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Abstract. We consider weighted operators acting on LppRdq and show that they depend continuously
on the weight w P AppRdq in the operator topology. Then, we use this result to estimate Lp

wpTq norm
of polynomials orthogonal on the unit circle when the weight w belongs to Muckenhoupt class A2pTq

and p ą 2. The asymptotics of the polynomial entropy is obtained as an application.
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1. Introduction

Suppose µ is a probability measure on the unit circle T and tϕnpz, µqu is the sequence of polynomials
orthonormal with respect to µ, i.e.

degϕn “ n, kn
def
“ coeffnϕn ą 0, pϕn, ϕkqL2

µpTq “ δn,k, (1.1)

where δn,k is the Kronecker symbol and coeffjQ denotes the coefficient at the power zj in polynomial Q.
One version of Steklov’s problem in the theory of orthogonal polynomials can be phrased as follows: given
a Banach space X with norm }¨}X , what regularity of µ is needed to have supnPN }ϕnpz, µq}X ă 8? This
problem has a long history. It goes back to Steklov’s conjecture which asked to prove that the sequence
tpnpx, ρqu is bounded for every x P pa, bq, where tpnu are polynomials orthonormal on the interval ra, bs
with respect to a weight ρ that satisfies ρpxq > c ą 0, x P ra, bs. The negative answer to this question was
given by Rakhmanov [26, 27] and the sharp estimates on supremum norm were obtained only recently
in [2]. If X “ L2

µpTq, we have }ϕn}X “ 1 by definition. In this paper, we will be concerned with the
case when X “ LpµpTq, p ą 2 and absolutely continuous µ is given by its weight, i.e., dµ “ w

2πdθ. It is
the natural choice since the space LpwpTq interpolates between the trivial case when X “ L2

wpTq and the
space L8w pTq, which was studied in [2, 10] for weights w that satisfy Steklov’s condition: w´1 P L8pTq.

We recall the definition of Muckenhoupt class AppTq (see [30], p.194).
Definition. The weight w P AppTq, p P p1,8q if

rwsAppTq
def
“ sup

I

ˆ

xwyI

´

xw
1

1´p yI

¯p´1
˙

ă 8, xwyI
def
“

1

|I|

ż

I

wdθ , (1.2)

where I is an arc in T.
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Given w P A2pTq, we define the following quantity

pcrptq “ suptp : sup
n
}ϕnpz, wq}LpwpTq ă 8, rwsA2pTq 6 tu .

Clearly, pcrptq is non-increasing on r1,8q as a function in t and pcrptq > 2. The study of how pcrptq
depends on t amounts to considering another more precise version of Steklov’s problem. Our first main
result is the following theorem.

Theorem 1.1. We have

pcrptq ą 2, lim
tÑ1

pcrptq “ `8, lim
tÑ8

pcrptq “ 2 .

Remark. In Appendix, we take w as Fisher-Hartwig weight and prove pcrptq ă Cpt´1q´1{2 for t P p1, 2s.
For t ą 2, the estimate pcrptq ă 2` Ct´1{6 will be obtained in the third section.

The proof of this theorem in the perturbative regime, i.e., when t is close to 1, requires the following
general result in the theory of weighted Lp spaces. Consider spaces LppRdq or LppTdq, d P N. If H is
a linear bounded operator from LppRdq to itself, its operator norm will be denoted by }H}p,p. Suppose
w P AppRdq and H is a linear operator that satisfies weighted bound

}w1{pHw´1{p}p,p 6 FprwsAp , pq, p P p1,8q (1.3)

with some p P p1,8q and function Fpt, pq which is continuous in t on p1,8q. In what follows, we do
not need to know F explcitely. However, F is known in many applications. For example, the Hunt-
Muckenhoupt-Wheeden theorem ( [30], p.205) shows that H can be taken as a singular integral operator
and recent breakthrough on domination of singular integrals by sparse operators provides the sharp
dependence of F on rwsAp . In particular, for a large class of singular integral operators, one can take
Fpt, pq “ Cppqtmaxp1,pp´1q´1

q, (see, e.g., [19], p.264).
Recall that f P BMOpRdq if

}f}BMOpRdq
def
“ sup

B
x|f ´ xfyB |yB ă 8 ,

where B denotes a ball in Rd (see, e.g., p.140 in [30]). The theorem that comes next is a slight improve-
ment of a result by Pattakos and Volberg [24, 25], see also the paper [23] where the sublinear operators
were treated.

