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Abstract. We consider the 2D Euler equation of incompressible fluids on a strip R × T and prove the

stability of the rectangular stationary state χ|x|<L for large enough L.

1. Introduction

In this paper we will consider the stability of a certain class of steady solutions to the Euler
equation in a two dimensional cylindrical domain. The study of such stability questions is well
developed in the planar case. In the plane, the primary focus has been in the stability of circular
patches, starting with [8], which studied the evolution of a circular patch in a bounded domain and
proved stability using a spectral argument. In a similar vein, [5] used conserved quantities to derive
a bound on the diameter growth. The use of conserved quantities was also key in [7]. There has
also been work studying the stability and instability of other steady solutions in the plane, such as
the Kirchhoff ellipse cf. [4].

In other domains, these types of questions are less well understood. In the strip R × [0, a], the
work of Caprino and Marchioro [3] shows the stability of monotonically increasing steady vorticity
distributions with restrictive conditions on the associated velocity. More recently, Bedrossian and
Masmoudi [2] showed nonlinear stability of Couette flow in the cylinder S = R× T.

This paper considers steady patch solutions of the form χE0(z) where E0 = [−L,L] × T to the
problem

∂tθ +∇θ · u = 0, θ|t=0 = θ0 = χE (1)

for a compact set E ⊂ S. The velocity u(z, t) is related to the vorticity θ via a cylindrical Biot-
Savart law. Let the stream function Ψ be the function that solves the elliptic problem

(2π)−1∆Ψ = θ, lim
x→+∞

∂1Ψ(x, y, t) = − lim
x→−∞

∂1Ψ(x, y, t), |Ψ(x, y, t)| 6 C(|x|+ 1). (2)

The cylindrical Biot-Savart law is then

u = ∇⊥Ψ = k∗θ, Γ(x, y) =
1

2
log(cosh(x)−cos(y)), k(x, y) = ∇⊥Γ(x, y) =

(− sin(y), sinh(x))

2(cosh(x)− cos(y))
.

(3)
The velocity u defined by the cylindrical Biot-Savart law exists and is unique by the following
Lemma.

Lemma 1.1. Given compactly supported θ(z, t) ∈ L∞(S), all solutions to equation (2) are given
by

Ψ(x, y) = Γ ∗ θ + C

for some constant C.
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Proof. To see uniqueness, let Ψ1 and Ψ2 be two solutions to the elliptic problem (2). Then Ψ̃ =
Ψ1 −Ψ2 solves

∆Ψ̃ = 0, lim
x→+∞

∂1Ψ̃(x, y, t) = − lim
x→−∞

∂1Ψ̃(x, y, t).

The upper bound on Ψ1 and Ψ2 guarantees that the Ψ̃ grows at most linearly. If we extend Ψ̃ to all

of R2 by periodicity in y, Liouville’s Theorem for harmonic functions gives that Ψ̃ = C1x+C2y+C3.

Since Ψ̃ is periodic in y, C2 = 0. The conditions on ∂1Ψ̃ mean that C1 = 0. Thus Ψ̃ = C.
It remains to show that Γ ∗ θ is a solution to (2). One can directly check that ∆Γ = 0, z 6= 0.

Moreover,

(2π)−1Γ(z) =
1

π
log |z|+ C + o(1), |z| → 0

and (2π)−1∆(Γ ∗ θ) = θ. �

In contrast to the [3], these boundary conditions give a counter rotating velocity as |x| → ∞
with a linear transition within the patch E0. Additionally, this Biot-Savart law does not produce
velocity in L2(S). The kernel k(x, y) can be decomposed into two pieces, one in L1(S) and the
other which is bounded. Observe that

u(x, y, t) =

∫
S

(
(− sin(y − ξ2), sgn(x− ξ1)(cos(y − ξ2)− e−|x−ξ1|)

)
2(cosh(x− ξ1)− cos(y − ξ2))

θ(ξ)dξ+
1

2

∫
S

(0, sgn(x−ξ1))θ(ξ)dξ.

(4)

Notice that the first term is convolution with a kernel in L1(S), as near 0, it behaves like (x2+y2)−1/2

and away from 0 it decays exponentially fast. The second term, however, does not decay at all so
the total kinetic energy of this problem could be infinite. However, we can define the regularized
energy F (θ) for the equation (1) and compactly supported θ(z, t) ∈ L∞(S) in the following way:

F (θ)(t) =

∫
S

∫
S
θ(z, t)θ(ξ, t) log(cosh(x1 − x2)− cos(y1 − y2))dzdξ, z = (x1, y1), ξ = (x2, y2). (5)

When we consider the evolution of a patch under this flow, we will show in section 2 that the total
mass, the first coordinate of center of mass, and regularized energy are conserved.

We will use the following notation in the paper. If A and B are sets, A∆B stands for the
symmetric difference. The symbol C will denote an absolute constant, and its actual value can
change from formula to formula. If f1(2)(x) are two positive functions and

sup
x

f1(x)

f2(x)
<∞

we will write f1 . f2. This is equivalent to writing f1 = O(f2).

We can now state our main Theorem. Similar to [7], we will show that the steady patch solution
E0 = [−L,L]×T for sufficiently large L is stable for all times. It is convenient for our calculations
to introduce what we will call a point of centering.

Definition 1.1. A point of centering xc(t) for a patch E(t) is the value in R so that∫
[xc,∞)×T

χE(t)dz =

∫
(−∞,xc]×T

χE(t)dz.

Notice that this point is not necessarily unique and the set of all such points is always a segment
or a single point. We use a point of centering to make the comparison between the evolved patch
E(t) and the simple rectangle E0 more natural.

Our main result is the following Theorem.

Theorem 1.1. There is an absolute constant L0 > 2 such that the following statement is true. If

(a) L > L0, ε < 1,
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(b) E is a compact subset of S and 0 is one of its points of centering,
(c) |E| = 4Lπ,
(d) the regularized energy satisfies

F (χE) = F (χE0) +O(Lε2), (6)

(e) function θ solves 2D Euler equation (1) with the Biot-Savart law given by (2) and (3),

then θ(t) = χE(t) and E(t) satisfies∫
S
||x− xc(t)| − L|χE(t) ∆E0(t)dxdy . ε

2, (7)

|xc(t)| . L−1ε2 (8)

for all t > 0. Above xc(t) is any point of centering for E(t) and E0(t) = [xc(t)− L, xc(t) + L]× T.
Moreover, if µ > ε, then

|(E(t) ∆E0(t)) ∩ {||x− xc(t)| − L| > µ}| . ε2µ−1.

