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Abstract: We collect several applications of a new version of the classical Szegö
formula for orthogonal polynomials. The applications are concerned with the spectral
theory of Krein strings, scattering theory for Dirac systems, and triangular factorizations
of positive Wiener-Hopf operators.

1 Introduction

Let µ be a probability measure on the unit circle T of the complex plane C, and let
{ϕn} be the family of orthonormal polynomials generated by µ. It is well-known that
ϕn satisfy recurrence relations

(1)
√

1− |an|2 · ϕ∗n+1 = ϕ∗n − zanϕn, ϕ0 = ϕ∗0 = 1, n ≥ 0,

where ϕ∗n(z) = znϕn(1/z̄) and {an} is a sequence of numbers in the unit disk D = {z ∈
C : |z| < 1} depending only on µ. Assuming µ has the form µ = w dm + µs for some
density w with respect to the Lebesgue measure m on T and a singular part µs, let us
introduce the function

(2) K(µ, z) = logP(µ, z)−P(logw, z), z ∈ D.

As usual, we denote by P the operator of harmonic extension to D:

P(µ, z) =

∫
T

1− |z|2

|1− ξ̄z|2
dµ(ξ).

We also set P(v, z) = P(v dm, z) for v ∈ L1(T). The classical Szegő formula can be
written in the following way:

(3) K(µ, 0) = −
∫
T

logw dm = − log
∏
n≥0

(1− |an|2).
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It turns out that one can find expression for K(µ, z) for all z ∈ D:

K(µ, z) = log

∞∏
n=1

1− |zfk(z)|2

1− |fk(z)|2
,

where fk are the Schur functions of µ, see [4]. More generally, the formula can be
extended to the case where µ is a spectral measure of a self-adjoint differential operator
and K(µ, z) is defined for z in the upper half-plane C+. This approach turns out to be
very fruitful: below we discuss several long standing problems that were solved by using
the new version of formula (3).

2 Krein strings

The Krein string equation has the form

−y′′(t, λ) = λρ(t)y(t, λ), t ∈ [0, L), λ ∈ C.

Here L > 0 is the length of the string, and ρ denotes its density which is supposed to
be an arbitrary σ-finite measure on the positive half-axis, R+ = [0,+∞). We do not
exclude “wild” cases where the absolutely continuous part ρac of ρ is zero. So, the piece
of string [0, x) has mass M(x) = ρ([0, x)) and M can be arbitrary positive non-decreasing
left-continuous function on R+. The string is called long if

L+ lim
x→L

M(x) =∞.

It is possible to associate a differential operator with each string [M,L]. Its main spectral
measure, defined in terms of Weyl function, is called the spectral measure of a string.
It turns out that the string is completely determined by its spectral measure. This
makes interesting the problem of translating various properties of the spectral measure
into the properties of the mass function M . The problem is usually very hard. It has
strong connection to the problem of determining properties of the sequence of recurrence
coefficients {an} in (1) from properties of the orthogonality measure µ on T. Note that
(3) implies that

logw ∈ L1(T) if and only if
∑
n≥0
|an|2 <∞.

This explains the reason to expect a possibility of describing Krein strings whose spectral
measures σ = v dx+ σs satisfy the following Szegő-type condition in the domain C \R+:

(4)

∫ ∞
0

log v(x)

(1 + x)
√
x
dx > −∞.

Note, however, that the point 0 is an inner point of the open unit disk D, while it
is a boundary point for the domain C \ R+. In particular, we cannot hope to use
a Szegő formula at 0 for measures on the boundary of C \ R+. Instead, we need to
generalize (3) to other points of D (therefore avoiding usage of properties of orthogonal
polinomials/solutions of Krein system related to the special value λ = 0 of the spectral
parameter) and then find its analogue for C \R+. In fact, the quantity in (4) is nothing
but K(σ,−1) for a properly defined entropy function K for C \ R+ and a normalized
measure σ. The idea to prove a formula for K(µ, z) for orthogonal polynomials on T
and then search for its variant for Krein strings looks very natural, but the real history
is somewhat opposite: such a formula was first established for Krein strings and then
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translated to the unit disk (where its proof is significantly easier). Here is the result for
Krein strings [1].

Theorem 1 Let [M,L] be a long string and let σ = v dx+ σs be the spectral measure of
[M,L]. Then σ satisfies (4) if and only if

√
ρac /∈ L1(R+) and

(5)
+∞∑
n=0

(
LnMn − 4

)
<∞, Ln = tn+2 − tn, Mn = M(tn+2)−M(tn),

where tn = min
{
x ≥ 0 : n =

∫ t
0

√
ρac(t) dt

}
.

It is interesting to note that quantities Ln, Mn have physical meaning: Ln is the
length of a piece of the string which is covered by a traveling wave during the period
[n, n+2) of time, Mn is the mass of this piece. We have MnLn = 4 for any homogeneous
string.

3 Scattering theory for Dirac operators

The one-dimensional Dirac operator on R+ is defined by

(6) DQ : X 7→
(
0 −1
1 0

)
X ′ +QX, Q =

( q1 q2
q2 −q1

)
on a dense subset of Lebesgue space L2(R+,C2) of squared summable functions on R+

with values in C2. This is one of the simplest self-adjoint differential operators, and
many of analytic tools can be applied to investigation of its properties. As an example,
let us consider the problem of the existence of wave operators

(7) W±(DQ,D0) = lim
t→∓∞

eitDQe−itD0 .