Theorem 1.2. Suppose p P p1,8q, rwsAppRdq ă 8, }f}BMO ă 8, and H satisfies (1.3). Consider
wδ “ weδf . Then, there is δ0pp, rwsAp , }f}BMOq ą 0 such that

}w
1{p
δ Hw

´1{p
δ ´ w1{pHw´1{p}p,p ă |δ|Cpp, rwsAp , }f}BMO,Fq

for all δ : |δ| ă δ0.

Two corollaries of theorem 1.1 are straightforward and we give their proofs in the end of section 3. To
state them, we need a few definitions. Given a weight w, define

qcrpwq “ suptq : }w´1}LqpTq ă 8u . (1.4)

Clearly, if w P A2pTq then qcrpwq ą 1 and limrwsA2
Ñ1 qcrpwq “ 8 as follows from the definition of AppTq

and inclusion of Muckenhoupt classes (see theorem 1 in [32] where the sharp bounds were obtained).
Definition. If w P L1pTq and it has finite logarithmic integral, i.e., logw P L1pTq, we define function
D, the Szegő function, as an outer function in D that satisfies

|D|2 “ w . (1.5)

The formula for D is

Dpzq “ exp

ˆ

1

2π

ż

T

1` ξ̄z

1´ ξ̄z
log

a

wpθqdθ

˙

, ξ “ eiθ , z P D . (1.6)

Remark. If w P A2pTq, then w´1 P L1pTq. Thus, logw P L1pTq and D is well-defined.

Given a polynomial Q of degree at most n, its reversed polynomial Q˚ is defined by Q˚ “ znQp1{z̄q.
Notice that the map Q ÞÑ Q˚ depends on n. Our first corollary establishes the asymptotics of tϕ˚nu (and
thus of tϕnu since ϕnpξq “ ξnϕ˚npξq if ξ P T).
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Corollary 1.3. Suppose rwsA2
ă 8 and } w2π }1 “ 1, then

lim
nÑ8

}ϕ˚n ´D
´1}LpwpTq “ 0

for every p P r2,min
´

pcrprwsA2q, 2p1` qcrpwqq
¯

q.

Another application of theorem 1.1 has to do with the asymptotics of polynomial entropy Epn, µq,
which is defined by

Epn, µq “

ż

T
|ϕnpξ, µq|

2 log |ϕnpξ, µq|dµ ,

where ξ “ eiθ, θ P r´π, πq.

Corollary 1.4. If w P A2pTq, then

lim
nÑ8

Epn,wq “ ´
1

4π

ż π

´π

logwdθ .

Given a probability measure µ on T, let F be defined by

F pzq “

ż

T

1` ξ̄z

1´ ξ̄z
dµ, ξ “ eiθ . (1.7)

Notice that ReF ą 0 in D and F p0q “ 1. For α P T, consider the following one-parameter family (see,
e.g., [28], p.36, formula (1.3.90))

Fαpzq
def
“

ζ ` F pzq

1` ζF pzq
, ζ “

1´ α

1` α
P ipRY8q .

Function Fα also has positive real part in D and Fαp0q “ 1, so

Fαpzq “

ż

T

1` ξ̄z

1´ ξ̄z
dµα ,

which defines the family of Aleksandrov-Clark measures tµαu. Taking z “ 0, we see that µα is a
probability measure. If α “ ´1, then F´1 “ 1{F and the resulting measure is called dual for µ, we will
use notation µdualp“ µ´1q for it. Measure µdual plays an important role in the theory of polynomials
orthogonal on the circle. In fact, the polynomials of the second kind tψnu defined by

ψnpzq “

ż

T

1` zξ̄

1´ zξ̄
pϕnpξ, µq ´ ϕnpz, µqqdµ, ξ “ eiθ

are orthonormal with respect to µdual (see, e.g., [28], formulas (3.2.32) and (3.2.50) or section 1 in [13]).
The Muckenhoupt class A2pTq turns out to be invariant with respect to taking dual. In fact, more general
statement is true.