This result has a similar structure to the result in [7] for circular patches in the plane, but with
a point of centering xc(t) in the role of the center of mass. However, that proof relies on conserved
quantities that do not hold in the cylindrical case, namely

∫
R2 |z|2θ(z)dz. Instead, our argument

uses the one dimensional nature of the cylindrical problem and the conservation of regularized
energy. In the next section, we will establish the necessary conserved quantities. In the third
section, we prove the main result on the stability.

2. Preliminaries

To proceed with our arguments on stability, we need a result equivalent to Yudovič’s result
for the evolution of L1

⋂
L∞ solution [9, 2]. We are working on an unbounded domain with

periodicity in one direction. If we consider the periodic extension of our problem to R2, we are
interested in bounded solutions on R2 with some decay in one direction. Recent work by Kelliher
and collaborators gives existence and uniqueness for solutions to the Euler equations on R2 for
velocity u and associated vorticity θ = ∇× u (defined in the sense of distributions) both bounded,
with no decay requirement. These results also include an adaptation of the standard Biot-Savart
law on R2 to relate u and θ despite the lack of convergence of the standard integral identities.

We will apply this work in Appendix A to show the following Theorem:

Theorem 2.1. Let θ0(z) for z ∈ S = R× T be in L∞(S) with compact support. Then there exists
unique (u, θ) with u ∈ L∞(S) and θ ∈ L∞(S) with compact support such that ∂tθ + u · ∇θ = 0 in
the sense of distributions with

u(z, t) = ∇⊥(Γ ∗ θ) =

∫
S

(− sin(y − ξ2), sinh(x− ξ1))

2(cosh(x− ξ1)− cos(y − ξ2))
θ(ξ, t)dξ

and θ(z, 0) = θ0(z).

We postpone the proof of this Theorem until the Appendix.
Once we have established existence and uniqueness, we can study the conserved quantities of the

equation.

Proposition 2.1. For θ(z, t) a solution to (1), the following quantities are conserved:

(1) the total mass M =
∫
S θ(z)dz,

(2) the horizontal center of mass x0 =
∫
S xθ(z)dz,

(3) the total energy F (θ) = 2
∫
S

∫
S θ(z)θ(ξ)Γ(z − ξ)dξdz.
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Proof. The arguments for Theorem 2.1 include that the vorticity θ is transported by the flow.
Therefore, conservation of mass follows immediately.

Since we have ∂tθ+ u · ∇θ = 0 only in the sense of distributions, we need to show carefully that
we have conservation of center of mass and regularized energy. Observe that for a smooth function
ϕ ∈ C∞([0, T ], C∞0 (S)), we have the following representation:∫

S
ϕ(z, T )θ(z, T )dz −

∫
S
ϕ(z, 0)θ(z, 0)dz =

∫ T

0

∫
S

(∂tϕ+ u · ∇ϕ) θ(z, t)dzdt.

To show our other conserved quantities, we need to choose our smooth bump function so that the
desired quantity appears on the right hand side of the expression above.

From (4), we can bound the velocity u by

‖u(t)‖L∞(S) 6 ‖k1‖L1(S)‖θ(t)‖L∞(S) + ‖θ(t)‖L1(S),

where k1(z) = k(z) − (0, sgn(x)). The L1 bound on k is independent of time, and both ‖θ‖L1(S)

and ‖θ‖L∞(S) are conserved in time. Therefore,

‖u(t)‖L∞(S) . ‖θ(0)‖L∞(S) + ‖θ(0)‖L1(S), (9)

and we know that up to a time T , θ is compactly supported. Let b(x) be a smooth bump in the
x-direction so that b ≡ 1 for every x in the set [−R,R] where R is chosen so that supp(θ(z, t)) ⊆
[−R,R] for all t ∈ [0, T ].

To see conservation of the center of mass, let ϕ(z, t) = xb(x). Then,∫
S
xθ(z, T )dz −

∫
S
xθ(z, 0)dz =

∫ T

0

∫
S

(∂tϕ+ u · ∇ϕ) θ(z, t)dzdt

=

∫ T

0

∫
S
u1(z, t)∂1(xb(x))θ(z, t)dzdt

=

∫ T

0

∫
S
u1(z, t)θ(z, t)dzdt+

∫ T

0

∫
S
xu1(z, t)b′(x)θ(z, t)dzdt.

The second term is clearly 0, as b′(x) = 0 on the support of θ(z, t). The first term can be rewritten
as ∫ T

0

∫
S

∫
S

− sin(y1 − y2)

cosh(x1 − x2)− cos(y1 − y2)
θ(ξ, t)θ(z, t)dξdz

which is also 0, as the kernel is odd and rapidly decaying.
To see the conservation of regularized energy, we repeat a similar argument with ϕ(z, t) =

b(x)Ψε(z, t) where

Ψε(z, t) = ρε ∗
∫
S

log(cosh(x− ξ1)− cos(y − ξ2))(ρε ∗ θ)dξ.

for a smooth, compactly supported bump ρε(z, t) on [0, T ] × S defined as follows. Let r(x) be a
smooth bump supported in [−1, 1] on R with

∫
r = 1. Let rε(x) = ε−1r(x/ε), let r1,ε(y) be the

periodic extension of rε on [−π, π], and let r2,ε(t) = rε(t). Then, ρε(x, y, t) = rε(x)r1,ε(y)r2,ε(t).
The calculations involve changing the order of integration to rearrange the convolution with the
mollifier ρε but are otherwise straightforward. �
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3. Main Results

We recall that S = R×T. We first consider a one-dimensional variational problem which will be
important later. Suppose J is a measurable subset of R and |J | = 2L. Assume that J is centered
around the origin, such that |J+| = L, J+ = J ∩ [0,∞). (Notice here again that the “centering
points” for any set form a closed interval, which can degenerate to a point). Consider a functional

Φ(χJ) =

∫
J

∫
J
|x1 − x2|dx1dx2.

The following elementary Lemma holds true.

Lemma 3.1. We have

Φ(χJ) > Φ(χJ0) + CL

∫
J ∆ J0

||x| − L|dx,

where J0 = [−L,L].

