
IRP SAFAIS 2019

De Branges canonical systems with finite
logarithmic integral

Roman V. Bessonov and Sergey A. Denisov

denisov@wisc.edu

SD was supported by grant RScF-19-71-30004.

Abstract: Krein – de Branges spectral theory provides a correspondence between
canonical Hamiltonian systems and measures on the real line with finite Poisson integral.
We revisit this area by giving a description of canonical Hamiltonian systems whose
spectral measures have logarithmic integral converging over the real line. Our result can
be viewed as a spectral version of the classical Szegő theorem in the theory of polynomials
orthogonal on the unit circle. It extends Krein–Wiener completeness theorem, a key fact
in the prediction of stationary Gaussian processes.

1 Main results

In this note, which is based on two publications [1, 2] and contains the formulation of two
main results from aforementioned papers, we revisit the spectral theory of de Branges’
canonical system, which is defined by the system of differential equations of the form

(1) J d
dtM(t, z) = zH(t)M(t, z), M(0, z) = I2×2 = ( 1 0

0 1 ) , J =
(
0 −1
1 0

)
, t ≥ 0, z ∈ C .

The 2 × 2 matrix-function H on R+ = [0,+∞) is called the Hamiltonian of canonical

system (1). Our assumptions of H are:

(a) H(t) ≥ 0 and traceH(t) > 0 for Lebesgue almost every t ∈ R+,
(b) the entries of H are real measurable functions absolutely summable on compact

subsets of R+.

In 1960’s, L. de Branges developed his theory of Hilbert spaces of entire functions. One
result in this area is the theorem that establishes a bijection between Hamiltonians H in
(1) and nonconstant analytic functions in C+ = {z ∈ C : Im z > 0} with nonnegative
imaginary part. Every such function is generated by a nonnegative measure on the real
line. Below, we make a another step in de Branges’ theory by identifying Hamiltonians
that correspond to measures in the Szegő class, i.e., the measures whose logarithmic
integral converges over R.

We start with some definitions. A Hamiltonian H on R+ is called singular if∫ +∞

0
traceH(t) dt = +∞.

Two Hamiltonians H1, H2 on R+ are called equivalent if there exists an increasing
absolutely continuous function η defined on R+ such that η(0) = 0, limt→+∞ η(t) = +∞,
and H2(t) = η′(t)H1(η(t)) for Lebesgue almost every t ∈ R+. Clearly, η(t) rescales the
variable t. We say that Hamiltonian H is trivial if there is a non-negative matrix A with
rankA = 1, such that H is equivalent to A, i.e., H(t) = η′(t)A for a.e. t ∈ R+, where
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η is an increasing absolutely continuous function on R+, which satisfies η(0) = 0 and
limt→+∞ η(t) = +∞. If Hamiltonian is not trivial, it is called nontrivial.

We recall that function m belongs to the Herglotz-Nevanlinna class N (C+) if it is
analytic in C+ and Imm(z) ≥ 0 for z ∈ C+. It is well-known, that m ∈ N (C+) if and
only if it admits the following integral representation

(2) m(z) =
1

π

∫
R

(
1

x− z
− x

x2 + 1

)
dµ(x) + bz + a, z ∈ C+,

where b ≥ 0, a ∈ R, and µ is a Radon measure on R, which satisfies

(3)

∫
R

dµ

1 + x2
<∞.

Those measures on R that satisfy (3) are called Poisson-finite. The class N (C+) appears
naturally in the theory of canonical Hamiltonian systems. Let H be a nontrivial and sin-
gular Hamiltonian. Given condition (b) on H, there exists unique matrix-valued function
M that solves (1). Denote by Θ±, Φ± its entries so that

(4) M(t, z) = (Θ(t, z),Φ(t, z)) =

(
Θ+(t, z) Φ+(t, z)
Θ−(t, z) Φ−(t, z)

)
.

Fix a parameter ω ∈ R ∪ {∞}. The Titchmarsh-Weyl function of H is defined by

(5) m(z) = lim
t→+∞

ωΦ+(t, z) + Φ−(t, z)

ωΘ+(t, z) + Θ−(t, z)
, z ∈ C+,

where the fraction ∞c1+c2
∞c3+c4 for non-zero numbers c1, c3 is interpreted as c1/c3. In

Titchmarsh-Weyl’s theory for canonical systems, it is proved that the expression un-
der the limit in (5) is well-defined for large t > 0 (i.e., the denominator is non-zero) for
every given singular nontrivial Hamiltonian H. Moreover, the limit m(z) exists, does
not depend on ω, m is analytic in z ∈ C+ and has non-negative imaginary part, i.e.,
m ∈ N (C+). In particular, m admits representation (2). The measure µ in (2) is called
the spectral measure for the Hamiltonian H. It is obvious that equivalent Hamiltonians
have equal Titchmarsh-Weyl functions.

Now we can state the result of de Branges that establishes a bijection between Hamil-
tonians and Herglotz-Nevanlinna functions.

Theorem 1 (de Branges) For every nonconstant function m ∈ N (C+), there exists a
singular nontrivial Hamiltonian H on R+ such that m is the Titchmarsh-Weyl function
(5) for H. Moreover, any two singular nontrivial Hamiltonians H1, H2 on R+ generated
by m are equivalent.

For trivial Hamiltonians, function m is a real constant. In fact, in that case, one can
solve (1) explicitly and this calculation shows that m(z) = const ∈ R∪∞. For example,
H = ( 1 0

0 0 ) gives

(6) Θ+ = 1, Θ− = −zt, Φ+ = 0, Φ− = 1,

so m = 0. Similarly, if H = ( 0 0
0 1 ), then Θ+ = 1,Θ− = 0,Φ+ = zt,Φ− = 0 and we let

m =∞.