Theorem 1.5. If w P A2pTq and dµ “ w
2πdθ, then µα is absolutely continuous and dµα “ wα

2π dθ for
every α P T. Moreover, wα P A2pTq.

This has an immediate implication for regularity of ψn. Indeed, if w P A2pTq, then dµdual “
wdual

2π dθ
with wdual P A2pTq so theorem 1.1 can be applied and we get

sup
n
}ψn}Lpwdual

pTq ă 8

with p P r2, pcrprwdualsA2
qq.

The proofs of the main results in this paper involve complex interpolation, a suitable choice of the
algebraic formulas, and a few facts from the general spectral theory.
Previous results. In [2], it was proved that, given every q P r1,8q and n P N, there is w˚ that satisfies
}w˚}LqpTq ă c1, }w

´1
˚ }L8pTq ă c2 and nonetheless }ϕnpξ, w˚q}L8pTq > Cpc1, c2, qq

?
n with parameters

c1 and c2 being n-independent. By Nikolskii inequality (see p.102, theorem 2.6, [11]), we see that
}ϕnpξ, w˚q}LppTq ą Cpc1, c2, p, qqn

1{2´1{p for every p P r2,8q. Since the weight w˚ is bounded below by
c´1
2 , one also gets }ϕnpξ, w˚q}Lpw˚ pTq ą Cpc1, c2, p, qqn

1{2´1{p. Therefore, the stated conditions on w, i.e.,

}w}LqpTq ă c1, }w´1}L8pTq ă c2, q P r1,8q

do not provide the uniform in n weighted Lp estimates for polynomials if p ą 2 is fixed. The question
what regularity of w is enough to have supn }ϕn}LppTq ă 8 or supnEpn,wq ă 8 has been addressed
in [3–5,9, 10,22]. The following theorem was proved in [9].
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Theorem 1.6 (Denisov-Rush, [9]). Let s def
“ }w}BMOpTq ă 8 and t def

“ }w´1}BMOpTq ă 8. Then, there
is pps, tq ą 2 such that supn }ϕnpξ, wq}LppTq ă 8.

We will see later that theorem 1.1 implies theorem 1.6 and, in fact, gives a qualitatively stronger
statement. It appears that A2 regularity of w is, to the best of our knowledge, the weakest general
condition that provides weighted Lp estimates on tϕnu.

As far as theorem 1.2 is concerned, the continuity of operators in the weighted spaces with respect to
a weight has been addressed previously. In [24,25], Pattakos and Volberg show that A8pRdq is a metric
space with metric defined by

d˚pw1, w2q
def
“ } logw1 ´ logw2}BMO .

These two authors studied other properties of A8pRdq as a metric space and established, among other
things, the Lipschitz continuity of }H}Lpw,Lpw in w P AppRdq for H that satisfies (1.3).

The structure of our paper is as follows. The second section contains the proof of theorem 1.2 along
with related information about the Muckenhoupt class. Theorem 1.1 and its corollaries are proved in
the third section. The analysis of the Christoffel-Darboux kernel for the case when w P A2pTq is done in
section four. In section five, we discuss Alexandrov-Clark measures and give proof of theorem 1.5. The
appendix contains an example of weight in the Fisher-Hartwig class for which the asymptotics of the
polynomials is known. This provides an upper estimate for pcrptq in the regime when t is close to 1.

1.1. Notation.

‚ If p P r1,8s, the dual exponent is denoted by p1 “ p{pp´ 1q.
‚ Given a set A Ď Rd (or A Ď T), we will use notation Ac for its complement, i.e., Ac “ RdzA (or
Ac “ TzA).

‚ Given two Banach spaces LppX,µq, LqpY, νq, and a linear bounded operator T : LppX,µq Ñ
LqpY, νq, its norm is denoted by }T }p,q.

‚ By LpwpTq we mean the space LpµpTq where dµ “ w dθ
2π .

‚ If f is locally integrable in Rd and B is a ball, then

xfyB
def
“

1

|B|

ż

B

fdx .