Proof. Notice that this estimate is scale-invariant in L and the actual value of L is not important.
It is sufficient to assume that J+ = ∪nj=1Ij where Ij are disjoint intervals (placed in the order from

left to right). Denote the gaps between them by {Qj} so we have

R+ = Q1 ∪ I1 ∪Q2 ∪ I2 ∪ . . . Qn ∪ In ∪ [a,∞).

We can allow some gaps to be empty if necessary. The proof will proceed as follows. We will close
all gaps {Qj} and estimate the total change in Φ that we denote δΦ.

Let J (1) be the configuration obtained by closing the Qn gap (sliding In to the left) and denote

the moved interval by I
(1)
n (e.g., |I(1)

n | = |In|, In−1 and I
(1)
n are adjacent to each other in J (1)).

Consider J ′ = J\In = J (1)\I(1)
n . We have

Φ(χJ) = Φ(χJ ′)+Φ(χIn)+2

∫
J ′
dξ

∫
In

(x−ξ)dx, Φ(χJ(1)) = Φ(χJ ′)+Φ(χ
I
(1)
n

)+2

∫
J ′
dξ

∫
I
(1)
n

(x−ξ)dx

and

Φ(χJ)− Φ(χJ(1)) = 2|Qn|
∫
In

dx

∫
J ′
dξ > 2L|Qn||In|,

where the last inequality follows from |J ′| > |J−| = L, J− = J ∩ (−∞, 0].
Compute inductively the total change δ1Φ in Φ obtained by closing all gaps {Qj}, j = k, . . . , n

to the right of L (we close them in the following order: Qn, Qn−1, . . . , Qk):

δ1Φ > 2L(|In||Qn|+ (|In|+ |In−1|)|Qn−1|+ . . .+ (|In|+ . . .+ |Ik|)|Qk|) =

2L(|In|(|Qn|+ . . .+ |Qk|) + |In−1|(|Qn−1|+ . . .+ |Qk|) + . . .+ |Ik||Qk|). (10)

Consider [L,∞) ∩ J and denote ε = |[L,∞) ∩ J |. Let us divide all intervals Ik, . . . , In into two
groups: those that belong to the interval [L,L+ 2ε]: {Ik, . . . , Ij−1} and those that are to the right
of L+ 2ε: {Ij , . . . , In}. If L+ 2ε is an interior point of some interval, we split this interval into two
by creating an empty gap at point L+ 2ε. Notice that if Il ⊂ [L+ 2ε,∞) (i.e., Il is in the second
group), then

|Ql|+ . . .+ |Qk| > dist(Il, L)− ε > dist(Il, L)

2
.

Therefore, the contribution to (10) coming from the second group of intervals is bounded below by

L
n∑
l=j

dist(Il, L)|Il| > 0.5L

∫
x>L+2ε

(x− L)χJdx.
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(
Indeed, to see that last inequality we write Il = [al, bl] and notice that

dist(Il, L) = al − L = (bl − L)− (bl − al) > bl − L− ε > (bl − L)/2.
)

Thus,

δ1Φ & L
∫
x>L+2ε

(x− L)χJdx = L

∫
x>L+2ε

(x− L)χJ∆J0dx.

Now that all gaps to the right of L are closed, we call the new configuration Ĵ , intervals are {Îj},
and the gaps are {Q̂j}, j = 1, . . .m. For the rightmost interval Îm we have Îm = [L,L+ ε] per our
construction and thus

|Îm| = ε. (11)

We are now closing all gaps in [0,∞) and estimating δ2Φ, the change of Φ, from below. Notice first
that

m∑
j=1

|Q̂j | = ε (12)

and

δ2Φ > 2L(|Q̂1|(|Î1|+ . . .+ |Îm|) + . . .+ |Q̂m| · |Îm|). (13)

Observe that (Ĵ ∆ J0)∩ [0, L] is the union of the {Q̂l}. We now split all gaps {Q̂l} into two groups:
those that belong to [0, L− 2ε] (it could be empty if, e.g., ε > L/2) and all others. Notice that for

each gap Q̂p in the first group, we have

m−1∑
j=p

|Îj | > dist(Q̂p, L)− ε > dist(Q̂p, L)

2
.

Therefore, the contribution to (13) coming from the first group of gaps is at least

0.5L

∫
0<x<L−2ε

(L− x)χJ ∆ J0dx.

Collecting separately the terms in the right hand side of (13) that contain Îm, we get

2L|Îm| · (|Q̂1|+ . . .+ |Q̂m|) > 2Lε2

by (11) and (12). Keeping only the gaps in the first group gives us

δ2Φ ≥

 ∑
first group of gaps

2L|Q̂p|
m−1∑
j=p

|Îj |

+2L|Îm|·(|Q̂1|+. . .+|Q̂m|) & L
∫

x>0,0<x<L−2ε

|x−L|χJ∆J0dx+Lε2.

We combine now the obtained inequalities to estimate the total variation δΦ = δ1Φ + δ2Φ as

δΦ & L
∫
x>0,|x−L|>2ε

|x− L|χJ ∆ J0dx+ Lε2 & L
∫
x>0
|x− L|χJ ∆ J0dx.

Arguing in the same way for the half-line R−, we get the statement of the Lemma since the resulting
configuration after closing all gaps is J0. �

Our first goal is to control the regularized energy functional associated to the Euler equation
on S defined in (5). Given an arbitrary vortex patch E, we will need to transition to the vertical
average of the patch to control a portion of the energy. To that end, we define following functional

Φ(ρ) =

∫
R

∫
R
|x1 − x2|ρ(x1)ρ(x2)dx1dx2. (14)
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Notice first that Φ(ρ) <∞ implies ∫
R
|x|ρ(x)dx <∞.

Assume that ρ+
j , ρ

−
j ∈ [0, 1], j = 0, 1, . . . are chosen such that

∞∑
j=0

ρ±j = 1,

∞∑
j=1

jρ±j <∞.

Fix δ > 0 and consider the following convex set: O is the set of functions ρ, defined on R, measurable,
and such that 0 6 ρ 6 1 and∫ (j+1)δ

jδ
ρ(x)dx = ρ+

j ,

∫ −jδ
−(j+1)δ

ρ(x)dx = ρ−j , j = 0, 1, . . .

In the next Lemma, we will study the following variational problem

inf
ρ∈O

Φ(ρ). (15)

In the Lemma B.1 from the Appendix, we prove that a minimizer ρ∗ exists.

Lemma 3.2. If ρ∗ is a minimizer then ρ∗ is a characteristic function.

