Orthogonal polynomials and a generalized Szegő condition

Polynômes orthogonaux et la condition de Szegő généralisée

S. Denisov,^a S. Kupin^b

^aDepartment of Mathematics 253-37, Caltech, Pasadena CA 91125, USA. ^bCMI, Université de Provence, 39 rue Joliot Curie, 13453 Marseille Cedex 13, France.

Abstract

Asymptotical properties of orthogonal polynomials from the so-called Szegő class are very well-studied. We obtain asymptotics of orthogonal polynomials from a considerably larger class and we apply this information to the study of their spectral behavior. To cite this article: S. Denisov, S. Kupin, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Résumé

Les propriétés asymptotiques des polynômes orthogonaux de la classe de Szegő sont très bien étudiées. Nous obtenons les asymptotiques des polynômes orthogonaux appartenant à une classe considérablement plus large. Ensuite, nous appliquons cette information à l'étude du comportement spectral de ces derniers. *Pour citer cet article : S. Denisov, S. Kupin, C. R. Acad. Sci. Paris, Ser. I 336 (2003).*

Introduction

In this paper, we prove asymptotics for orthogonal polynomials from the Szegő class with a polynomial weight and we apply the information to the study of their spectral behavior.

Let σ be a non-trivial Borel probability measure on the unit circle $\mathbb{T} = \{z : |z| = 1\}$. Consider orthonormal polynomials $\{\varphi_n\}$ with respect to the measure,

$$\int_{\mathbb{T}} \varphi_n \overline{\varphi_m} \, d\sigma = \delta_{nm}$$

where δ_{nm} is the Kronecker's symbol. It is very well-known [3,4,6,7] that polynomials $\{\varphi_n\}$ generate a sequence $\{\alpha_k\}, |\alpha_k| < 1$, of the so-called Verblunsky coefficients through special recurrence relations. Conversely, the measure σ (and polynomials $\{\varphi_n\}$) are completely determined by the sequence $\{\alpha_k\}$.

24th May 2004

Email addresses: denissov@its.caltech.edu (S. Denisov,), kupin@cmi.univ-mrs.fr (S. Kupin).

Preprint submitted to Elsevier Science

Hence, it is natural to express properties of the sequence $\{\alpha_k\}$ and polynomials $\{\varphi_n\}$ in terms of σ and vice versa.

We say that σ is a Szegő measure ($\sigma \in (S)$, for the sake of brevity), if $d\sigma = \sigma'_{ac}dm + d\sigma_s$ and the density σ'_{ac} of the absolutely continuous part of σ is such that

$$\int_{\mathbb{T}} \log \sigma'_{ac} \, dm > -\infty$$

Here, the singular part of σ is denoted by σ_s , and m is the probability Lebesgue measure on \mathbb{T} , $dm(t) = dt/(2\pi i t) = 1/(2\pi) d\theta$, $t = e^{i\theta} \in \mathbb{T}$.

For instance [3,7], a measure σ belongs to the Szegő class if and only if the corresponding sequence $\{\alpha_k\}$ is in l^2 . Moreover, this happens if and only if analytic polynomials are not dense in $L^2(\sigma)$. Asymptotic properties of orthogonal polynomials connected to $\sigma \in (S)$ can be easily described in terms of the function

$$D(z) = \exp\left(\frac{1}{2}\int_{\mathbb{T}}\frac{t+z}{t-z}\log\sigma'_{ac}(t)\,dm(t)\right)$$

lying in the Hardy class $H^2(\mathbb{D})$ on the unit disk $\mathbb{D} = \{z : |z| < 1\}$. Namely, we have

$$\lim_{n \to \infty} \int_{\mathbb{T}} |D\varphi_n^* - 1|^2 \, dm = 0$$

and, in particular, $\lim_{n\to\infty} D(z)\varphi_n^*(z) = 1$ for every $z \in \mathbb{D}$. Above, $\varphi_n^*(z) = z^n \overline{\varphi_n(1/\overline{z})}$. A modern presentation and recent advances in this direction can be found in [4,6].