‚ Given function f P L1pTq, we will write hpfq to denote the operator of harmonic conjugation [17],
i.e.,

hpfq “ rfpξq “ lim
rÑ1

1

2π

ż

T
fpζqQrpζ, ξq dθ, Qrpζ, ξq “ Im

1` rζ̄ξ

1´ rζ̄ξ
, ζ “ eiθ, ξ P T . (1.8)

‚ Given a function f P L1pTq, the Poisson integral is defined by (see [17], pp.2–3)

Ppf, zq “
1

2π

ż

T

1´ |z|2

|1´ ζ̄z|2
fpζqdθ, z P D, ζ “ eiθ . (1.9)

The Cauchy integral over T is defined by (see [17], p.35)

Cpf, zq “
1

2π

ż

T

fpζq

1´ ζ̄z
dθ, z P D, ζ “ eiθ . (1.10)

‚ For two non-negative functions f1 and f2, we write f1 . f2 if there is an absolute constant C
such that

f1 6 Cf2

for all values of the arguments of f1 and f2. If the constant depends on a parameter α, we will
write f1 6α f2. We define & similarly and say that f1 „ f2 if f1 . f2 and f2 . f1 simultaneously.

‚ The symbol C8c pRdq denotes the space of infinitely smooth function with compact support in
Rd.

‚ Given two operators, A and B, we use the symbol rA,Bs “ AB ´BA for their commutator.
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2. Weighted operators are continuous in w P AppRdq

We start by recalling a few basic facts from the theory of AppRdq weights (see, e.g., [18] and [30]).
Given the definition (1.2), the limiting case when pÑ8 leads to A8pRdq which is characterized by (see,
e.g., [15])

rwsA8pRdq
def
“ sup

B

´

xwyB exp
´

´xlogwyB

¯¯

. (2.1)

The following results are well-known.

Lemma 2.1 (see, e.g., [30], p.218). If }f}BMO ă 8, then there is δ1p}f}BMOq ą 0 such that

reδf sA8pRdq . 1

for all δ : |δ| ă δ1p}f}BMOq.

Proof. From John-Nirenberg theorem ( [30], pp.145-146), we have

sup
B

´

xeδ|f´xfyB |yB

¯

. 1 (2.2)

provided |δ| ă δ1p}f}BMOq. In (2.1), take w “ eδf , to get

rwsA8 “ sup
B

´

xeδpf´xfyBqyB

¯

. 1

by (2.2). �

The proofs for the next two lemmas are immediate corollaries from theorem 18 and theorem 1 in [32].

Lemma 2.2. Suppose w P A8pRdq. For every p P p1,8q, there is δ2pp, rwsA8pRdqq ą 0 such that

rwδsAppRdq ă Cpp, rwsA8pRdqq (2.3)

for every δ : |δ| ă δ2pp, rwsA8pRdqq.

Remark. The exact dependence of the right-hand side in (2.3) on the parameters will not be needed in
this paper so we are only using the symbol C.

Lemma 2.3. Given p P p1,8q and w P AppRdq, there is δ3pp, rwsAppRdqq ą 0 such that rw1`δsAppRdq 6
Cpp, rwsAppRdqq for δ P r0, δ3q.

Given these lemmas, we claim that

Lemma 2.4. For every p P p1,8q, f P BMOpRdq, and w P AppRdq, we have

rweδf sAppRdq 6 Cpp, rwsAppRdq, }f}BMOq , (2.4)

if δ : |δ| ă δ4pp, rwsAppRdq, }f}BMOq.

Proof. Consider (1.2). Given w and some nonnegative w0 we use Hölder’s inequality
ˆ
ż

B

ww0dx

˙ˆ
ż

B

pww0q
1{p1´pqdx

˙p´1

6

ˆ
ż

B

wαdx

˙1{αˆż

B

wα
1

0 dx

˙1{α1 ˆż

B

wα{p1´pqdx

˙pp´1q{αˆż

B

w
α1{p1´pq
0 dx

˙pp´1q{α1

,

where α1 is dual to α and α ą 1 is chosen such that wα P AppRdq (this choice is warranted by lemma 2.3).
Now, if we let w0 “ eδf , then wα