Proof. Notice that if ρ0 and ρ1 belong to O, then ρt = tρ1 + (1− t)ρ0 ∈ O, t ∈ (0, 1) and

Φ′′(ρt) =

∫ ∫
|x1 − x2|δ(x1)δ(x2)dx1dx2, δ = ρ1 − ρ0. (16)

Going on the Fourier side, we have

Φ′′ = −
∫
|δ̂(k)|2 dk

2k2
< 0 , (17)

where the last integral makes sense since
∫
R δ(x)dx = 0,

∫
R |x||δ(x)|dx <∞ and so δ̂(0) = 0, (δ̂)′ ∈

L∞(R). That shows concavity of the function in t. Now suppose that ρ∗ is not a characteristic
function, e.g., there is Σ ⊂ Ij for some Ij , such that ε < ρ∗ < 1 − ε on Σ and |Σ| > 0 for some
positive ε. Then one can find measurable function ν supported on Σ such that

∫
R νdx = 0 and

νt = ρ∗ + tν ∈ O for t ∈ (−δ1, δ1) with some small positive δ1. However, the function Φ(νt) is
concave and t = 0 can not be a local minimum. �

Two previous Lemmas imply

Lemma 3.3. If ρ is measurable, 0 6 ρ 6 1, and∫ ∞
0

ρdx = L,

∫ 0

−∞
ρdx = L,

then

Φ(ρ) > Φ(χJ0) + CL

∫
R
||x| − L| · |ρ(x)− χJ0 |dx. (18)

Proof. Indeed, consider the grid {jδ}, j ∈ Z with step δ and let

ρ+
j =

∫ (j+1)δ

jδ
ρdx, ρ−j =

∫ −jδ
−(j+1)δ

ρdx, j = 0, 1, . . .

The variational argument given above shows that the value of Φ will decrease if we replace ρ by a
minimizer which needs to be a characteristic function χJ . By Lemma 3.1, we get

Φ(ρ) > Φ(χJ) > Φ(χJ0) + CL

∫
J ∆ J0

||x| − L|dx = Φ(χJ0) + CL

∫
R
||x| − L| · |χJ − χJ0 |dx.
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Sending δ → 0 and using

lim
δ→0

∫
R
||x| − L| · |χJ − χJ0 |dx =

∫
R
||x| − L| · |ρ(x)− χJ0 |dx,

we get the statement of the Lemma. �

Now we turn our attention to the full energy functional for 2D Euler in S. Let

F (χE) =

∫
S

∫
S
χE(z)χE(ξ) log(cosh(x1 − x2)− cos(y1 − y2))dzdξ, z = (x1, y1), ξ = (x2, y2).

Observe that

F (χE) = (2π)2

∫
R

∫
R
ρE(x1)ρE(x2)|x1 − x2|dx1dx2 + F1(χE)− log(2)‖χE‖2L1(S) , (19)

where

ρE(x) =
1

2π

∫ π

−π
χE(x, y)dy

and

F1(χE) =

∫
S

∫
S
χE(z)χE(ξ) log(cosh(x1−x2)− cos(y1− y2))dzdξ− (2π)2Φ(ρE) + log(2)‖χE‖2L1(S) .

Here Φ is defined in (14).
Assume that E ⊂ S, |E| = 4πL, and |E ∩ {x > 0}| = 2πL, i.e., E is centered around 0.

Theorem 3.1. There is L0 > 2 such that for every L > L0 we have

|F1(χE)− F1(χE0)| .
∫
S
||x| − L|χE∆E0dxdy ,

where E0 = [−L,L]× T.

Proof. Consider f ∈ L1(S) ∩ L∞(S) and let f0 = χE0 . If f = f0 + h, we have

F1(f) =

∫
S

∫
S
K(z, ξ)(f0(z) + h(z))(f0(ξ) + h(ξ))dzdξ

and
K(z, ξ) = log(cosh(x1 − x2)− cos(y1 − y2))− |x1 − x2|+ log 2. (20)

Notice that K is symmetric and ∫
S
K(z, ξ)f0(ξ)dξ = 0. (21)

Indeed, ∫ π

−π
log(cosh(x1 − x2)− cos(y1 − y2))dy2 =

∫ π

−π
log

(
κ2 + 1

2κ
− cos y

)
dy ,

where κ ≥ 1 solves equation
κ2 + 1

2κ
= cosh(x1 − x2).

Clearly, κ = e|x1−x2|. We continue as∫ π

−π
log

(
κ2 + 1

2κ
− cos y

)
dy = 2

∫ π

−π
log |κ− eiy|dy −

∫ π

−π
log(2κ)dy.

Function log |κ − z| is harmonic in z in the unit disc and the mean-value theorem for harmonic
functions gives

2

∫ π

−π
log |κ− eiy|dy −

∫ π

−π
log(2κ)dy = 2π log κ− 2π log 2 = 2π|x1 − x2| − 2π log 2 .
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Now, (21) easily follows.
Then,

F1(χE)− F1(χE0) =

∫
S

∫
S
K(z, ξ)h(z)h(ξ)dzdξ

with h = χE − χE0 . Notice that |h| = |χE − χE0 | = χE∆E0 and let A = E∆E0. So, it is sufficient
to control

∫
A

∫
A |K(z, ξ)|dzdξ to complete the proof. We turn now to the kernel, K(z, ξ). The

following is immediate: K(z, ξ) is translation invariant, i.e., K(z, ξ) = K(z − ξ, 0), and also

|K(z, 0)| .
{

e−0.1|z|, |z| > 1
1 + | log |z||, |z| < 1

(22)

for every z ∈ S. We have the following trivial bound∫
A

∫
A
|K(z, ξ)|dzdξ . |A| ·min(1, |A| · (1 + | log |A||)), (23)

where we took into account two estimates:∫
S
|K(z, 0)|dz < C (24)

and ∣∣∣∣∫
A

min{1, 1 + | log |ξ||}dξ
∣∣∣∣ . |A| · | log |A||, provided that |A| < 0.5. (25)

The last bound follows from the observation that the maximizer for that integral is the ball centered
at the origin.

Given A, we have two cases:
1. |A| > 1. Then ∫

A

∫
A
|K(z, ξ)|dzdξ . |A| .

∫
A
||x| − L|dxdy ,

where the last inequality holds for all A ⊂ S satisfying |A| > 1 (see, e.g., Lemma C.1 from Appendix
C).

