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Abstract We consider applications of the theory of Multiple Orthogonal Polyno-
mials (MOPs) to the spectral theory of difference self-adjoint operators on rooted
trees.We use the coefficients of the recurrence relations for the Angelesco systems of
MOPs to generate potentials for general class of the corresponding operators. Here
we present asymptotic behavior of the recurrence coefficients for the ray’s sequences
regime.

1 Introduction

We present the results that recently appeared in [1, 2], where it was shown that the
theory of Multiple Orthogonal Polynomials (MOPs) is related to the spectral theory
of difference self-adjoint operators on rooted trees (like the theory of orthogonal
polynomials is related to the spectral theory of Jacobi matrices). We start this intro-
duction by recalling the necessary definitions andmain relations between self-adjoint
Jacobi matrices on trees and MOPs. Then we state the main results of the paper.

In what follows, we let N := {1, 2, . . .} and Z≥0 := {0, 1, 2 . . . , }. We write
|�n| := n1 + · · · + nd for �n = (n1, . . . , nd) ∈ Z

d
≥0, and let �e1 = (1, . . . , 0), . . . , �ed =

(0, . . . , 1), �1 = (1, . . . , 1) = �e1 + · · · + �ed .
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Fig. 1 Three generations of
T (for d = 2)

(1, 1) ∼ O = Y(p)

(2, 1) (1, 2) ∼ Y = O(ch),2

(3, 1) (2, 2) (2, 2) ∼ Y(ch),1 (1, 3) ∼ Y(ch),2

1.1 Definition of Jacobi Operators

Denote by T an infinite d-homogeneous rooted tree (Cayley tree), and by V the
set of its vertices with O being the root. By untwining increasing paths on N

d that
originate at �1 onto T with �1 corresponding to O , see Fig. 1 (for d = 2), we can
define the projection � : V → N

d . Under this projection, the increasing non-self-
intersecting paths onN

d are in one-to-one correspondence with non-self-intersecting
paths on T . Every vertex Y ∈ V,Y �= O , has the unique parent, which we denote by
Y(p). This allows us to define the following index function:

ı : V → {1, . . . , d}, Y �→ ıY such that �(Y ) = �(Y(p)) + �eıY , (1)

and therefore to distinguish the “older” and the “younger” child of each vertex Y ∈ V
by denoting Z = Y(ch),ıZ when Y = Z(p), see Fig. 1 (for d = 2).

Let P := {a�n,i , b�n,i }�n∈Zd
≥0, i=1,...,d be a collection of real parameters such that

⎧
⎨

⎩

0 < a�n,i for all �n ∈ N
d , i ∈ {1, . . . , d},

sup
�n∈Nd ,i∈{1,...,d}

a�n,i < ∞ , sup
�n∈Zd

≥0,i∈{1,...,d}
|b�n,i | < ∞. (2)

For a function f onV , we denote by fY its value at a vertex Y ∈ V . GivenP satisfying
(2) and �κ ∈ R

d with |�κ| = 1, we define the corresponding Jacobi operator, say J�κ,
by

{
(J�κ f )Y := a1/2�(Y(p)),ıY

fY(p) + b�(Y(p)),ıY fY + ∑d
i=1 a

1/2
�(Y ),i fY(ch),i , Y �= O,

(J�κ f )O := ∑d
i=1 κi b�1−�ei ,i fO + ∑d

i=1 a
1/2
�1,i fO(ch),i , Y = O.

(3)

Thus defined operator J�κ is bounded and self-adjoint on �2(V).
During the last decade there is an increasing interest to the spectral theory of the

self-adjoint operators on the graph-trees.
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1.2 Multiple Orthogonal Polynomials and Recurrence
Relations

The authors started in [1] to investigate some properties of operator J�κ, defined by
(3), (2), where potential P := {a�n,i , b�n,i } is defined by means of the coefficients of
recurrence relations ofMOPs.We recall themain definitions regarding these notions.

