and write (5.3) for fn. The estimate on the

right gives ∑
|k|⩽N

∫
Ik

|gn − ⟨gn⟩Ik |2 dx ⩽ c2∥fn∥2H−1(R)

for each N ∈ N. Sending n → ∞, the bound∑
|k|⩽N

∫
Ik

|g − ⟨g⟩Ik |2 dx ⩽ c2∥f∥2H−1(R)

appears. Taking N → ∞, one has the right estimate in (5.3). In particular, it shows that the sum in

(5.3) converges. By construction,∑
k∈Z

∫
Ik

|gn − ⟨gn⟩Ik |2 dx =
∑

−n⩽k⩽n−2

∫
Ik

|g − ⟨g⟩Ik |2 dx+ ϵn ,

where ϵn is a sum of integrals over I−n−2, I−n−1, In−1, In. Since o ∈ L2(R),

lim
n→∞

∫
Ik

|gn − ⟨gn⟩Ik |2 dx = 0, k ∈ {−n− 2,−n− 1, n− 1, n} .

Hence, limn→∞ ϵn = 0 and, taking n → ∞ in inequality

c1∥fn∥2H−1(R) ⩽
∑
k∈Z

∫
Ik

|gn − ⟨gn⟩Ik |2 dx ,

one gets the left bound in (5.3). Since all antiderivatives are di�erent by a constant and the integral

in (5.3) does not change if we add a constant to g, the proof is �nished. □

5.2. Auxiliary perturbative results for a single interval. Notice that for any real symmetric

2× 2 matrix Q with zero trace, we have that V = JQ is also real, symmetric and has zero trace. The

converse statement is true as well. Hence, the equation JN ′
Q + QNQ = 0 in Theorem 5.1, which is

equivalent to N ′
Q = JQNQ, can be written as N ′

Q = V NQ with V having the same properties as Q.

Let U+(x, y) denote the solution to

d

dx
U+(x, y) = V (x)U+(x, y), U+(y, y) = I
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and U−(x, y) denote the solution to

d

dx
U−(x, y) = −V (x)U−(x, y), U−(y, y) = I .

Lemma 5.1. Suppose N ′ = V N,N(0) = I, where V is real-valued, V ∈ L1[0, 1], V = V ∗, and

trV = 0. Then, for H = N∗N , we have

det

∫ 1

0

H(ξ) dξ =
1

2

∫ 1

0

∫ 1

0

tr
(
U∗
+(x, y)U+(x, y)

)
dxdy =

1

2

∫ 1

0

∫ 1

0

∥U+(x, y)∥2HS dxdy, (5.6)

det

∫ 1

0

H(ξ) dξ − 1 =
1

2

∫ 1

0

∫ 1

0

∥∥∥(U+(x, y)− U−(x, y)
)
e1

∥∥∥2 dxdy . (5.7)

Proof. Notice that N,U+, U− ∈ SL(2,R) and that every matrix A ∈ SL(2,R) satis�es

JA∗ = A−1J, AJ = J(A∗)−1 . (5.8)

Also, for any real 2× 2 matrix B, we have

detB = ⟨JBe1, Be2⟩ = −⟨JBe2, Be1⟩ .

Hence,

I := det

∫ 1

0

H(ξ)dξ =

∫ 1

0

∫ 1

0

⟨JN∗(x)N(x)e1, N
∗(y)N(y)e2⟩dxdy

= −
∫ 1

0

∫ 1

0

⟨JN∗(x)N(x)e2, N
∗(y)N(y)e1⟩dxdy .

For the second integrand, we have

⟨JN∗(x)N(x)e1, N
∗(y)N(y)e2⟩ = ⟨N∗(y)N(y)JN∗(x)N(x)e1, e2⟩ .

Then, identities (5.8) imply

N∗(y)N(y)JN∗(x)N(x) = N∗(y)J(N∗(y))−1N∗(x)N(x) = J(N(y))−1(N∗(y))−1N∗(x)N(x)

and, since Je1 = e2 and J∗ = −J ,

⟨JN∗(x)N(x)e1, N
∗(y)N(y)e2⟩ = ⟨(N(y))−1(N∗(y))−1N∗(x)N(x)e1, e1⟩ .

Similarly, ⟨JN∗(x)N(x)e2, N
∗(y)N(y)e1⟩ = −⟨(N(y))−1(N∗(y))−1N∗(x)N(x)e2, e2⟩ . Hence,

I =
1

2

∫ 1

0

∫ 1

0

2∑
j=1

⟨(N(y))−1(N∗(y))−1N∗(x)N(x)ej , ej⟩dxdy =

1

2

∫ 1

0

∫ 1

0

tr
(
(N(y))−1(N∗(y))−1N∗(x)N(x)

)
dxdy =

1

2

∫ 1

0

∫ 1

0

tr
(
(N∗(y))−1N∗(x)N(x)(N(y))−1

)
dxdy .