2. |A| 6 1. Then, we write A = A1 ∪A2 where A1 = A ∩ {||x| − L| < 1}.
Consider A1. If A1 = A+

1 ∪A
−
1 , A

+
1 = A1 ∩ {|x− L| < 1}, A−1 = A1 ∩ {|x+ L| < 1}, then∫

A1

∫
A1

|K(z, ξ)|dzdξ .
∫
A1

||x| − L|dxdy

by Lemma C.2 and Lemma C.3 that are proved in Appendix C. The remaining terms are then
bounded using (24) as follows∫

A2

∫
A2

|K(z, ξ)|dzdξ . |A2| .
∫
A2

||x| − L|dxdy

and similarly ∫
A1

∫
A2

|K(z, ξ)|dzdξ . |A2| .
∫
A2

||x| − L|dxdy.

The proof of Theorem 3.1 is now completed. �

We define M as the collection of measurable sets E ⊂ S such that E is centered around the
origin, |E| = 4πL. Theorem 3.1 along with (18) and (19) give

Corollary 3.1. There is L0 > 2 such that for every L > L0 and E ∈M, we have

F (χE) > F (χE0) + CL

∫
E∆E0

||x| − L|dxdy.

Therefore, arg min
E∈M

F (χE) = E0 = [−L,L]× T.

9



Now we are ready to apply our estimates to the Euler dynamics. We will start by proving the
following Theorem which is identical to Theorem 1.1 except that the estimate (8) for points of
centering is missing.

Theorem 3.2. There is an absolute constant L0 > 2 such that the following statement is true. If

(a) L > L0, ε < 1,
(b) E is a compact subset of S and 0 is one of its points of centering,
(c) |E| = 4Lπ,
(d) the regularized energy satisfies

F (χE) = F (χE0) +O(Lε2), (26)

(e) function θ solves 2D Euler equation (1) with the Biot-Savart law given by (2) and (3),

then θ(t) = χE(t) and E(t) satisfies∫
S
||x− xc(t)| − L|χE(t) ∆E0(t)dxdy . ε

2 (27)

for all t > 0. Above xc(t) is any point of centering for E(t) and E0(t) = [xc(t)− L, xc(t) + L]× T.
Moreover, if µ > ε, then

|(E(t) ∆E0(t)) ∩ {||x− xc(t)| − L| > µ}| . ε2µ−1.

Proof. Notice that F (χE(t)) and |E(t)| are invariants. Therefore, Corollary 3.1 gives

L

∫
S
||x− xc(t)| − L|χE(t) ∆E0(t)dxdy . Lε

2

and the statements follow. �

The following Lemma gives a simple geometric condition for (26) to hold.

Lemma 3.4. If E is centered around the origin, |E| = 4Lπ, and {|x| < L−ε} ⊆ E ⊆ {|x| < L+ε},
then

F (χE) = F (χE0) +O(Lε2). (28)

Proof. Consider the representation (19) for E and compare it to the same representation for E0.
For the second term, we use Theorem 3.1 to get

|F1(χE)− F1(χE0)| .
∫
S
||x| − L|χE∆E0dxdy . ε

2.

If we write ρE = χJ0 + δ, then the first term in (19) gives∫
R

∫
R
ρE(x1)ρE(x2)|x1 − x2|dx1dx2 =

∫
R

∫
R

(χJ0(x1) + δ(x1))(χJ0(x2) + δ(x2))|x1 − x2|dx1dx2

with ‖δ‖L∞ . 1,
∫
R+ δdx =

∫
R− δdx = 0, and supp δ ⊆ {L − ε < |x| < L + ε}. Notice that (see,

e.g., (16), (17)) ∫
R

∫
R
δ(x1)δ(x2)|x1 − x2|dx1dx2 ≤ 0.

For the cross product,∫
R

∫
R
δ(x1)χJ0(x2)|x1−x2|dx1dx2 =

∫ −L+ε

−L−ε
δ(x1)

(∫ L

−L
|x1 − x2|dx2

)
dx1+

∫ L+ε

L−ε
δ(x1)

(∫ L

−L
|x1 − x2|dx2

)
dx1 .

Consider, e.g., the first integral. We have

||x1 − x2| − |(−L)− x2|| 6 |x1 + L| 6 ε
10



and, therefore,∫ −L+ε

−L−ε
δ(x1)

(∫ L

−L
|x1 − x2|dx2

)
dx1 = O(Lε2) +

∫ −L+ε

−L−ε
δ(x1)

(∫ L

−L
|(−L)− x2|dx2

)
dx1 .

Similarly,∫ L+ε

L−ε
δ(x1)

(∫ L

−L
|x1 − x2|dx2

)
dx1 = O(Lε2) +

∫ L+ε

L−ε
δ(x1)

(∫ L

−L
|L− x2|dx2

)
dx1 .

However,∫ −L+ε

−L−ε
δ(x1)

(∫ L

−L
|(−L)− x2|dx2

)
dx1 =

∫ L+ε

L−ε
δ(x1)

(∫ L

−L
|L− x2|dx2

)
dx1 = 0 ,

because
∫
R± δdx = 0 and we have the statement of the Lemma. �

To complete the proof of Theorem 1.1, we are left with studying the dynamics of xc(t), the point
of centering.

Lemma 3.5. In the previous Theorem 3.2, a centering point xc(t) satisfies

|xc(t)| . L−1ε2

for all times.

Proof. For the patch χE(t) we have also that the x-coordinate of the center of mass is conserved
and equal to zero, so: ∫

S
(x− xc(t))χE(t)(z)dxdy = −4πLxc(t).

It suffices to bound the left hand side by ε2. Recall E0(t) = [xc(t)− L, xc(t) + L]× T observe that∫
S

(x− xc(t))χE(t)(z)dxdy =

∫
S

(x− xc(t))(χE(t)(z)− χE0(t)(z))dxdy.

We use the fact that xc(t) is the centering point for both E(t) and E0(t) to write∫
x>xc(t)

(x− xc(t))(χE(t)(z)− χE0(t)(z))dxdy =

∫
x>xc(t)

(x− xc(t)− L)(χE(t)(z)− χE0(t)(z))dxdy 6∫
x>xc

|x− xc(t)− L| · |χE(t)(z)− χE0(t)(z)|dxdy =

∫
x>xc

|x− xc(t)− L| · χE(t)∆E0(t)(z)dxdy . ε
2

as follows from (27). The integral over x < xc(t) is handled similarly. Thus, |xc(t)| . L−1ε2. �

The Theorem 3.2 and Lemma 3.5 give the proof of Theorem 1.1.