Wave operators are basic objects of the scattering theory, their existence (that is, ex-
istence of the limits above in the strong operator topology) and completeness (that is,
unitarity of W± as operators between the absolutely continuous subspaces of D0, DQ)
are the main questions of interest.

It is known that the limit in (7) for potentials Q with entries in Lp(R+), 1 ≤ p ≤ 2,
can be expressed in terms of the Szegő function of the spectral measure µ of DQ. The
Szegő function of a Poisson summable measure µ = wdx + µs on the real line R such
that

(8) K(µ, i) = log

(
1

π

∫
R

dµ(x)

1 + x2

)
− 1

π

∫
R

logw(x)

1 + x2
dx < +∞

is the outer function in C+ satisfying |Dµ|2 = w on R. Let χE is the indicator function of
a set of full Lebesgue measure on R such that µs(E) = 0. Denote byFQ, F0 the Fourier
transforms generated by generalized eigensolutions of DQ, D0, correspondingly. We have

(9) W−(DQ,D0) = γF−1Q χED
−1
µ F0, W+(DQ,D0) = γ̄F−1Q χED

−1
µ F0

for every Q with entries in Lp(R+), 1 ≤ p ≤ 2. This formula, well-known for specialists
in scattering theory, immediately rises two questions:

(a) does it hold for any Dirac operator with spectral measure such thatK(µ, i) <∞?
(b) how to describe potentials Q that generate measures µ such that K(µ, i) <∞?
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Both questions were open for a long time and got their answer only recently. To simplify
the presentation, we assume q1 = 0 in theorems below, while the general case can be
covered as well.

Theorem 2 Let q be a real-valued function on R+ such that q ∈ L1[0, r] for every r > 0,

and let Q =
(

0 q
q 0

)
. Assume that the spectral measure µ of DQ satisfy (8). Then the

wave operators W±(DQ,D0) exist, complete, and are given by (9).

Theorem 3 For n ≥ 0, define the functions gn(t) = exp
(

2
∫ t
n q(s) ds

)
, t ∈ [n, n + 2).

The spectral measure of DQ satisfies (8) if and only if

(10)
∑
n≥0

(∫ n+2

n
gn(t) dt ·

∫ n+2

n

dt

gn(t)
− 4

)
<∞.

Both theorems were obtained [3] by systematically using the entropy function K(µ, z).
In fact, we get a family of such functions K(µr, z), r ≥ 0 if we denote by µr the spectral
measure of the operator DQ on [r,+∞). We would like to mention that K(µr, z) satisfies
a nonlinear differential equation as a function in r ∈ R+.

4 Triangular factorization of Wiener-Hopf operators

Another classical problem that can be solved by using the entropy function K(µ, z)
concerns triangular factorization of Wiener-Hopf operators. In the abstract setting, given
a bounded invertible positive operator T on a separable Hilbert space H, one may ask
about existence of a bounded invertible operator A that is upper triangular with respect
to a given chain of subspaces L and factorizes T into the product T = A∗A. The words
“upper triangular with respect to L” simply mean that AE ⊂ E for every E ∈ L.
The theory of triangular factorization of positive operators was developed by Gohberg
and Krein in 60’s. It was fairly nontrivial problem if there are nonfactorable bounded
invertible positive oprators. The affirmative answer to this question was given by Larson
in 1985. He showed that every uncountable chain L gives rise to a nonfactorable operator.
The approach of Larson is highly nonconstructive, and it is desirable to find a concrete
example of a nonfactorable operator to understood better this phenomenon. The simplest
uncountable chain one can imagine is the chain of subspaces {L2[0, r]}r>0 in L2(R+). It
turns out that the problem of triangular factorization of positive bounded Wiener-Hopf
operators

Wψ : f 7→
∫
R+

ψ(t− s)f(s) ds, f ∈ L2(R+)

with respect to this chain can be reformulated in terms of the spectral theory of Krein
strings and more general objects - canonical Hamiltonian systems. This fact was observed
by L.Sakhnovich who posed this problem for Wiener-Hopf operators in 1994. More
precisely, a real distribution ψ generates factorable with respect to the chain {L2[0, r]}r>0

bounded positive operatorWψ if and only if the Krein string corresponding to the spectral

measure σ = ψ̌(
√
x) dx on R has absolutely continuous mass distribution M . Here ψ̌

is the inverse Fourier transform of ψ. Since Wψ is bounded, positive and invertible, we

have c1 ≤ ψ̌(x) ≤ c2 for almost all x ∈ R and some constants c1, c2. So, the spectral
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measure σ has a density separated from zero and infinity. Asymptotic analysis of the
entropy function K(σ,−x) as x→ +∞ then gives us information about quantities∑

n≥0
(Mn,εLn,ε − 4ε2),

where, as before, ts = min
{
x ≥ 0 : s =

∫ t
0

√
ρac(t) dt

}
, and we set Ln,ε = t(n+2)ε − tnε,

Mn,ε = M(t(n+2)ε) −M(tnε). Analysing these quantities when ε tends to zero, we get
the following conclusion [2].

Theorem 4 Every bounded invertible positive Wiener-Hopf operator Wψ on L2(R+)
admits triangular factorization with respect to the chain {L2[0, r]}r>0.

The reader can find more information in papers listed below.
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