Now, we use the formula N(x)(N(y))−1 = U+(x, y) to rewrite the last expression as

I =
1

2

∫ 1

0

∫ 1

0

tr
(
U∗
+(x, y)U+(x, y)

)
dxdy .

Finally, (5.7) follows from U+(x, y) ∈ SL(2,R) by direct inspection after one uses the identities

JU+(x, y)J = −U−(x, y) and tr(A∗A)−2 = ∥(A+JAJ)e1∥2, which holds for every A ∈ SL(2,R). □

Remark. The integrand in (5.6) is symmetric: tr
(
U∗
+(x, y)U+(x, y)

)
= tr

(
U∗
+(y, x)U+(y, x)

)
because

U+(x, y) = U−1
+ (y, x) and U+(x, y) ∈ SL(2,R). Notice also, that

tr
(
U∗
+(x, y)U+(x, y)

)
= λ2

x,y + λ−2
x,y ⩾ 2 ,

where λx,y is an eigenvalue of U∗
+(x, y)U+(x, y) which explains why the left-hand side in (5.7) is

nonnegative.

Lemma 5.2. Suppose real-valued matrix-function V = ( v1 v2
v2 −v1 ) is de�ned on [0, 1] and satis�es

∥V ∥L1[0,1] < ∞. Consider H = N∗N , where N : N ′ = V N,N(0) = I. Then,

det

∫ 1

0

H dx− 1 ≲ ∥V ∥2L1[0,1] exp(C∥V ∥L1[0,1]) . (5.9)
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Proof. The integral equation for N is

N = I +

∫ x

0

V Nds . (5.10)

By Gronwall's inequality,

∥N(x)∥ ⩽ exp

(∫ x

0

∥V (s)∥ds
)

⩽ exp(∥V ∥L1[0,1]). (5.11)

Iteration of (5.10) gives

N = I +

∫ x

0

V dx1 +

∫ x

0

V (x1)

(∫ x1

0

V (x2)N(x2)dx2

)
dx1 .

Then, ∫ 1

0

N∗Ndx = I + 2

∫ 1

0

(∫ x

0

V (x1)dx1

)
dx+R, ∥R∥ ≲ ∥V ∥2L1[0,1] exp(C∥V ∥L1[0,1]) .

Since trV = 0, the identity det(I +A) = 1 + trA+ detA , which holds for all 2× 2 matrices A, gives

det

∫ 1

0

Hdx− 1 ≲ ∥V ∥2L1[0,1] exp(C∥V ∥L1[0,1]) .

□

Lemma 5.3. Suppose real-valued symmetric matrix-functions V and O are de�ned on [0, 1] and satisfy

V =

(
v1 v2
v2 −v1

)
= O +O′, O = O∗ =

(
o1 o2
o2 −o1

)
, (5.12)

δ := ∥O∥L2[0,1] < ∞ , (5.13)

d := ∥O′∥L2[0,1] < ∞ . (5.14)

Consider H = N∗N where N ′ = V N,N(0) = I. Then, we have

det

∫ 1

0

H dx− 1 = 4

2∑
j=1

∫ 1

0

|gj − ⟨gj⟩|2 dx+ r, |r| ≲ δ2.5 exp(C(d+ δ)) , (5.15)

where

gj :=

∫ x

0

vj dx (5.16)

and C is an absolute positive constant. An analogous result holds if O and V are related by V = O−O′.

Proof. We will use the formula (5.7) for our analysis. Fix y ∈ [0, 1] and take U+(x, y) and U−(x, y)

which solve d
dxU+(x, y) = V (x)U+(x, y), U+(y, y) = I and d

dxU−(x, y) = −V (x)U−(x, y), U−(y, y) = I.

Iterating the corresponding integral equations, one gets

U+(x, y) = I +

∫ x

y

V dx1 +

∫ x

y

V

∫ x1

y

V dx2dx1 +

∫ x

y

V

∫ x1

y

V

∫ x2

y

V dx3dx2dx1 +∫ x

y

V

∫ x1

y

V

∫ x2

y

V

∫ x3

y

V dx4dx3dx2dx1 +

∫ x

y

V

∫ x1

y

V

∫ x2

y

V

∫ x3

y

V f+dx4dx3dx2dx1,

f+(x4) =

∫ x4

y

V (s)U+(s, y)ds .

U−(x, y) = I −
∫ x

y

V dx1 +

∫ x

y

V

∫ x1

y

V dx2dx1 −
∫ x

y

V

∫ x1

y

V

∫ x2

y

V dx3dx2dx1 +∫ x

y

V

∫ x1

y

V

∫ x2

y

V

∫ x3

y

V dx4dx3dx2dx1 −
∫ x

y

V

∫ x1

y

V

∫ x2

y

V

∫ x3

y

V f−dx4dx3dx2dx1,

f−(x4) =

∫ x4

y

V (s)U−(s, y)ds .
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Taking U+(x, y)− U−(x, y) as in (5.7) leaves us with

U+(x, y)− U−(x, y)

2
=

∫ x

y

V dx1 + I1 + I2 , (5.17)

I1 =

∫ x

y

V

∫ x1

y

V

∫ x2

y

V dx3dx2dx1, (5.18)

I2 =

∫ x

y

V

∫ x1

y

V

∫ x2

y

V

∫ x3

y

V (f+ + f−)dx4dx3dx2dx1 . (5.19)

Recall that V = O +O′ where O satis�es (5.13) and (5.14). These assumptions are to be used in the

following proposition. On R2
+, we de�ne the partial order[

x1

x2

]
⩽

[
y1
y2

]
by requiring that x1 ⩽ y1 and x2 ⩽ y2.