Appendix A. Existence and Uniqueness of Solution on S

Now we will discuss the existence and uniqueness result stated in Section 2.

Theorem A.1. Let θ0(z) for z ∈ S = R × T be in L∞(S) with compact support in S. Then
there exists unique (u, θ) with u ∈ L∞(S) and θ ∈ L∞(S) with compact support in S such that
∂tθ + u · ∇θ = 0 in the sense of distributions with

u(z, t) = ∇⊥(Γ ∗ θ) =

∫
S

(− sin(y − ξ2), sinh(x− ξ1))

2(cosh(x− ξ1)− cos(y − ξ2))
θ(ξ, t)dξ

and θ(z, 0) = θ0(z).
11



This Theorem is a corollary of the following result of Kelliher [6]. Note that in that work, the
space S(R2) is the space of all divergence-free vector fields u with vorticity θ(u) so that

‖u‖L∞ + ‖θ(u)‖L∞ <∞.

The goal is to consider bounded velocity and vorticity without assumptions on their smoothness,
so ∇ · u = 0 and θ(u) = ∇× u in the sense of distributions. Moreover, we say u ∈ S with vorticity
θ is a bounded solution if

(1) ∂tθ + u · ∇θ = 0 in the sense of distributions,
(2) the vorticity is transported by the flow.

Now we can state the Theorem from [6]:

Theorem A.2 (Theorem 2.9, [6]). Assume that u0 is in S(R2), let T > 0 be arbitrary, and fix

U∞(t) ∈ (C[0, T ])2 with U∞(0) = 0. Let K(y) =
y⊥

|y|2
. There exists a bounded solution u to the

Euler equations in R2, and this solution satisfies a renormalized Biot-Savart law

u(t)− u0 = U∞(t) + lim
R→∞

(aRK) ∗ (θ(t)− θ0)

on [0, T ] × R2 for all smooth, compactly supported, radial cutoff functions aR(x) = a(x/R) with
a(x) = 1 for |x| < 1 and a(x) = 0 for |x| > 2. This solution is unique among all solutions u with
u(0) = u0 that satisfy the given renormalized Biot-Savart law.

The proof of this Theorem is given in its entirety in [6]. The vector field U∞(t) allows the work
to characterize the non-uniqueness of solutions when u is only bounded. We will use this result to
prove Theorem 2.1, and the choice of U∞(t) is naturally proscribed by the boundary conditions on
the stream function in (3).

Proof of Theorem 2.1. Let θ0(x, y) on R2 be the periodic extension of θ0(z) and define u0(z) =
∇⊥Γ ∗ θ0(z) with periodic extension u0(x, y). Then by Theorem A.2, there exist unique u and θ
defined on all of R2 so that

u(t)− u0 = U∞(t) + lim
R→∞

(aRK) ∗ (θ(t)− θ0)

on [0, T ]× R2. The solution u(x, y, t) and θ(x, y, t) are periodic by uniqueness.
First we will show that renormalized Biot-Savart law is equivalent to the cylindrical Biot Savart

law given by (2) and (3). If we consider any g(ξ) ∈ L∞(R2) such that g(ξ) = g(ξ + (0, 2π)) and
g(ξ) = 0 for |ξ1| > R, then∫

R2

aR(z − ξ)(z − ξ)⊥

|z − ξ|2
g(ξ)dξ =

∫
R

∞∑
k=−∞

∫ π

−π
aR(z − ξk)

(z − ξk)⊥

|z − ξk|2
g(ξ)dξ ,

where ξk = ξ + (0, 2πk) by the periodicity of g. Observe that

∞∑
k=−∞

(z − ξk)⊥

|z − ξk|2
=

∞∑
k=−∞

(−(x2 − y2 − 2πk), x1 − y1)

(x1 − y1)2 + (x2 − y2 − 2πk)2

and by Poisson’s Summation Formula, we have the following identity:

Lemma A.1. For a, b 6= 0

∞∑
k=−∞

(−(b− 2πk), a)

a2 + (b− 2πk)2
=

(− sin(b), sinh(a))

2(cosh(a)− cos(b))
.

12



Since aR tends to 1 uniformly and θ is compactly supported in S, we can conclude that limit in
R converges to the desired cylindrical Biot-Savart law.

The boundary conditions on Ψ in (3) require that

lim
x→+∞

u2(x, y) = − lim
x→−∞

u2(x, y).

Since k ∗θ(x, y, t) satisfies this equality, it must be true that U
(2)
∞ (t) = −U (2)

∞ (t) = 0. As for U
(1)
∞ (t),

observe that if θ1(x, y, t) solves the cylindrical problem with horizontal drift

∂tθ1 + U (1)
∞ (t)∂1θ1 + (k ∗ θ1)∇θ1 = 0,

the translated function θ̃ = θ1(x+ F (t), y, t) where F (t) =
∫ t

0 U
(1)
∞ (s)ds satisfies

∂tθ̃ + (k ∗ θ̃)∇θ̃ = 0.

By setting U
(1)
∞ (t) ≡ 0, we factor out the possibility of a moving reference frame in the horizontal

direction.
It only remains to show that the Lemma A.1 holds.

Proof of Lemma A.1. We can compute this sum explicitly. For the first component, Poisson sum-
mation formula gives∑

k∈Z

−(b− 2πk)

a2 + (b− 2πk)2
= − 1

2i

∞∑
n=1

(eibne−|a|n − e−ibne−|a|n) ,

since we have by residue calculus

∫ ∞
−∞

e2πixn2πx

a2 + (2πx)2
dx =



ie−|a|n

2
, for n > 0,

− ie
|a|n

2
, for n < 0,

0, n = 0.

Since |e−|a|±ib| 6 e−|a| < 1 for |a| > 0, we have∑
k∈Z

−(b− 2πk)

a2 + (b− 2πk)2
= − sin(b)

2(cosh(a)− cos(b))
.

For the second component, assume that a > 0. Then,∑
k∈Z

a

a2 + (b− 2πk)2
=

1

2
+

1

2

∞∑
n=1

e−(a+ib)n + e−(a−ib)n ,

since we have ∫ ∞
−∞

e2πixn

a2 + (2πx)2
dx =

e−|an|

2|a|
.