Let �μ := (μ1, . . . ,μd), d ∈ N be a vector of positive finite Borel measures
defined on R and given a multi-index �n ∈ Z

d
≥0, |�n| ≥ 1. Type I MOPs

{
A( j)

�n
}d
j=1

are polynomial coefficients of the linear form

Q �n(x) :=
d∑

j=1

A( j)
�n (x)dμ j (x), deg

(
A(i)

�n
)

< ni , i ∈ {1, . . . , d}

defined by requiring that

∫

xl Q �n(x) = 0, l < |�n| − 1, A(i)
�1−�ei ≡ 0. (4)

Type II MOPs P�n(x), deg
(
P�n

) ≤ |�n|, are defined by

∫

P�n(x)xl dμi (x) = 0, l < ni , i ∈ {1, . . . , d}. (5)

The polynomials of the first and second type always exist. If P�n is defined uniquely
up to a constant, then the multi-index �n is called normal and we choose the normal-
ization for the polynomial P�n to be monic: P�n(x) = x |�n| + · · · . It turns out that �n
is normal if and only if the following linear form Q �n(x) is defined uniquely up to
multiplication by a constant. In that case, we will normalize the polynomials of the
first type by ∫

R

x |�n|−1Q �n(x) = 1 . (6)

We shall say that vector �μ is perfect if all the multi-indices �n ∈ Z
d+ are normal.

It is known that for the perfect �μ the polynomials P�n(x) and the forms Q �n(s)
satisfy the following Nearest-Neighbor Recurrence Relations (NNRRs):

{
zP�n(z) = P�n+�e j (z) + b�n, j P�n(z) + ∑d

i=1 a�n,i P�n−�ei (z),
zQ �n(z) = Q �n−�e j (z) + b�n−�e j , j Q �n(z) + ∑d

i=1 a�n,i Q �n+�ei (z),
for each j ∈ {1, . . . , d}. (7)

Here the coefficients {a�n,i , b�n,i } have representations

a�n, j =
∫

R
P�n xn j dμ j

∫

R
P�n−�e j xn j−1dμ j

, b�n−�e j , j =
∫

R

x |�n|Q �n −
∫

R

x |�n|−1Q �n−�e j . (8)
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If d > 1, unlike in one-dimensional case, we can not prescribe {a�n, j } and {b�n, j }
arbitrarily. In fact, coefficients in (7) satisfy the so-called “consistency conditions”
which is a system of nonlinear difference equations. This discrete integrable system
and associated Lax pair were studied before.

2 Angelesco Systems and Main Results

2.1 Angelesco Systems and Ray’s Limits of NNRR
Coefficients

We recall that �μ is an Angelesco system of measures if

suppμ j = � j := [α j ,β j ] : �i ∩ � j = ∅, i �= j, i, j = 1, . . . , d , (9)

i.e. supports {�i } is the system of d closed segments separated by d − 1 nonempty
open intervals.

TheAngelesco systems are important general class of the perfect systems.1 MOPs
with respect to this system were studied by Angelesco in 1919. Perfectness of �μ
guaranties that the correspondingMOPS satisfy to NNRRs (7). It is not so difficult to
see2 that the corresponding NNRRs coefficients P := {a�n,i , b�n,i }�n∈Zd

≥0, i=1,...,d satisfy
conditions (2) (detailed proof see in [1]). Thus P generated by Angelesco systems
can be used as potentials for general class of bounded and self-adjoint on �2(V)

operators J�κ defined by (3).

Moreover, asymptotic behavior of the recurrence coefficients {a�n, j , b�n, j } for the
ray’s sequences regime, namely

N�c = {�n} : ni = ci |�n| + o
(�n)

, i ∈ {1, . . . , d}, | �c | :=
d∑

i=1

ci = 1 ,

(10)
was studied in [1] for �c = (c1, . . . , cd) ∈ (0, 1)d . We have

Theorem 1 ([1, Theorem 3.5]) Let �μ be Angelesco system (9), such that for each
i ∈ {1, . . . , d} the measure μi is absolutely continuous with respect to the Lebesgue
measure on �i and that the density wi := dμi (x)/dx extends to a holomorphic and
non-vanishing function in some neighborhood of �i .