Proposition 5.2. Suppose a matrix-function O is de�ned on [0, 1] and denote

δ = ∥O∥L2[0,1], d = ∥O′∥L2[0,1]. (5.20)

Let an operator G(y) be given by: F 7→ (G(y)F )(x) =
∫ x

y
(O + O′)Fds where y ∈ [0, 1] and a matrix-

function F , de�ned on [0, 1], satis�es ∥F∥L∞[0,1] < ∞ and ∥F ′∥L2[0,1] < ∞. Then,[
∥G(y)F∥L∞[0,1]

∥(G(y)F )′∥L2[0,1]

]
⩽ CM

[
∥F∥L∞[0,1]

∥F ′∥L2[0,1]

]
, M =

(
δ +

√
δd δ

δ + d 0

)
, (5.21)

where C is an absolute positive constant, the norms and derivatives are computed with respect to x.

Proof. Let b = ∥F∥L∞[0,1], c = ∥F ′∥L2[0,1]. Write

O∗(x)O(x)−O∗(y)O(y) =

∫ x

y

((O∗)′O +O∗O′)ds . (5.22)

Then,

∥O(x)∥2 = max
∥ξ∥C2⩽1

∥O(x)ξ∥2C2 = max
∥ξ∥C2⩽1

⟨O∗(x)O(x)ξ, ξ⟩
(5.22)

⩽ ∥O(y)∥2 + 2

∫ 1

0

∥O′(s)∥ · ∥O(s)∥ds .

Applying Cauchy-Schwarz inequality to the integral, integrating in y from 0 to 1 and maximizing in

x gives

∥O∥L∞[0,1] ≲ δ + (dδ)
1
2 . (5.23)

Then,

(G(y)F )(x) =

∫ x

y

OFds+O(x)F (x)−O(y)F (y)−
∫ x

y

OF ′ds

and the estimate for the �rst coordinate in (5.21) follows from Cauchy-Schwarz inequality and (5.23).

Since (G(y)F )′ = (O + O′)F , we get ∥(G(y)F )′∥L2[0,1] ⩽ (∥O∥L2[0,1] + ∥O′∥L2[0,1])∥F∥L∞[0,1] and the

bound for the second coordinate in (5.21) is obtained. □

Continuation of the proof of Lemma 5.3. We apply the proposition to I1 three times with the

initial choice of F : F = I. That gives rise to taking the third power of matrix M: M3, applying it to

(1, 0)t, and looking at the �rst coordinate. As the result, one has ∥I1∥L∞[0,1] ≲ δ
3
2 (δ+d)

3
2 . Therefore,

∥I1e1∥L∞([0,1]2) ≲ δ
3
2 exp(δ + d). (5.24)

Similarly, we consider I2 and use the previous proposition four times making the �rst choice of F as

F = f+ + f−. Applying the bound (5.11) to U+ and U−, we get ∥f+ + f−∥L∞[0,1] ≲ (δ + d) exp(δ +

d), ∥f ′
+ + f ′

−∥L2[0,1] ≲ (δ+ d) exp(δ+ d). This time, we compute the fourth power of matrix M : M4,

apply it to vector (δ + d) exp(δ + d)(1, 1)t, and look at the �rst coordinate. In the end, one has

∥I2e1∥L∞([0,1]2) ≲ δ2 exp(C(d+ δ)) . (5.25)

The �rst term in (5.17) can be written as∫ x

y

V ds =

∫ x

y

Ods+O(x)−O(y)
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and ∥∥∥∥∫ x

y

Ods+O(x)−O(y)

∥∥∥∥
L2([0,1]2)

≲ δ . (5.26)

For any three vectors v1, v2 and v3 in R2, we have an estimate

|∥v1 + v2 + v3∥ − ∥v1∥| ⩽ ∥v2 + v3∥ ⩽ ∥v2∥+ ∥v3∥ ,

which follows from the triangle inequality. Multiplying with

∥v1 + v2 + v3∥+ ∥v1∥ ⩽ 2∥v1∥+ ∥v2∥+ ∥v3∥ ,

we get

|∥v1 + v2 + v3∥2 − ∥v1∥2| ⩽ 2∥v1∥(∥v2∥+ ∥v3∥) + (∥v2∥+ ∥v3∥)2 .
Applying it to (5.17) gives∣∣∣∣∣14∥(U+(x, y)− U−(x, y))e1∥2 −

∥∥∥∥(∫ x

y

V ds

)
e1

∥∥∥∥2
∣∣∣∣∣

≲

∥∥∥∥(∫ x

y

V ds

)
e1

∥∥∥∥ · (∥I1e1∥+ ∥I2e1∥) + ∥I1e1∥2 + ∥I2e1∥2 .