Given a Poisson-finite measure µ on R, we will denote by w the density of µ with
respect to the Lebesgue measure dx on R, and by µs the singular part of µ, so that
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µ = w dx + µs. Our goal is to characterize singular nontrivial Hamiltonians whose
spectral measures have finite logarithmic integral, i.e., the integral∫

R

logw(x)

1 + x2
dx

converges. The trivial bound logw ≤ w shows that logarithmic integral of a Poisson-
finite measure can diverge only to −∞. It will be convenient to call the set of all measures
with finite logarithmic integral the Szegő class Sz(R), i.e.,

Sz(R) =
{
µ :

∫
R

dµ(x)

1 + x2
+

∫
R

| logw(x)|
1 + x2

dx < +∞
}
.

If m ∈ N (C+) and measure µ in (2) is in Szegő class, we can define

(7) Km = log Imm(i)− 1

π

∫
R

logw(x)

1 + x2
dx = log

(
b+

1

π

∫
R

dµ

1 + x2

)
− 1

π

∫
R

logw(x)

1 + x2
dx .

One can use b ≥ 0 and Jensen’s inequality to show that Km ≥ 0. Notice that Km = 0 if

and only if m is a constant with positive imaginary part.

Next, we introduce the class of Hamiltonians that characterizes measures in Szegő
class. If H is such that

√
detH /∈ L1(R+), define

(8) K̃(H) =
∞∑
n=0

(
det

∫ ηn+2

ηn

H(t)dt− 4

)
, ηn = min

{
t ≥ 0 :

∫ t

0

√
detH(s) ds = n

}
.

Since the entries of H are locally summable functions, the function t 7→
√

detH(t) is
also locally summable on R+ and {ηn} make sense. One can check the following bound:

det

∫ ηn+2

ηn

H(t) dt ≥
(∫ ηn+2

ηn

√
detH(t) dt

)2

= 4, n ≥ 0 .

This inequality shows that the series in (8) contains only non-negative terms and hence

its sum K̃(H) ∈ R+∪{+∞} is well-defined but could be +∞, in general. Actually, K̃(H)
can be rewritten in the form reminiscent of matrix A2 Muckenhoupt condition. Roughly

speaking, K̃(H) measures how fast the entries of H oscillate. In fact, we have K̃(H) = 0
if and only if the Hamiltonian H is equivalent to a constant positive matrix. Notice that

if the Hamiltonian is trivial then its determinant is zero and K̃ is undefined. Define the
class H of Hamiltonians by

H =
{

singular nontrivial H :
√

detH /∈ L1(R+), K̃(H) < +∞
}
.

Here is our main result:

Theorem 2 The spectral measure of a singular nontrivial Hamiltonian H on R+ belongs
to the Szegő class Sz(R) if and only if H ∈ H. Moreover, we have

(9) c1Km ≤ K̃(H) ≤ c2Kmec2Km ,

for some absolute positive constants c1, c2.

The bound (9) is essentially sharp up to numerical values of c1 and c2. For H such

that K̃(H) ≤ 1, (9) gives Km ∼ K̃(H). Moreover, we can present two examples for both

of which K̃(H) > 1. In the first example, we have Km ∼ log(1+L) and K̃(H) ∼ L, where
L is arbitrarily large parameter. This shows that the exponent in the right hand side of
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(9) can not be dropped. In the second example, we have Km ∼ L and K̃(H) ∼ L, where
L is again arbitrarily large parameter. Thus, the left bound in (9) can not be improved.

Diagonal canonical Hamiltonian systems are related to the equation of a vibrating
string:

(10) − d

dM(t)

d

dt

(
y(t, z)

)
= zy(t, z), t ∈ [0, L), z ∈ C.

Here 0 < L ≤ +∞ is the length of the string, M : (−∞, L) → R+ is an arbitrary non-
decreasing and right-continuous function (mass distribution) that satisfies M(t) = 0 for
t < 0. If M is smooth and strictly increasing on R+, then equation (10) takes the form
−y′′ = zM ′y.

We consider those L and M that satisfy the following conditions:

(11) L+ lim
t→L

M(t) =∞ and lim
t→L

M(t) > 0 ,

where the last bound means that M is not identically equal to zero. If (11) holds, we
say that M and L form [M,L] pair. To every [M,L] pair one can relate a string and
Weyl-Titchmarsh function q with spectral measure σ supported on the positive half-axis
R+. Theorem 2 can be applied to Krein strings as follows.

Theorem 3 Let [M,L] satisfy (11) and σ = v dx + σs be the spectral measure of the

corresponding string. Then, we have
∫∞
0

log v(x)
(1+x)

√
x
dx > −∞ if and only if

√
M ′ /∈ L1(R+)

and

(12) K̃[M,L] =

+∞∑
n=0

(
(tn+2 − tn)(M(tn+2)−M(tn))− 4

)
<∞,

where tn = min
{
t ≥ 0 : n =

∫ t
0

√
M ′(s) ds

}
.

Condition (11) ensures that the string [M,L] has a unique spectral measure and it
does not restrict the generality of Theorem 3: if (11) is violated, then either M = 0 and∫∞
0

log v(x)
(1+x)

√
x
dx = −∞.

Our main result has applications to scattering theory of Dirac and wave equations.
It provides the necessary framework to prove existence of wave/modified wave operators
under optimal assumptions on the decay of coefficients. See, e.g., [3].
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