Then the ray’s limits (10) of coefficients
{
a�n,i , b�n,i

}
from (7) exist for any �c ∈

(0, 1)d .
lim
N�c

a�n,i = A�c,i and lim
N�c

b�n,i = B�c,i , i ∈ {1, . . . , d}, (11)

1 Perfectness of Angelesco system easily follows directly from (5).
2 In fact the condition 0 < a�n,i for all �n ∈ N

d , i ∈ {1, . . . , d} follows directly from (8).
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We remark that expressions for limits A�c,i , B�c,i were obtained in [1] as well and
we recall them in Sect. 2. The validity of Theorem1 was deduced in [1] from the
obtained there results on the strong asymptotics of the AngelescoMOPs for the ray’s
regimes with �c ∈ (0, 1)d .

2.2 Main Results

Here we restrict ourselves by the case d = 2. For this case in [2] we extend the
results of [1] on the strong asymptotics of the Angelesco MOPs for the ray’s regimes
with �c ∈ [0, 1]2. From the obtained in [2] results on the strong asymptotics of the
Angelesco MOPs we deduce for the ray’s regimes with �c ∈ [0, 1]2 the following
extension of Theorem1.

Theorem 2 Let �μ be Angelesco system (9) for d = 2, satisfying conditions of
Theorem1.

Then the ray’s limits

lim
Nc

a�n,i = Ac,i and lim
Nc

b�n,i = Bc,i (12)

exist for any c ∈ [0, 1] and i ∈ {1, 2}, whereNc is any subsequence of Z2≥0 such that
n1/|�n| → c as |�n| → ∞ along this subsequence.

Of course this very technical study in [2] of the Angelesco MOP’s asymptotics
in the boundary layers of multi-indices �n ∈ Z

2≥0 should have a serious motivation.
Indeed, it is a spectral theory of Jacobi-matrix operators (3) defined on the graph-tree
from Fig. 1.

Now, letP := {a�n,i , b�n,i }�n∈Z2≥0, i=1,2 be a collection satisfying (2) for d = 2 and the
constants {Ac,1, Ac,2, Bc,1, Bc,2}c∈[0,1] are the limits of the NNRRs coefficients for
an AngelescoMOPs defined on intervals (�1,�2). We say thatP ∈ PAng(�1,�2) if
P satisfies (12). In accordance with Theorem2 class PAng(�1,�2) is not empty. For
the bounded and self-adjoint on �2(V) operators J�κ defined by (3) with potentials
from this class we have the following characterization of the essential spectrum.

Theorem 3 Let J�κ be the Jacobi operator defined by (3) corresponding to a collec-
tion of parameters P ∈ PAng(�1,�2), then σess(J�κ) = �1 ∪ �2.

2.3 Expressions for the Ray’s Limits

In this subsection we define values of the limits standing at the right-hand sides in
(12). For c ∈ (0, 1) these limits were obtained and proven in [1, Theorem 3.5]. To
define these limits for c ∈ {0, 1} is rather easy because on the marginal rays stand
usual orthogonal polynomials, see (5). However to prove these limits when one
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approaches to the marginal ray from the inside of the lattice is the main technical
subject of this paper.

Let �1 = [α1,β1] and �2 = [α2,β2] be two intervals on the real line such that
β1 < α2. Denote by ω1 and ω2 the arcsine distributions on �1 and �2, respectively.
Then it is known that

E(ωi ,ωi ) ≤ E(ν, ν), E(μ, ν) := −
∫

log |x − y| dμ(x) dν(y),

for any probability Borel ν measure on �i . The logarithmic potentials of these
measures satisfy

�i − V ωi ≡ 0 on �i ,

for some constants �1 and �2, where V ν(z) := −
∫

log |z − x | dν(x). Now, given

c ∈ (0, 1), define

Mc := {
(ν1, ν2) : supp(νi ) ⊆ �i , ‖ν1‖ = c, ‖ν2‖ = 1 − c

}
. (13)