Taking L1([0, 1]2) norm in variables x and y of both sides and using (5.24), (5.25), (5.26) and the

Cauchy-Schwartz inequality gives

1

4

∫ 1

0

∫ 1

0

∥(U+(x, y)−U−(x, y))e1∥2dxdy =

∫ 1

0

∫ 1

0

∥∥∥∥(∫ x

y

V ds

)
e1

∥∥∥∥2 dxdy+r, |r| ≲ δ2.5 exp(C(d+δ)) .

Recalling the de�nition (5.16), we get∥∥∥∥(∫ x

y

V ds

)
e1

∥∥∥∥2 =

2∑
j=1

(gj(x)− gj(y))
2

so

1

2

∫ 1

0

∫ 1

0

∥(U+(x, y)− U−(x, y))e1∥2dxdy = 4

2∑
j=1

∫ 1

0

|gj − ⟨gj⟩|2dx+ r, |r| ≲ δ2.5 exp(C(d+ δ)) .

Lemma 5.3 is proved. □

Remark. All statements in this subsection can be easily adjusted to any interval but the constants

in the inequalities will depend on the size of that interval.

5.3. Rough bound when K̃Q is small.

Lemma 5.4. Suppose an absolutely continuous function f is de�ned on [0, 1] and satis�es

f ∈ L2[0, 1], f ′ = l1 + l2, l1 ∈ L1[0, 1], l2 ∈ L2[0, 1] . (5.27)

Then, ∥f∥L∞[0,1] ⩽
√

δ2 + 2(δτ + ϵ(τ + ϵ+ δ)), where δ = ∥f∥L2[0,1], ϵ = ∥l1∥L1[0,1], τ = ∥l2∥L2[0,1] .

Proof. There is ξ ∈ [0, 1] such that |f(ξ)| ⩽ δ and

|f(x)− f(ξ)| ⩽
∣∣∣∣∫ x

ξ

f ′ds

∣∣∣∣ ⩽ τ + ϵ .

Thus, ∥f∥L∞[0,1] ⩽ τ + ϵ+ δ. Then, writing

f2(x)− f2(y) = 2

∫ x

y

ff ′ds ,

integrating in y and maximizing in x, we get

∥f∥2L∞[0,1] ⩽ δ2 + 2(δτ + ϵ(τ + ϵ+ δ)) .

□

Suppose Q is real-valued, symmetric matrix-function on R with zero trace and ∥Q∥L2(R) < ∞. De-

�ne HQ = N∗N , where N : N ′ = JQN,N(0) = I. Notice that det
∫ n+2

n
S∗HQSdx = det

∫ n+2

n
HQdx
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for every constant matrix S ∈ SL(2,R). Therefore, we can apply Lemma 5.2 to each interval [n, n+2]

by choosing S = N−1(n) and get an estimate which explains how ∥Q∥L2(R) controls K̃Q:

K̃Q =
∑
n∈Z

(
det

∫ n+2

n

HQdx− 4

)
≲
∑
n∈Z

∥Q∥2L2[n,n+2] exp(C∥Q∥2) ≲ ∥Q∥2L2(R) exp(C∥Q∥2) .

The next lemma shows that K̃Q controls the convolution of Q with the exponential.

Lemma 5.5. Suppose Q is real-valued, symmetric 2 × 2 matrix-function on R with zero trace and

entries in L2(R). De�ne HQ = N∗N where N : N ′ = JQN,N(0) = I and assume that K̃Q < ∞.

If O := ex
∫∞
x

e−sQds, then ∥O∥L∞(R) ≲ exp(C(∥Q∥L2(R) + K̃Q))K̃
1
4

Q where C is a positive absolute

constant.

Proof. Let R = ∥Q∥L2(R) and E = K̃Q. We split the proof into several steps.

1. Bound for a single interval [0, 1]. The de�nitions (3.5) and (3.14) imply that K̃+
Q ⩽ E. From

Theorem 1.2 and Theorem 3.2 in [2], we know that HQ admits the following factorization on R+:

HQ = G∗WG where G and W satisfy conditions:

G′ = J(v1 + v2)G, ∥v1∥L1(R+) ≲ E, ∥v2∥L2(R+) ≲ E
1
2 , (5.28)

detG = 1, v1 + v2 = (v1 + v2)
∗ , (5.29)

and

W ⩾ 0, detW = 1, ∥trW − 2∥L1(R+) ≲ E .

Since ∥trW − 2∥L1[0,1] ≲ E, we have ∥λ+λ−1 − 2∥L1[0,1] ≲ E, where λ is the largest eigenvalue of W .