As before, we can use the geometric series and see that∑
k∈Z

a

a2 + (b− 2πk)2
=

1

2
+

1

2

(
e−(a+ib)

1− e−(a+ib)
+

e−(a−ib)

1− e−(a−ib)

)
=

sinh(a)

2(cosh(a)− cos(b))
.

Since this expression is odd in a, it holds for a < 0 as well. �
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Finally, the fact that θ is periodic in the whole plane and is transported by the flow gives

‖θ(t)‖L1(S) = ‖θ0‖L1(S) and ‖θ(t)‖L∞(S) = ‖θ0‖L∞(S).

By the cylindrical Biot-Savart law, we know that ‖u‖L∞(S) . ‖θ(0)‖L1(S) + ‖θ(0)‖L∞(S) and θ will
remain compactly supported. �

Appendix B. Existence of Minimizer

In this Appendix, we prove a standard result about existence of a minimizer in the variational
problem (15).

Lemma B.1. The problem (15) has a minimizer.

Proof. Denote
σ = inf

ρ∈O
Φ(ρ)

and ρn is a minimizing sequence: Φ(ρn)→ σ. Recall that

sup
n

∫
(1 + |x|)ρndx < C. (29)

Consider {ρn}. We can choose a subsequence {ρkn} → ρ∗ weakly over all compact sets in R and
clearly ρ∗ ∈ O. Let us rename this {ρkn} back as {ρn} for convenience. We have∫ T

−T
(1 + |x|)ρ∗dx = lim

n→∞

∫ T

−T
(1 + |x|)ρndx 6 lim inf

n→∞

∫
(1 + |x|)ρndx < C ,

so
(1 + |x|)ρ∗ ∈ L1(R). (30)

because T is arbitrary. Similarly, we conclude that∫ ∞
0

xρ∗dx 6 lim inf
n→∞

∫ ∞
0

xρndx,

∫ 0

−∞
|x|ρ∗dx 6 lim inf

n→∞

∫ 0

−∞
|x|ρndx. (31)

Notice also that ∫
R+

ρ∗dx =

∫
R−

ρ∗dx = 1

as follows from the definition O. We will need the following result

lim
n→∞

∫ ∞
0

x1ρn(x1)

∫ ∞
x1

ρn(x2)dx2dx1 =

∫ ∞
0

x1ρ
∗(x1)

∫ ∞
x1

ρ∗(x2)dx2dx1. (32)

It is due to the tightness estimate (29), (30), weak convergence, and Dominated Convergence
Theorem.

We now prove that ρ∗ is a minimizer, i.e., that Φ(ρ∗) = σ. Write Φ(ρn) as

Φ(ρn) = I1 + I2 =

∫ ∞
0

ρn(x1)dx1

∫ ∞
−∞
|x2−x1|ρn(x2)dx2 +

∫ 0

−∞
ρn(x1)dx1

∫ ∞
−∞
|x2−x1|ρn(x2)dx2.

For I1, we have

I1 =

∫ ∞
0

ρn(x1)dx1

∫ ∞
0
|x2 − x1|ρn(x2)dx2 +

∫ ∞
0

ρn(x1)dx1

∫ ∞
0

(x2 + x1)ρn(−x2)dx2.

Consider the first integral. By symmetry, it is equal to

2

∫ ∞
0

ρn(x1)dx1

∫ x1

0
(x1 − x2)ρn(x2)dx2 = 2

(∫ ∞
0

x1ρn(x1)dx1

)(∫ ∞
0

ρn(x2)dx2

)
−

2

∫ ∞
0

ρn(x1)dx1

∫ x1

0
x2ρn(x2)dx2 − 2

∫ ∞
0

x1ρn(x1)dx1

∫ ∞
x1

ρn(x2)dx2.

14



Notice that the last two terms are equal to each other and∫ ∞
0

ρ∗dx =

∫ ∞
0

ρndx = 1.

Thus, we are left with

2

(∫ ∞
0

x1ρn(x1)dx1

)(∫ ∞
0

ρ∗(x2)dx2

)
− 4

∫ ∞
0

x1ρn(x1)dx1

∫ ∞
x1

ρn(x2)dx2 =

2

(∫ ∞
0

x1ρn(x1)dx1

)(∫ ∞
0

ρ∗(x2)dx2

)
− 4

∫ ∞
0

x1ρ
∗(x1)dx1

∫ ∞
x1

ρ∗(x2)dx2 + o(1)

by (32). Then, (31) applied to the first term in the last expression gives∫ ∞
0

ρ∗(x1)dx1

∫ x1

0
(x1 − x2)ρ∗(x2)dx2 6 lim inf

n→∞

∫ ∞
0

ρn(x1)dx1

∫ x1

0
(x1 − x2)ρn(x2)dx2.

In a similar way, one shows that∫ ∞
0

∫ ∞
0

ρ∗(x1)ρ∗(−x2)(x1 + x2)dx1dx2 6 lim inf
n→∞

∫ ∞
0

∫ ∞
0

ρn(x1)ρn(−x2)(x1 + x2)dx1dx2.

The integral I2 can be handled similarly. Adding up these inequalities, we see that Φ(ρ∗) 6 σ so
ρ∗ is a minimizer.

�

Appendix C. Three auxiliary Lemmas

In this Appendix, we will prove three results used in the main text. We introduce notation
2 = [−1, 1]× T.

Lemma C.1. We have

min
Q⊂S,|Q|=s

∫
2

|x|χQdxdy =
s2

8π

and the minimum is achieved on Qmin = [−s/4π, s/4π]× T.

Proof. The result follows immediately from the structure of the weight |x| against which χQ is
being integrated. �

Recall the kernel K(z, ξ) which was introduced in (20).

Lemma C.2. Let L > 2. If A+
1 ⊂ {|x− L| < 1} and A−1 ⊂ {|x+ L| < 1}, then∫

A+
1

∫
A−1

|K(z, ξ)|dzdξ .
∫
A+

1 ∪A
−
1

||x| − L|dxdy. (33)

Proof. The estimate (22) implies that∫
A+

1

∫
A−1

|K(z, ξ)|dzdξ . |A+
1 | · |A

−
1 | 6 0.5(|A+

1 |
2 + |A−1 |

2).

