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Abstract

Asymptotical properties of orthogonal polynomials from the so-called Szegé class are very well-studied. We obtain
asymptotics of orthogonal polynomials from a considerably larger class and we apply this information to the study
of their spectral behavior. To cite this article: S. Denisov, S. Kupin, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Résumé

Les propriétés asymptotiques des polynémes orthogonaux de la classe de Szeg6 sont trés bien étudiées. Nous
obtenons les asymptotiques des polynomes orthogonaux appartenant & une classe considérablement plus large.
Ensuite, nous appliquons cette information a 1’étude du comportement spectral de ces derniers. Pour citer cet
article : S. Denisov, S. Kupin, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Introduction

In this paper, we prove asymptotics for orthogonal polynomials from the Szeg6 class with a polynomial
weight and we apply the information to the study of their spectral behavior.

Let o be a non-trivial Borel probability measure on the unit circle T = {z : |z|] = 1}. Consider
orthonormal polynomials {¢,,} with respect to the measure,

T

where 0y, is the Kronecker’s symbol. It is very well-known [3,4,6,7] that polynomials {¢,} generate
a sequence {ay},|ag| < 1, of the so-called Verblunsky coefficients through special recurrence relations.
Conversely, the measure o (and polynomials {¢,}) are completely determined by the sequence {ay}.
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Hence, it is natural to express properties of the sequence {ay} and polynomials {p,} in terms of o and
vice versa.

We say that o is a Szegd measure (o € (S), for the sake of brevity), if do = o).dm + dos and the
density o/, of the absolutely continuous part of ¢ is such that

/logofZC dm > —c0
T

Here, the singular part of o is denoted by o, and m is the probability Lebesgue measure on T, dm(t) =
dt/(2mit) = 1/(2mw) df,t = ¥ € T.

For instance [3,7], a measure o belongs to the Szegé class if and only if the corresponding sequence {ay, }
is in [2. Moreover, this happens if and only if analytic polynomials are not dense in L?(o). Asymptotic
properties of orthogonal polynomials connected to o € (S) can be easily described in terms of the function

D) =exp (3 [ 2 gl (0 i)

t—z
lying in the Hardy class H2(D) on the unit disk D = {z : |z| < 1}. Namely, we have
lim [ [Dgl —1*dm =0
n—oo vJI\
and, in particular, lim, . D(2)¢%(2) = 1 for every z € D. Above, ¢} (2) = 2"p,(1/Z). A modern
presentation and recent advances in this direction can be found in [4,6].
It is extremely interesting and important to obtain similar results for different classes of measures.
Consider a trigonometric polynomial p,p(t) > 0,t € T, given by
N
p(t) = T It - ¢ [ (1)
j=1
Here {¢;} are points lying on T and k; are their “multiplicities”. We say that o is in the polynomial
Szegé class (i.e., o is a (pS)-measure or o € (pS), to be brief), if do = o/, .dm + do, o5 being the singular
part of the measure, and

/T p(t) log o' () dm(t) > —oco (2)

The asymptotic behavior of orthogonal polynomials for o € (pS) is completely described in Theorems 1.2
and 1.3. This information is used to construct wave operators for the so-called CMV-representations in
Theorem 1.4. The approximation by analytic polynomials in L?(c),o € (pS), is addressed in Theorem
1.5.

1. Results

We fix the polynomial p (1) for the rest of this paper. For the sake of transparency we assume x; = 1; the
discussion of the general case follows the same lines. Let C and Cy be the CMV-representations connected
to o and m (see [1,6, Ch. 4]), and rank (C — Cp) < cc.

We set ®(C) = [ p(t) log ol,.(t) dm(t).

Lemma 1.1 Let rank (C — Cy) < 0o. Then there is a polynomial P such that

/plogofw dm = agto + Retr (P(C) — P(Co)) (3)
T
where ag =2 [Lpdm,to =, 10g pi, and pr = (1 — |ag|?)'/2.
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We denote the right-hand side of equality (3) by ¥(C) and we rewrite it in a different form. To this
end, we consider the shift S : 12(Zy) — [?(Z,), given by Se, = ex4+1 and, for a bounded operator A on
1%(Z), we look at 7(A) = S*AS. Consequently, we see that

2N+1 o
(€)= > {aglogpr +Re((P(C) — P(Co))ex,ex)} + Y wor*(C)
k=0 k=2N+42

where ¥(C) = aglog pan+2 + Re ((P(C) — P(Co))ean+2, €an+2). It turns out that there exist functions 7
and v, depending on a finite number of arguments, such that for any C with rank (C — Cy) < oo

2IN+1 -
v(C) = \iJ(C) = Z {ao log pr. + Re ((P(C) — P(CO))ek,ek)} + Z no Tk(C) Fy o220
k=0 k=2N 12

and, moreover, 7 is nonpositive (see [5], Lemma 3.1).
Theorem 1.2 ([5, Theorem 1.4]) A measure o is polynomially Szegé (see (2)) if and only if ¥(C) >
—o0. Moreover, in this case ®(C) = ¥(C) = ¥(C).