Then, as it was proven by A. Gonchar and E. Rakhmanov, there exists the unique
pair of measures (ωc,1,ωc,2) ∈ Mc such that

I (ωc,1,ωc,2) ≤ I (ν1, ν2), I (ν1, ν2) := 2E(ν1, ν1) + 2E(ν2, ν2) + E(ν1, ν2) + E(ν2, ν1),
(14)

for all pairs (ν1, ν2) ∈ Mc. It is also known that there exist constants �c,i , i ∈ {1, 2},
such that {

�c,1 − V 2ωc,1+ωc,2 ≡ 0 on supp(ωc,1),

�c,2 − V ωc,1+2ωc,2 ≡ 0 on supp(ωc,2).
(15)

It is further known from A. Gonchar and E. Rakhmanov that supp(ωc,1) =
[α1,βc,1] =: �c,1 and supp(ωc,2) = [αc,2,β2] =: �c,2. Thus the intervals�c,i depen-
dent on the parameter c.

LetRc, c ∈ (0, 1), be a 3-sheeted Riemann surface realized as follows: cut a copy
of C along �c,1 ∪ �c,2, which henceforth is denoted byR

(0)
c , the second copy of C

is cut along �c,1 and is denoted by R(1)
c , while the third copy is cut along �c,2 and

is denoted by R(2)
c . These copies are then glued to each other crosswise along the

corresponding cuts, see Fig. 2. It can be easily verified that thus constructed Riemann
surface has genus 0. We denote by π the natural projection fromRc toC and employ
the notation z for a generic point on Rc with π(z) = z as well as z(i) for a point
on R(i)

c with π(z(i)) = z. Since Rc has genus zero, one can arbitrarily prescribe
zero/pole divisors of rational functions onRc as long as the degree of the divisor is
zero. Clearly, a rational function with a given divisor is unique up to multiplication
by a constant.
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Fig. 2 SurfaceRc when
βc,1 = β1 and αc,2 = α2

α1 β1 α2 β2

R
(0)
c

R
(1)
c

R
(2)
c

Proposition 1 Let Rc, c ∈ (0, 1), be as above and χc(z) be the conformal map of
Rc onto C such that

χc
(
z(0)) = z + O

(
z−1) as z → ∞.

Further, let numbers Ac,1, Ac,2, Bc,1, Bc,2, c ∈ (0, 1), be defined by

χc
(
z(i)

) =: Bc,i + Ac,i z
−1 + O

(
z−2

)
as z → ∞, i ∈ {1, 2}. (16)

Finally, letwi (z) := √
(z − αi )(z − βi )be the branchof the correspondingalgebraic

function holomorphic outside of�i and normalized so thatwi (z)/z → 1 as z → ∞;
in that case

ϕi (z) := 1

2

(

z − βi + αi

2
+ wi (z)

)

(17)

is the conformal map ofC \ �i onto the complement of the disk of radius (βi − αi )/4
satisfying ϕi (z) = z + O(1) as z → ∞. Then it holds that

lim
c→0

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ac,2 = [
(β2 − α2)/4

]2 =: A0,2,

Bc,2 = (β2 + α2)/2 =: B0,2,

Ac,1 = 0 =: A0,1,

Bc,1 = B0,2 + ϕ2(α1) =: B0,1,

(18)

and analogous limits hold when c → 1. Moreover, all the constants Ac,1, Ac,2, Bc,1,

Bc,2 are continuous functions of the parameter c ∈ [0, 1].
It is worth to notice that the constants Ac,1 and Ac,2 are always positive. Indeed,

denote by α1,βc,1,αc,2,β2 the ramification points of Rc with natural projections
α1,βc,1,α2,βc,2, respectively. Then the symmetries ofRc andχc(z) yield thatχc(z)
is real and changes from −∞ to ∞ when z moves along the cycle

∞(0) → α1 → ∞(1) → βc,1 → αc,2 → ∞(2) → β2 → ∞(1)
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whose natural projection is the extended real line. Thus, χc(z) is increasing when
it moves past ∞(1) and ∞(2), which yields the claim (this argument also shows that
Bc,1 < Bc,2).
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