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Polynômes orthogonaux et la condition de Szegő généralisée
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Abstract

Asymptotical properties of orthogonal polynomials from the so-called Szegő class are very well-studied. We obtain

asymptotics of orthogonal polynomials from a considerably larger class and we apply this information to the study

of their spectral behavior. To cite this article: S. Denisov, S. Kupin, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Résumé

Les propriétés asymptotiques des polynômes orthogonaux de la classe de Szegő sont très bien étudiées. Nous

obtenons les asymptotiques des polynômes orthogonaux appartenant à une classe considérablement plus large.

Ensuite, nous appliquons cette information à l’étude du comportement spectral de ces derniers. Pour citer cet
article : S. Denisov, S. Kupin, C. R. Acad. Sci. Paris, Ser. I 336 (2003).

Introduction

In this paper, we prove asymptotics for orthogonal polynomials from the Szegő class with a polynomial
weight and we apply the information to the study of their spectral behavior.

Let σ be a non-trivial Borel probability measure on the unit circle T = {z : |z| = 1}. Consider
orthonormal polynomials {ϕn} with respect to the measure,

∫

T

ϕnϕm dσ = δnm

where δnm is the Kronecker’s symbol. It is very well-known [3,4,6,7] that polynomials {ϕn} generate
a sequence {αk}, |αk| < 1, of the so-called Verblunsky coefficients through special recurrence relations.
Conversely, the measure σ (and polynomials {ϕn}) are completely determined by the sequence {αk}.

Email addresses: denissov@its.caltech.edu (S. Denisov,), kupin@cmi.univ-mrs.fr ( S. Kupin).

Preprint submitted to Elsevier Science 24th May 2004



Hence, it is natural to express properties of the sequence {αk} and polynomials {ϕn} in terms of σ and
vice versa.

We say that σ is a Szegő measure (σ ∈ (S), for the sake of brevity), if dσ = σ′
acdm + dσs and the

density σ′
ac of the absolutely continuous part of σ is such that

∫

T

logσ′
ac dm > −∞

Here, the singular part of σ is denoted by σs, and m is the probability Lebesgue measure on T, dm(t) =
dt/(2πit) = 1/(2π) dθ, t = eiθ ∈ T.

For instance [3,7], a measure σ belongs to the Szegő class if and only if the corresponding sequence {αk}
is in l2. Moreover, this happens if and only if analytic polynomials are not dense in L2(σ). Asymptotic
properties of orthogonal polynomials connected to σ ∈ (S) can be easily described in terms of the function

D(z) = exp

(

1

2

∫

T

t+ z

t− z
logσ′

ac(t) dm(t)

)

lying in the Hardy class H2(D) on the unit disk D = {z : |z| < 1}. Namely, we have

lim
n→∞

∫

T

|Dϕ∗
n − 1|2 dm = 0

and, in particular, limn→∞D(z)ϕ∗
n(z) = 1 for every z ∈ D. Above, ϕ∗

n(z) = znϕn(1/z̄). A modern
presentation and recent advances in this direction can be found in [4,6].

It is extremely interesting and important to obtain similar results for different classes of measures.
Consider a trigonometric polynomial p, p(t) ≥ 0, t ∈ T, given by

p(t) =
N
∏

j=1

|t− ζj |
2κj (1)

Here {ζj} are points lying on T and κj are their “multiplicities”. We say that σ is in the polynomial
Szegő class (i.e., σ is a (pS)-measure or σ ∈ (pS), to be brief), if dσ = σ′

acdm+ dσs, σs being the singular
part of the measure, and

∫

T

p(t) log σ′
ac(t) dm(t) > −∞ (2)

The asymptotic behavior of orthogonal polynomials for σ ∈ (pS) is completely described in Theorems 1.2
and 1.3. This information is used to construct wave operators for the so-called CMV-representations in
Theorem 1.4. The approximation by analytic polynomials in L2(σ), σ ∈ (pS), is addressed in Theorem
1.5.

1. Results

We fix the polynomial p (1) for the rest of this paper. For the sake of transparency we assume κj = 1; the
discussion of the general case follows the same lines. Let C and C0 be the CMV-representations connected
to σ and m (see [1,6, Ch. 4]), and rank (C − C0) <∞.

We set Φ(C) =
∫

T
p(t) log σ′

ac(t) dm(t).
Lemma 1.1 Let rank (C − C0) <∞. Then there is a polynomial P such that

∫

T

p logσ′
ac dm = a0t0 + Re tr (P (C) − P (C0)) (3)

where a0 = 2
∫

T
p dm, t0 =

∑

k log ρk, and ρk = (1 − |αk|
2)1/2.
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We denote the right-hand side of equality (3) by Ψ(C) and we rewrite it in a different form. To this
end, we consider the shift S : l2(Z+) → l2(Z+), given by Sek = ek+1 and, for a bounded operator A on
l2(Z+), we look at τ(A) = S∗AS. Consequently, we see that

Ψ(C) =

2N+1
∑

k=0

{a0 log ρk + Re ((P (C) − P (C0))ek, ek)} +

∞
∑

k=2N+2

ψ ◦ τk(C)

where ψ(C) = a0 log ρ2N+2 + Re ((P (C) − P (C0))e2N+2, e2N+2). It turns out that there exist functions η
and γ, depending on a finite number of arguments, such that for any C with rank (C − C0) <∞

Ψ(C) = Ψ̃(C) =
2N+1
∑

k=0

{

a0 log ρk + Re ((P (C) − P (C0))ek, ek)
}

+
∞
∑

k=2N+2

η ◦ τk(C) + γ ◦ τ2N+2(C)

and, moreover, η is nonpositive (see [5], Lemma 3.1).
Theorem 1.2 ([5, Theorem 1.4]) A measure σ is polynomially Szegő (see (2)) if and only if Ψ̃(C) >
−∞. Moreover, in this case Φ(C) = Ψ̃(C) = Ψ(C).