If one denotes p = trW − 2 = λ+ λ−1 − 2, then

λ =
2 + p+

√
4p+ p2

2
, λ−1 =

2 + p−
√
4p+ p2

2
. (5.30)

In particular, that yields ∫ 1

0

∥W∥ dx ≲ 1 + E . (5.31)

The given conditions on Q and (5.11) yield

∥N(x)∥, ∥N−1(x)∥ ≲ exp(CR), x ∈ [0, 1] ,

where the second estimate follows from the �rst since detN = 1. The Hamiltonian HQ = N∗N is

absolutely continuous on R+ and

0 < exp(−CR)I ≲ HQ(x) ≲ exp(CR)I (5.32)

on [0, 1]. We claim that ∥G(0)∥ ≲ exp(C(R+E)) and that ∥G−1(0)∥ ≲ exp(C(R+E)). Indeed, if X

satis�es X ′ = J(v1 + v2)X and X(0) = I, then G = XG(0). Moreover, given conditions on v1 and v2
and detX = 1, we have

∥X(x)∥ ≲ exp(CE), ∥X−1(x)∥ ≲ exp(CE) (5.33)

uniformly on [0, 1]. Identity HQ = G∗(0)X∗WXG(0) yields

(G∗(0))−1HQ(G(0))−1 = X∗WX .

Taking an arbitrary ξ ∈ C2 with ∥ξ∥C2 = 1, we get

∥G−1(0)ξ∥2
(5.32)

≲ exp(CR)

∫ 1

0

⟨HQG
−1(0)ξ,G−1(0)ξ⟩dx

= exp(CR)

∫ 1

0

⟨WXξ,Xξ⟩dx
(5.31)+(5.33)

≲ exp(C(R+ E)) ,

which implies ∥G−1(0)∥ ≲ exp(C(R + E)). We also have ∥G(0)∥ ≲ exp(C(R + E)) since detG = 1

and the claim is proved. Finally, we have

∥G(x)∥ ≲ exp(C(R+ E)), ∥G−1(x)∥ ≲ exp(C(R+ E))

for x ∈ [0, 1] since G = XG(0).
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Next, let us study W and W ′. Since W = (G∗)−1N∗NG−1, one has ∥W∥ ≲ exp(C(R + E)) on

x ∈ [0, 1]. Recall that W ⩾ 0 and detW = 1, so

exp(−C(R+ E))I ≲ W ≲ exp(C(R+ E))I, x ∈ [0, 1] .

Since λ is the largest eigenvalue of W and λ ≲ exp(C(R + E)), then (5.30) yields ∥λ − 1∥L2[0,1] ≲

E
1
2 exp(C(R+ E)) and ∥λ−1 − 1∥L2[0,1] ≲ E

1
2 exp(C(R+ E)). Introduce Υ = W − I . The matrix Υ

is unitarily equivalent to
(

λ−1 0
0 1/λ−1

)
and that gives

∥Υ∥L2[0,1] ≲ E
1
2 exp(C(R+ E)) . (5.34)

We need to study Υ′, which is equal to W ′. To do so, notice that

2N∗JQN = H′
Q = G∗J(v1 + v2)WG+G∗WJ(v1 + v2)G+G∗W ′G . (5.35)

Hence,

Υ′ = W ′ = F1 + F2 ,

where

F1 = −J(v1 + v2)W −WJ(v1 + v2), F2 = 2(G∗)−1N∗JQNG−1.

The previously obtained estimates give us

∥F1∥L1[0,1] ≲ E
1
2 exp(C(R+ E)), ∥F2∥L2[0,1] ≲ exp(C(R+ E)) . (5.36)

Now, we use (5.34), (5.36) to apply the previous lemma to each component of Υ to obtain

∥Υ∥L∞[0,1] ≲ E
1
4 exp(C(R+ E)) . (5.37)

The formula (5.35) also gives an expression for Q:

Q = −J(H1 +H2) ,

where

H1 = 0.5(N∗)−1(G∗J(v1 + v2)WG+G∗WJ(v1 + v2)G)N−1

and

H2 = 0.5(N∗)−1(G∗Υ′G)N−1 .

Since ∥H1∥L1[0,1] ≲ E
1
2 exp(C(R+ E)), we have∥∥∥∥ex ∫ 1

x

e−sH1ds

∥∥∥∥
L∞[0,1]

≲ E
1
2 exp(C(R+ E)) .

For smooth matrix-functions u1, u2, u3, we have∫ 1

x

u1u
′
2u3 ds = u1u2u3

∣∣∣1
x
−
∫ 1

x

u′
1u2u3 ds−

∫ 1

x

u1u2u
′
3 ds.

Then,

2ex
∫ 1

x

e−sH2ds =

ex
(
e−1(N∗(1))−1G∗(1)Υ(1)G(1)(N(1))−1 − e−x(N∗(x))−1G∗(x)Υ(x)G(x)(N(x))−1

)
−ex

∫ 1

x

(e−s(N∗(s))−1G∗)′ΥGN−1ds− ex
∫ 1

x

e−s(N∗(s))−1G∗Υ(GN−1)′ds .