Now, to estimate |A±1 |2, we only need to change variables as x ± L = x̂ in the right-hand side of
(33) and notice that

|B|2 .
∫
S
|x̂|χBdẑ

for every measurable set B ⊂ {|x̂| < 1} by Lemma C.1. �
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Lemma C.3. If A is a measurable subset of 2, then∫
A

∫
A
| log |z − ξ||dzdξ .

∫
2

|x|χAdxdy. (34)

Proof. Notice that ∫
A

∫
A
| log |z − ξ||dzdξ 6

∫
2

∫
2

| log |z − ξ||dzdξ <∞ .

Therefore, by Lemma C.1 applied with s = |A|, we can always assume that |A| = ε < ε0 where
ε0 is sufficiently small. Consider Ej = A ∩ {jε < x < (j + 1)ε} and let δj = |Ej |, Ij = δj/ε, j =

−N, . . . , N,N = [ε−1]. We have
∑N

j=−N Ij = 1.

In (34), ∫
2

|x|χAdxdy ∼ ε2
N∑

j=−N
|j|Ij + ε2. (35)

Indeed, if j 6= 0,−1, then ∫
Ej

|x|χAdxdy ∼ ε|j|δj = ε2|j|Ij .

For j = 0 and j = −1, we have ∫
Ej

|x|χAdxdy 6 εδj 6 ε2

and ∫
2

|x|χAdxdy . ε2
N∑

j=−N
|j|Ij + ε2

follows. To prove a lower bound, notice that δ0 + δ−1 > ε/2 implies∫
E0∪E−1

|x|χAdxdy & ε2

by applying Lemma C.1 with s = δ0 + δ−1. If δ0 + δ−1 < ε/2, then |A\(E0 ∪ E−1)| > ε/2 and∫
|x|>ε
|x|χAdxdy & ε2.

Therefore, we have ∫
2

|x|χAdxdy & ε2 (36)

either way. Moreover, from the definition of δj and Ij , we get∫
2

|x|χAdxdy >
∑

j 6={−1,0}

∫
2

|x|χEjdx & ε
2
∑

j 6={−1,0}

|j|Ij . (37)

Taking the sum of (36) and (37), we get∫
2

|x|χAdxdy &
∑

j 6={−1,0}

|j|Ij + ε2 & ε2
N∑

j=−N
|j|Ij + ε2 (38)

since ε2 > ε2I0(−1).

Define the potential U(z) =
∫
A | log |z − ξ||dξ. For fixed {δl}, l = −N, . . . , N , we will estimate

maxEj U(z) for each j = −N, . . . , N . Let

max
Ej

U(z) = U(z∗j ).
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We can bound the right hand side above by decomposing U(z∗j ) as

U(z∗j ) 6M1 +M2 +M3.

The term M1 comes from considering the ε-ball around the point of maximum z∗j . It satisfies

M1 .
∫
|z|<ε
| log |z||dz ∼ ε2| log ε|. (39)

The term M2 comes from integrating over (Ej−1 ∪ Ej ∪ Ej+1)\Bε(z∗j ). To estimate it, we notice

the following. Consider, e.g, Ej−1. If δj−1 = |Ej−1| < ε2, then∫
Ej−1

| log |ξ − z∗j ||dξ . ε2| log ε| ,

because the maximizer of the integral in the left-hand side belongs to a ball |ξ − z∗j | . ε. On the

other hand, if |Ej−1| > ε2, then∫
Ej−1

| log |ξ − z∗j ||dξ . ε
∫ Ij−1

0
| log y|dy . εIj−1(| log Ij−1|+ 1) ,

because the maximizer of the integral belongs to the rectangle of hight ∼ Ij−1. Arguing similarly
for Ej and Ej+1, we get

M2 . ε(ε| log ε|+ Ij | log Ij |+ Ij−1| log Ij−1|+ Ij+1| log Ij+1|+ Ij−1 + Ij + Ij+1) . ε , (40)

where the last bound follows from x| log x| . 1 when x < 1. Finally, the term M3 covers integration
over the remaining Ek. It will satisfy

M3 .
∑

k:|k−j|>1,|k|6N

(
ε2| log(ε|k − j|)|+ ε

∫ Ik

0
| log(y + ε|k − j|)|dy

)
.

Indeed,

| log |z∗j − ξ|| . | log(|k − j|ε+ |y∗j − ξ2|)|, ξ ∈ Ek ,
where z∗j = (x∗j , y

∗
j ), ξ = (ξ1, ξ2). Then, we have an upper bound for the following variational

problem

sup
Υk⊆{kε<x<(k+1)ε},|Υk|=|Ek|

∫
Υk

| log(|k− j|ε+ |ξ2|)|dξ . ε2| log(ε|k− j|)|+ ε

∫ Ik

0
| log(y+ ε|k− j|)|dy ,

(41)
where the first term comes from the case when |Ek| 6 ε2, the second one comes from the other case
and the observation that the optimal configuration Υ∗k is a rectangle of the size ∼ Ik.

Integration gives ∫
log ydy = y log y − y + C

and so ∫ Ik

0
| log(y + ε|k − j|)|dy 6

∫ Ik

0
| log y|dy . Ik| log Ik|+ Ik.

The first term in the right-hand side of (41) gives

ε2
∑

k:|k−j|>1,|k|6N

| log(ε|k − j|)| . ε2
∑

1<|l|62N

| log(ε|l|)| . ε
∫
|x|<1

| log |x||dx . ε
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by making comparison to an integral. Finally, summing over k, we have

M3 . ε+ ε
N∑

k=−N
Ik| log Ik|.

Taking into account (39),(40), we get

max
z∈A

U(z) . ε+ ε
N∑

k=−N
Ik| log Ik|.

Then, ∫
A

∫
A
| log |z − ξ||dzdξ . ε2 + ε2

N∑
k=−N

Ik| log Ik|.

The trivial estimate

|u log u| 6 C(γ)uγ , 0 < γ < 1, 0 < u < 1

implies

∑
j 6=0

Ij | log Ij | .
∑
j 6=0

Iγj =
∑
j 6=0

(jIj)
γj−γ 6

∑
j 6=0

|j|Ij

1/p∑
j 6=0

|j|−γp′
1/p′

.

∑
j 6=0

|j|Ij

γ

by Hölder inequality with p = 1/γ and γ > 0.5. We have

ε2I0| log I0|+ ε2

∑
j 6=0

|j|Ij

γ

. ε2 + ε2
∑
j 6=0

|j|Ij

and application of (35) finishes the proof of Lemma C.3. �
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