It is extremely interesting and important to obtain similar results for different classes of measures. Consider a trigonometric polynomial $p, p(t) \ge 0, t \in \mathbb{T}$, given by

$$p(t) = \prod_{j=1}^{N} |t - \zeta_j|^{2\kappa_j}$$
(1)

Here $\{\zeta_j\}$ are points lying on \mathbb{T} and κ_j are their "multiplicities". We say that σ is in the polynomial Szegő class (i.e., σ is a (pS)-measure or $\sigma \in (pS)$, to be brief), if $d\sigma = \sigma'_{ac}dm + d\sigma_s$, σ_s being the singular part of the measure, and

$$\int_{\mathbb{T}} p(t) \log \sigma'_{ac}(t) \, dm(t) > -\infty \tag{2}$$

The asymptotic behavior of orthogonal polynomials for $\sigma \in (pS)$ is completely described in Theorems 1.2 and 1.3. This information is used to construct wave operators for the so-called CMV-representations in Theorem 1.4. The approximation by analytic polynomials in $L^2(\sigma), \sigma \in (pS)$, is addressed in Theorem 1.5.

1. Results

We fix the polynomial p(1) for the rest of this paper. For the sake of transparency we assume $\kappa_j = 1$; the discussion of the general case follows the same lines. Let C and C_0 be the CMV-representations connected to σ and m (see [1,6, Ch. 4]), and rank $(C - C_0) < \infty$.

We set $\Phi(\mathcal{C}) = \int_{\mathbb{T}} p(t) \log \sigma'_{ac}(t) dm(t).$

Lemma 1.1 Let rank $(\mathcal{C} - \mathcal{C}_0) < \infty$. Then there is a polynomial P such that

$$\int_{\mathbb{T}} p \log \sigma'_{ac} \, dm = a_0 t_0 + \operatorname{Re} \operatorname{tr} \left(P(\mathcal{C}) - P(\mathcal{C}_0) \right) \tag{3}$$

where $a_0 = 2 \int_{\mathbb{T}} p \, dm, t_0 = \sum_k \log \rho_k$, and $\rho_k = (1 - |\alpha_k|^2)^{1/2}$.

We denote the right-hand side of equality (3) by $\Psi(\mathcal{C})$ and we rewrite it in a different form. To this end, we consider the shift $S : l^2(\mathbb{Z}_+) \to l^2(\mathbb{Z}_+)$, given by $Se_k = e_{k+1}$ and, for a bounded operator A on $l^2(\mathbb{Z}_+)$, we look at $\tau(A) = S^*AS$. Consequently, we see that

$$\Psi(\mathcal{C}) = \sum_{k=0}^{2N+1} \left\{ a_0 \log \rho_k + \operatorname{Re} \left((P(\mathcal{C}) - P(\mathcal{C}_0)) e_k, e_k \right) \right\} + \sum_{k=2N+2}^{\infty} \psi \circ \tau^k(\mathcal{C})$$

where $\psi(\mathcal{C}) = a_0 \log \rho_{2N+2} + \operatorname{Re} ((P(\mathcal{C}) - P(\mathcal{C}_0))e_{2N+2}, e_{2N+2})$. It turns out that there exist functions η and γ , depending on a finite number of arguments, such that for any \mathcal{C} with rank $(\mathcal{C} - \mathcal{C}_0) < \infty$

$$\Psi(\mathcal{C}) = \tilde{\Psi}(\mathcal{C}) = \sum_{k=0}^{2N+1} \left\{ a_0 \log \rho_k + \operatorname{Re}\left((P(\mathcal{C}) - P(\mathcal{C}_0))e_k, e_k \right) \right\} + \sum_{k=2N+2}^{\infty} \eta \circ \tau^k(\mathcal{C}) + \gamma \circ \tau^{2N+2}(\mathcal{C})$$

and, moreover, η is nonpositive (see [5], Lemma 3.1).

Theorem 1.2 ([5, Theorem 1.4]) A measure σ is polynomially Szegő (see (2)) if and only if $\tilde{\Psi}(\mathcal{C}) > -\infty$. Moreover, in this case $\Phi(\mathcal{C}) = \tilde{\Psi}(\mathcal{C}) = \Psi(\mathcal{C})$.