We turn now to the description of asymptotic properties of orthogonal polynomials for (pS)-measures.

Consider a modified Schwarz kernel

_t+z4q()

Ct—2q(2)

where ¢(t) = C([];(t - ¢;)?)/tN, and the constant C,|C| = 1, is chosen in a way that ¢(t) € R for t € T

(ie, C = (Hj(—g‘j))*l). Furthermore, define

K(t, z2)

D) =exp (5 [ Kt ogalut)amiv) . gi(e) = e [ Kt 2)tog et 0]dmo))

The functions {@*} are called (reversed) modified orthogonal polynomials with respect to o. It can be

readily seen that |D|? = o/, and |@%| = |¢%| = |¢n| a.e. on T. Furthermore, we see that ¢ = 1,05,

where
N . N2
Un(z) = exp | Ao+ ) (Aw j f Sy Bjn {i f . } ) (4)

G G

and Aon, Bjn € iR, Aj, € R. The coefficients { Aoy, Ajn, Bjn }jn can be expressed in a closed form through
Verblunsky coefficients {ay}.
Theorem 1.3 Let o € (pS). Then

j=1

lim [ |Dg: —1|>dm =0
T
and, in particular, im,_ .o D(2)@%(2) = lim, s D(2)1hn(2)¢%(2) = 1 for any z € D.
Special versions of this result for Jacobi matrices are obtained in [2,5]. The proof of the theorem is
partially based on the sum rules proved in Theorem 1.2. The second important observation is that, for
an € > 0 small enough,

. C.
D&y (2)] <

V=2
where z € D\(UgB:((k)), B:(¢) ={z: |z —¢| <e}.
We use asymptotics described above, to construct modified wave operators. Let Fo : L2(m) — 1%(Z4.), F :
L?(o) — 12(Z4) be the Fourier transforms associated to the CMV-representations C and C, see [6, Ch. 4].
Recall that C = F2F 1, Co = ForFy .



Theorem 1.4 Let o € (pS). The limits
Oy =s—limy,otoo eW(zmc)C"CJ”

exist. Here

- C+¢ C+¢\”
W (C,n) = Aon Ajp B-n{ J}
(€,n) 0+j_zl<jC—Cj+ e —¢

and coefficients {Aon, Ajn, Bjn} are defined in (4). We also have

—_

FYO,F =xe FY_Fy=xe,

c

| ~

ac ﬁ)
where Eq. = T\suppos.

The proof of the above theorem mainly follows [6, Ch. 10].

We now briefly discuss approximation by analytic polynomials in L?(o) with o € (pS). We put P} to
be the set of analytic on DD polynomials g with the property g # 0 on D; normalize them by the condition
g(0) > 0. Furthermore, for a g € P{, we set

Alg) = exp (/Tploglgl dm)

and define P} = {g: g € P}, A(g) =1}.
Theorem 1.5 Let do = wdm + dos. Then

1
exp (/plogﬂdm) < inf/||g||(2,: , inf T S exp </p10gwdm)
T P 9€P; g€ Py llglle < 11M9)] T

Remind that o is a Szegd measure if and only if the system {e?**},¢z is uniformly minimal in L?(o).
Saying that o is a (pS)-measure translates into the uniform minimality of another system, {e?*(*)};cz,

in the same space L2(c). Above,
v(s) = CO/ p(e’®) ds'
0

where s, s" € [0,27] and the constant Cy comes from the condition Cy [ pdm = 1, see [5], Lemma 2.2.

We conclude the note with a few examples. For instance, classical Pollaczek polynomials [7] belong to the
(pS)-class with p(e'?) = sin? 6. It was proved recently in [6, Ch. 2] that ¢ € (p,S) with po(e?) = 1 —cos 6§
if and only if {ax} € I* and {ag+1 — i} € [?. Theorems 1.2-1.5 also apply to this case and yield explicit
formulas for {3%}, {¢n}, D and coefficients { Aoy, Ajn, Bjn }-
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