Since ∥(N−1)′∥L2[0,1] ≲ exp(C(R+ E)) and ∥G′∥L1[0,1] ≲ exp(C(R+ E)), we have∥∥∥∥ex ∫ 1

x

e−sH2ds

∥∥∥∥
L∞[0,1]

≲ ∥Υ∥L∞[0,1] exp(C(R+ E))
(5.37)

≲ E
1
4 exp(C(R+ E)) .

Summing up, we get ∥∥∥∥ex ∫ 1

x

e−sQds

∥∥∥∥
L∞[0,1]

≲ E
1
4 exp(C(R+ E)) . (5.38)
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2. Handling all intervals [n, n + 1], n ∈ Z. Take any n ∈ Z. Our immediate goal is to show the

bound ∥∥∥∥ex ∫ n+1

x

e−sQds

∥∥∥∥
L∞[n,n+1]

≲ E
1
4 exp(C(R+ E)) (5.39)

analogous to (5.38) but written for interval [n, n+ 1]. To this end, take the Hamiltonian H(n)(x) :=

HQ(x+n) de�ned on R+. For the corresponding K̃+
(n), we get K̃

+
(n) ⩽ E as follows from its de�nition.

Since the K̃-characteristics of the Hamiltonians H and S∗HS are equal for every constant matrix

S ∈ SL(2,R), we can instead consider Ĥ(n) = N̂∗N̂ where N̂ ′ = JQ(x + n)N̂ , N̂(0) = I. Using the

arguments in step 1 for Ĥ(n), we get (5.39).

3. Summing up. Denote On(x) = ex
∫∞
x

e−sQ · χn<s<n+1ds and notice that O =
∑

n∈Z On. Then,

since On(x) = 0 for x > n+ 1 and ∥On(x)∥ ≲ ex−n∥On∥L∞[n,n+1] for x < n, we get

∥O(x)∥ ⩽
∑
n∈Z

∥On(x)∥ ≲ E
1
4 exp(C(R+ E))

∑
n⩾0

e−n ∼ E
1
4 exp(C(R+ E))

as follows from (5.39). That �nishes the proof of Lemma 5.5. □

5.4. Proof of Theorem 4.1. Denote E = K̃Q, O = ex
∫∞
x

e−sQds, and recall that ∥O∥L2(R) ∼
∥Q∥H−1(R) ⩽ ∥Q∥L2(R).

1. Lower bound. De�ne δn = ∥O∥L2[n,n+1]. By Lemma 5.5, we know that supn δn ≲ E
1
4 exp(C(R+

E)). Next, we apply Lemma 5.3 to each interval [n, n + 2]. The remainder rn in that lemma allows

the estimate

rn ≲ (δn + δn+1)
2.5 exp(C(δn + δn+1 +R)), n ∈ Z .

For each R > 0 and η > 0, we can �nd a positive E0(R, η) such that E ∈ (0, E0(R, η)) implies that

the remainder rn is smaller than η(δ2n + δ2n+1) uniformly in all n. For example, one can take

E0(R, η) ∼ e−CηR, (5.40)

where Cη is a su�ciently large positive number that depends on η. Therefore, for such E and some

positive constant c independent of η, we have∑
n∈Z

(c− η)δ2n ≲
∑
n∈Z

(
det

∫ n+2

n

HQdx− 4

)
≲
∑
n∈Z

(c+ η)δ2n,

where the Proposition 5.1 has been applied to the terms
∫ n+2

n
|gj − ⟨gj⟩|2 dx in the right-hand side

of (5.15), adjusted to the interval [n, n+ 2], to show that they are comparable to δ2n + δ2n+1. Taking

η = c/2, we see that

E =
∑
n∈Z

(
det

∫ n+2

n

HQdx− 4

)
∼
∑
n∈Z

δ2n ∼ ∥O∥2L2(R),

in the case E ⩽ E0(R, c
2 ). If E > E0(R, c

2 ), one uses inequality ∥O∥L2(R) ≲ R to get

e−CR∥O∥2L2(R) ≲
E0(R, c

2 )

1 +R2
∥O∥2L2(R) ≲ E , (5.41)

which holds for some positive absolute constant C due to (5.40). That provides the required lower

bound.

2. Upper bound. Let δn = ∥O∥L2[n,n+1] . For given value of R, apply Lemma 5.3 and Proposition 5.1

to each interval [n, n+ 2]. That gives

E ≲
∑
n∈Z

δ2ne
C(R+δn)

with an absolute constant C. Since
∑

n∈Z δ
2
n ∼ ∥q∥2H−1(R) and ∥q∥H−1(R) ≲ R, one has

E ≲ ∥q∥2H−1(R)e
C(R+∥q∥H−1(R)) ≲ ∥q∥2H−1(R)e

C2R .