We turn now to the description of asymptotic properties of orthogonal polynomials for (pS)-measures. Consider a modified Schwarz kernel

$$K(t,z) = \frac{t+z}{t-z} \frac{q(t)}{q(z)}$$

where $q(t) = C(\prod_j (t - \zeta_j)^2)/t^N$, and the constant C, |C| = 1, is chosen in a way that $q(t) \in \mathbb{R}$ for $t \in \mathbb{T}$ (i.e., $C = (\prod_j (-\zeta_j))^{-1}$). Furthermore, define

$$\tilde{D}(z) = \exp\left(\frac{1}{2}\int_{\mathbb{T}} K(t,z)\log\sigma'_{ac}(t)\,dm(t)\right), \quad \tilde{\varphi}_n^*(z) = \exp\left(\int_{\mathbb{T}} K(t,z)\log|\varphi_n^*(t)|\,dm(t)\right)$$

The functions $\{\tilde{\varphi}_n^*\}$ are called (reversed) modified orthogonal polynomials with respect to σ . It can be readily seen that $|\tilde{D}|^2 = \sigma'_{ac}$ and $|\tilde{\varphi}_n^*| = |\varphi_n^*| = |\varphi_n|$ a.e. on \mathbb{T} . Furthermore, we see that $\tilde{\varphi}_n^* = \psi_n \varphi_n^*$, where

$$\psi_n(z) = \exp\left(A_{0n} + \sum_{j=1}^N \left(A_{jn} \frac{z+\zeta_j}{z-\zeta_j} + B_{jn} \left\{\frac{z+\zeta_j}{z-\zeta_j}\right\}^2\right)\right)$$
(4)

and $A_{0n}, B_{jn} \in i\mathbb{R}, A_{jn} \in \mathbb{R}$. The coefficients $\{A_{0n}, A_{jn}, B_{jn}\}_{j,n}$ can be expressed in a closed form through Verblunsky coefficients $\{\alpha_k\}$.

Theorem 1.3 Let $\sigma \in (pS)$. Then

$$\lim_{n \to \infty} \int_{\mathbb{T}} |\tilde{D}\tilde{\varphi}_n^* - 1|^2 \, dm = 0$$

and, in particular, $\lim_{n\to\infty} \tilde{D}(z)\tilde{\varphi}_n^*(z) = \lim_{n\to\infty} \tilde{D}(z)\psi_n(z)\varphi_n^*(z) = 1$ for any $z \in \mathbb{D}$.

Special versions of this result for Jacobi matrices are obtained in [2,5]. The proof of the theorem is partially based on the sum rules proved in Theorem 1.2. The second important observation is that, for an $\varepsilon > 0$ small enough,

$$|\tilde{D}\tilde{\varphi}_n^*(z)| \le \frac{C_{\varepsilon}}{\sqrt{1-|z|}}$$

where $z \in \mathbb{D} \setminus (\cup_k B_{\varepsilon}(\zeta_k)), B_{\varepsilon}(\zeta) = \{z : |z - \zeta| < \varepsilon\}.$

We use asymptotics described above, to construct modified wave operators. Let $\mathcal{F}_0 : L^2(m) \to l^2(\mathbb{Z}_+), \mathcal{F} : L^2(\sigma) \to l^2(\mathbb{Z}_+)$ be the Fourier transforms associated to the CMV-representations \mathcal{C} and \mathcal{C}_0 , see [6, Ch. 4]. Recall that $\mathcal{C} = \mathcal{F}z\mathcal{F}^{-1}, \ \mathcal{C}_0 = \mathcal{F}_0z\mathcal{F}_0^{-1}$.

3

Theorem 1.4 Let $\sigma \in (pS)$. The limits

$$\tilde{\Omega}_{\pm} = \mathbf{s} - \lim_{n \to \pm \infty} e^{W(2n,\mathcal{C})} \mathcal{C}^n \mathcal{C}_0^{-n}$$

exist. Here

$$W(\mathcal{C},n) = A_{0n} + \sum_{j=1}^{N} \left(A_{jn} \frac{\mathcal{C} + \zeta_j}{\mathcal{C} - \zeta_j} + B_{jn} \left\{ \frac{\mathcal{C} + \zeta_j}{\mathcal{C} - \zeta_j} \right\}^2 \right)$$

and coefficients $\{A_{0n}, A_{jn}, B_{jn}\}$ are defined in (4). We also have

$$\mathcal{F}^{-1}\tilde{\Omega}_{+}\mathcal{F}_{0} = \chi_{E_{ac}} \frac{1}{\tilde{D}}, \quad \mathcal{F}^{-1}\tilde{\Omega}_{-}\mathcal{F}_{0} = \chi_{E_{ac}} \frac{1}{\tilde{D}}$$

where $E_{ac} = \mathbb{T} \setminus \operatorname{supp} \sigma_s$.