We turn now to the description of asymptotic properties of orthogonal polynomials for (pS)-measures.
Consider a modified Schwarz kernel

K(t, z) =
t+ z

t− z

q(t)

q(z)

where q(t) = C(
∏

j(t− ζj)
2)/tN , and the constant C, |C| = 1, is chosen in a way that q(t) ∈ R for t ∈ T

(i.e., C = (
∏

j(−ζj))
−1). Furthermore, define

D̃(z) = exp

(

1

2

∫

T

K(t, z) logσ′
ac(t) dm(t)

)

, ϕ̃∗
n(z) = exp

(∫

T

K(t, z) log |ϕ∗
n(t)| dm(t)

)

The functions {ϕ̃∗
n} are called (reversed) modified orthogonal polynomials with respect to σ. It can be

readily seen that |D̃|2 = σ′
ac and |ϕ̃∗

n| = |ϕ∗
n| = |ϕn| a.e. on T. Furthermore, we see that ϕ̃∗

n = ψnϕ
∗
n,

where

ψn(z) = exp



A0n +

N
∑

j=1

(

Ajn
z + ζj
z − ζj

+Bjn

{

z + ζj
z − ζj

}2
)



 (4)

and A0n, Bjn ∈ iR, Ajn ∈ R. The coefficients {A0n, Ajn, Bjn}j,n can be expressed in a closed form through
Verblunsky coefficients {αk}.
Theorem 1.3 Let σ ∈ (pS). Then

lim
n→∞

∫

T

|D̃ϕ̃∗
n − 1|2 dm = 0

and, in particular, limn→∞ D̃(z)ϕ̃∗
n(z) = limn→∞ D̃(z)ψn(z)ϕ∗

n(z) = 1 for any z ∈ D.
Special versions of this result for Jacobi matrices are obtained in [2,5]. The proof of the theorem is

partially based on the sum rules proved in Theorem 1.2. The second important observation is that, for
an ε > 0 small enough,

|D̃ϕ̃∗
n(z)| ≤

Cε
√

1 − |z|

where z ∈ D\(∪kBε(ζk)), Bε(ζ) = {z : |z − ζ| < ε}.
We use asymptotics described above, to construct modified wave operators. Let F0 : L2(m) → l2(Z+),F :

L2(σ) → l2(Z+) be the Fourier transforms associated to the CMV-representations C and C0, see [6, Ch. 4].
Recall that C = FzF−1, C0 = F0zF

−1
0 .

3



Theorem 1.4 Let σ ∈ (pS). The limits

Ω̃± = s − lim n→±∞ eW (2n,C)CnC−n
0

exist. Here

W (C, n) = A0n +

N
∑

j=1

(

Ajn
C + ζj
C − ζj

+Bjn

{

C + ζj
C − ζj

}2
)

and coefficients {A0n, Ajn, Bjn} are defined in (4). We also have

F−1Ω̃+F0 = χEac

1

D̃
, F−1Ω̃−F0 = χEac

1
¯̃D

where Eac = T\suppσs.
The proof of the above theorem mainly follows [6, Ch. 10].
We now briefly discuss approximation by analytic polynomials in L2(σ) with σ ∈ (pS). We put P ′

0 to
be the set of analytic on D polynomials g with the property g 6= 0 on D; normalize them by the condition
g(0) > 0. Furthermore, for a g ∈ P ′

0, we set

λ(g) = exp

(∫

T

p log |g| dm

)

and define P ′
1 = {g : g ∈ P ′

0, λ(g) = 1}.
Theorem 1.5 Let dσ = w dm+ dσs. Then

exp

(∫

T

p log
w

p
dm

)

≤ inf
g∈P′

1

||g||2σ = inf
g ∈ P ′

0, ||g||σ ≤ 1

1

|λ(g)|2
≤ exp

(∫

T

p logw dm

)

Remind that σ is a Szegő measure if and only if the system {eiks}k∈Z is uniformly minimal in L2(σ).
Saying that σ is a (pS)-measure translates into the uniform minimality of another system, {eikν(s)}k∈Z,
in the same space L2(σ). Above,

ν(s) = C0

∫ s

0

p(eis′

) ds′

where s, s′ ∈ [0, 2π] and the constant C0 comes from the condition C0

∫

T
p dm = 1, see [5], Lemma 2.2.

We conclude the note with a few examples. For instance, classical Pollaczek polynomials [7] belong to the
(pS)-class with p(eiθ) = sin2 θ. It was proved recently in [6, Ch. 2] that σ ∈ (p0S) with p0(e

iθ) = 1− cos θ
if and only if {αk} ∈ l4 and {αk+1 −αk} ∈ l2. Theorems 1.2–1.5 also apply to this case and yield explicit
formulas for {ϕ̃∗

n}, {ψn}, D̃ and coefficients {A0n, Ajn, Bjn}.
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