□
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6. Appendix

Here we collect some auxiliary results used in the main text.

1. We start with an example that shows that the scattering transform is not injective when de�ned

on q ∈ L2(R). This is an analog of Lemma 17 in [27].

Example 6.1. There exist potentials q1, q2 ∈ L2(R) such that q1 ̸= q2 in L2(R) but we have rq1 = rq2
a.e. on R for their re�ection coe�cients. In other words, the scattering transform q 7→ rq is not

injective on L2(R).

Proof. Let us consider

a+1 = 1, b+1 = 0, a−1 = a, b−1 = b,

and

a+2 = a, b+2 = b, a−2 = 1, b−2 = 0,

where a = 1 + i/x, b = i/x. Note that∫
R
log(1− |s±k (x)|

2) dx > −∞, s±k =
b±

a±k
, k = 1, 2.

Theorem 12.11 in [13] says that for every contractive analytic function s on C+ whose boundary

values on R satisfy log(1 − |s|2) ∈ L1(R) there exists a unique coe�cient A ∈ L2(R+) such that

s = limξ→+∞
B(ξ,λ)
A(ξ,λ) , λ ∈ C+ for the continuous Wall polynomials generated by A. Moreover, we have

2π∥A∥2L2(R+) = ∥ log(1− |s|2)∥L1(R+). (6.1)

Applying this result, we see that there exist functions A±
1 , A

±
2 ∈ L2(R+) such that a±1,2, b

±
1,2 are the

limits of their continuous Wall polynomials. Now de�ne potentials q1,2 ∈ L2(R) by relations

A+
1,2(ξ) = −q1,2(ξ/2)/2, A−

1,2(ξ) = q1,2(−ξ/2)/2, ξ ∈ R+.

From Proposition 2.2, we conclude that the coe�cients a1,2, b1,2 for these potentials satisfy

a1 = a = a2, b1 = −b = b = b2,

on R \ {0}. Hence, rq1 = rq2 on R \ {0}. On the other hand, we have A+
1 = 0 and A−

2 = 0 by

construction. It follows that supp q1 ⊂ (−∞, 0] and supp q2 ⊂ [0,+∞). Since q1 and q2 are nonzero

(they have a nonzero L2(R)-norm as follows from (6.1)), that yields q1 ̸= q2 in L2(R). □

2. Next, we outline how to prove that the spectral representation for the Dirac operator DQ,

de�ned by relation (3.1), is given by the Weyl-Titchmarsh transform (3.10). To this end, we will use

the corresponding result for canonical Hamiltonian systems proved in [24].

At �rst, we note that if HQ = N∗
QNQ is the Hamiltonian from Theorem 3.1, then detHQ = 1 on R

and the operator V : X 7→ N−1
Q X is unitary from L2(R,C2) onto the Hilbert space

L2(HQ) =
{
Y : R → C2 : ∥Y ∥2L2(HQ,R) =

∫
R
⟨HQ(ξ)Y (ξ), Y (ξ)⟩C2 dξ < ∞

}
.

Moreover, VDQV
−1 coincides with the operator DHQ

: Y 7→ H−1JY ′ of the canonical Hamiltonian

system generated by the Hamiltonian HQ. Thus, the operator DQ on L2(R,C2) is unitary equivalent

to the operator DHQ
on L2(HQ). Let M̃ be the solution of Cauchy problem

JM̃ ′(ξ, z) = zHQ(ξ)M̃(ξ, z), M̃(0, z) = ( 1 0
0 1 ) , (6.2)

where z ∈ C, ξ ∈ R, and the di�erentiation is taken with respect to ξ ∈ R. The Weyl-Titchmarsh

transform for DHQ
is de�ned by

FDHQ
: Y 7→ 1√

π

∫
R
M̃(ξ, λ)∗HQ(ξ)Y (ξ) dξ

on a dense subset of L2(HQ) of smooth compactly supported functions. This operator is unitary from

L2(HQ) onto the space L
2(ρ) de�ned in the same way as at the beginning of Section 3. Speci�cally, we

let m± be the half-line Weyl functions of HQ and de�ne ρ as the representing measure for the matrix-

valued Herglotz function m in (3.8). It was proved in Theorem 3.21 in [24] that FDHQ
DHQ

F−1
DHQ
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coincides with the operator of multiplication by the independent variable in L2(ρ). We also have

FDHQ
(V X) = FDQ

X, X ∈ L2(R,C2).

Thus, we only need to check that the Weyl functions m± used in Section 3 coincide with the half-line

Weyl functions of the HamiltonianHQ. For the R+-Weyl functions this follows from Lemma 6.1 below.