The proof of the above theorem mainly follows [6, Ch. 10].

We now briefly discuss approximation by analytic polynomials in $L^2(\sigma)$ with $\sigma \in (pS)$. We put \mathcal{P}'_0 to be the set of analytic on \mathbb{D} polynomials g with the property $g \neq 0$ on \mathbb{D} ; normalize them by the condition g(0) > 0. Furthermore, for a $g \in \mathcal{P}'_0$, we set

$$\lambda(g) = \exp\left(\int_{\mathbb{T}} p \log|g| \, dm\right)$$

and define $\mathcal{P}'_1 = \{g : g \in \mathcal{P}'_0, \lambda(g) = 1\}.$ **Theorem 1.5** Let $d\sigma = w \, dm + d\sigma_s$. Then

$$\exp\left(\int_{\mathbb{T}} p\log\frac{w}{p}\,dm\right) \le \inf_{g\in\mathcal{P}'_1} ||g||^2_{\sigma} = \inf_{g\in\mathcal{P}'_0, \ ||g||_{\sigma} \le 1} \frac{1}{|\lambda(g)|^2} \le \exp\left(\int_{\mathbb{T}} p\log w\,dm\right)$$

Remind that σ is a Szegő measure if and only if the system $\{e^{iks}\}_{k\in\mathbb{Z}}$ is uniformly minimal in $L^2(\sigma)$. Saying that σ is a (pS)-measure translates into the uniform minimality of another system, $\{e^{ik\nu(s)}\}_{k\in\mathbb{Z}}$, in the same space $L^2(\sigma)$. Above,

$$\nu(s) = C_0 \int_0^s p(e^{is'}) \, ds'$$

where $s, s' \in [0, 2\pi]$ and the constant C_0 comes from the condition $C_0 \int_{\mathbb{T}} p \, dm = 1$, see [5], Lemma 2.2.

We conclude the note with a few examples. For instance, classical Pollaczek polynomials [7] belong to the (pS)-class with $p(e^{i\theta}) = \sin^2 \theta$. It was proved recently in [6, Ch. 2] that $\sigma \in (p_0S)$ with $p_0(e^{i\theta}) = 1 - \cos \theta$ if and only if $\{\alpha_k\} \in l^4$ and $\{\alpha_{k+1} - \alpha_k\} \in l^2$. Theorems 1.2–1.5 also apply to this case and yield explicit formulas for $\{\tilde{\varphi}_n^*\}, \{\psi_n\}, \tilde{D}$ and coefficients $\{A_{0n}, A_{jn}, B_{jn}\}$.

References

- M. Cantero, L. Moral, L. Velázquez, Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle, Linear Algebra Appl. 362 (2003) 29–56.
- [2] D. Damanik, R. Killip, B. Simon, Necessary and sufficient conditions in the spectral theory of Jacobi matrices and Schrödinger operators, Int. Math. Res. Not. 2004, no. 22 1087–1097.
- [3] Ya. Geronimus, Orthogonal polynomials, Consultants Bureau, New York, 1961.
- [4] S. Khrushchev, Schur's algorithm, orthogonal polynomials, and convergence of Wall's continued fractions in $L^2(\mathbb{T})$, J. Approx. Theory 108 (2001) no. 2 161–248.
- [5] F. Nazarov, F. Peherstorfer, A. Volberg, P. Yuditskii, On generalized sum rules for Jacobi matrices, submitted.
- [6] B. Simon, Orthogonal polynomials on the unit circle, AMS Colloquium Publications Series, to appear.
- [7] G. Szegő, Orthogonal polynomials, AMS, Providence, 1975.

4