Comparing the formulas for A+, A− in the beginning of Section 3, we see that the Weyl function m−
for DQ corresponds to the Weyl function m+ for DQ̃ where Q̃(ξ) = σ3Q(−ξ)σ3. Similarly, in the

setting of canonical Hamiltonian systems, the Weyl function m− for DHQ
coincides with the Weyl

function m+ of DH̃Q
, H̃Q(ξ) = σ3H(−ξ)σ3. Therefore, the statement for A− follows from Lemma 6.1

below and from the relation H̃Q = σ3HQσ3 = (σ3N
∗
Qσ3)(σ3NQσ3) = HQ̃.

Lemma 6.1. Let q ∈ L2(R+). De�ne

Q(ξ) =

(
− Im q(ξ) −Re q(ξ)

−Re q(ξ) Im q(ξ)

)
, A(ξ) = −q(ξ/2)/2, ξ ∈ R+.

Let NQ be de�ned by JN ′
Q(ξ, λ) + Q(ξ)NQ(ξ, λ) = λNQ(ξ, λ), NQ(0, λ) = ( 1 0

0 1 ). Consider the

Hamiltonian HQ = N∗
Q(ξ, 0)NQ(ξ, 0) on R+ and let M̃ =

(
M̃11 M̃12

M̃21 M̃22

)
be de�ned by JM̃ ′(ξ, z) =

zHQ(ξ)M̃(ξ, z), M̃(0, z) = ( 1 0
0 1 ). Let, �nally, P , P∗, P̂ , P̂∗ be the solutions to Krein systems (2.11),

(2.12) for the coe�cient A on R+. Then,

lim
ξ→+∞

M̃22(ξ, z)

M̃21(ξ, z)
= lim

ξ→+∞

(NQ)22(ξ, z)

(NQ)21(ξ, z)
= lim

ξ→+∞
i
P̂∗(ξ, z)

P∗(ξ, z)
, z ∈ C+. (6.3)

In other words, the function m+ in (3.7) is the half-line Weyl function for the operators DHQ
, DQ.

Proof. The formula

lim
ξ→+∞

M̃22(ξ, z)

M̃21(ξ, z)
= lim

ξ→+∞

(NQ)22(ξ, z)

(NQ)21(ξ, z)

for DQ and DHQ
is well-known and can be derived from the analysis of Weyl circles by using identity

NQ(ξ, λ) = NQ(ξ, 0)M̃(ξ, λ) and the invariance of Weyl circles under transforms generated by J-

unitary matrices (in our setting, the J-unitary matrix is NQ(ξ, 0): we have N∗
Q(ξ, 0)JNQ(ξ, 0) = J

on R). See, e.g., [4] or Section 8 in [25] for more details on Weyl circles for canonical Hamiltonian

systems. Thus, we focus on the second identity in (6.3) and de�ne

X(ξ, z) = e−iξz


P (2ξ, z) + P∗(2ξ, z)

2

P̂ (2ξ, z)− P̂∗(2ξ, z)

2i
P∗(2ξ, z)− P (2ξ, z)

2i

P̂ (2ξ, z) + P̂∗(2ξ, z)

2

 , ξ ∈ R, z ∈ C .

Di�erentiating, one obtains JX ′ +QX = zX, X(0, z) = ( 1 0
0 1 ). It follows that X(ξ, z) = NQ(ξ, z). In

particular, we have

(NQ)22 = e−iξz P̂ (2ξ, z) + P̂∗(2ξ, z)

2
, (NQ)21 = e−iξz P∗(2ξ, z)− P (2ξ, z)

2i
.

Since P (ξ, z) → 0, P∗(ξ, z) → Π(z) ̸= 0 as ξ → +∞ (see Theorem 12.1 in [13]), and analogous

relations hold for P̂ and P̂∗, we have

lim
ξ→+∞

(NQ)22(ξ, z)

(NQ)21(ξ, z)
= lim

ξ→+∞
i
P̂∗(ξ, z)

P∗(ξ, z)
, z ∈ C+.

The lemma is proved. □

3. Lemma 6.1 and some known results for canonical systems can be used to show that weak con-

vergence of potentials of the Dirac operator implies convergence of the corresponding Weyl functions.

Lemma 6.2. Suppose {qℓ}ℓ>0 is a bounded sequence in L2(R+) which converges to zero weakly. Let

Qℓ be the associated matrix-functions de�ned as in Lemma 6.1. Then, the sequence of corresponding

Weyl functions {mℓ,+} converges to i locally uniformly in C+ when ℓ → +∞.
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Proof. For ℓ > 0, denote by HQℓ
the Hamiltonian generated by Qℓ as in Lemma 6.1. Then, mℓ,+

is the Weyl function for the half-line operators DHQℓ
and DQℓ

. Since supℓ>0 ∥qℓ∥L2(R+) < ∞ and qℓ
converge to zero weakly in L2(R+) as ℓ → +∞, the Hamiltonians HQℓ

tend to the identity matrix

H0 = ( 1 0
0 1 ) uniformly on compact subsets on R+. Then, their Weyl functions m+,ℓ tend to the Weyl

function m+ = i of the Hamiltonian H0 locally uniformly in C+ by Theorem 5.7 (b) in [24]. □
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