1

0 P AppRdq for small δ thanks to lemma 2.1 and lemma 2.2. This yields
(2.4). �

Lemma 2.5. If p P p1,8q, w P AppRdq, f P BMOpRdq, and H satisfies (1.3), then

}w1{prH, f sw´1{p}p,p 6 Cpp, rwsAppRdq, }f}BMO,Fq (2.5)

and
}w1{prf, rH, f ssw´1{p}p,p 6 Cpp, rwsAppRdq, }f}BMO,Fq. (2.6)
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Proof. Given two test functions u, v P C8c pRdq, define operator-valued function

Gpzq
def
“ w1{pezfHe´zfw´1{p

and consider pGpzq “ pGpzqu, vq, where the inner product is in L2pRdq. pGpzq is analytic in z around the
origin and we can write Cauchy integral formula with |z| ă ε, when ε is small enough (and depends only
on p, rwsAppRdq, and }f}BMO):

pGpzq “
1

2πi

ż

|ξ|“ε

pGpξq

ξ ´ z
dξ, pG1p0q “ pw1{prf,Hsw´1{pu, vq “

1

2πi

ż

|ξ|“ε

pGpξq

ξ2
dξ,

so
|pw1{prH, f sw´1{pu, vq| . ε´1 max

|ξ|“ε
| pGpξq| .

For any point z : |z| “ ε on the circle, we can apply lemma 2.4 and (1.3) to choose εpp, rwsAp , }f}BMOq

such that max|ξ|“ε | pGpξq| ă Cpp, rwsAp , }f}BMO,Fq}u}p}v}p1 (here p1 is dual to p). This implies (2.5) by
the standard duality argument, i.e., by employing an identity

}O}p,p “ sup
u,vPC8c pRdq,}u}p61,|v}p161

|pOu, vq| ,

which holds for every linear bounded operator O and p P p1,8q.
The estimate (2.6) follows from (2.5) by taking H in (2.5) as a commutator rH, f s itself and using

(2.5). �

Proof of theorem 1.2. Consider analytic operator-valued function defined for z : Re z P r0, 1s,

F pzq “ w1{p exp pαzf{pqH exp p´αzf{pqw´1{p ´ w1{pHw´1{p ´ z
α

p
w1{prf,Hsw´1{p ,

where the parameter α will be chosen later, it will depend on p, }f}BMO, and rwsAppRdq only. Consider
rectangle Π “ tz : | Im z| ă 1, 0 ă Re z ă 1u. We will estimate the operator norm of F on BΠ as follows.
If z P tz : | Im z| “ 1,Re z P r0, 1su Y tz : Re z “ 1, Im z P r´1, 1su, the estimate is straightforward:

}F pzq}p,p 6 Cpp, rwsAp ,Fq`Cpp, rwe
αf sAp ,Fq 6 Cpp, rwsAp , }f}BMO,Fq, α : |α| ă α4pp, rwsAp , }f}BMOq ,

where we first used (2.5), (1.3), and then lemma 2.4. Now, we take test functions u, v P C8c pRdq and
consider pF pzq “ pF pzqu, vq. It is anaytic in Π and continuous on Π. On the interval z “ iξ, |ξ| ă 1, have

pF p0q “ 0, pF 1p0q “ 0, Bξ pF piξq “
iα

p
pw1{peiαξf{prf,Hse´iαξf{pw´1{pu, vq ´

iα

p
w1{prf,Hsw´1{p ,

and

B2
ξξ
pF piξq “

ˆ

iα

p

˙2

pw1{peiαξf{prf, rf,Hsse´iαξf{pw´1{pu, vq ,

|B2
ξξ
pF piξq| 6 Cpp, rwsAp , }f}BMO,Fq}u}p}v}p1

by lemma 2.5. The Fundamental Theorem of Calculus gives

pF piξq “

ż ξ

0

ˆ
ż τ

0

B2
ττ

pF piτqdτ

˙

dξ, | pF piξq| 6 ξ2Cpp, rwsAp , }f}BMO,Fq}u}p}v}p1 .

The last bound implies
}F piξq}p,p 6 ξ

2Cpp, rwsAp , }f}BMO,Fq

after we use duality argument. Notice that the function | pF | is subharmonic in Π. Thus, by mean-value
inequality, one has

| pF pδq| 6

ˆ
ż

BΠ

| pF pξq|dωδpξq

˙

,

where ωzpξq denotes the harmonic measure at point z (see, e.g., [12] p.13, formula (3.4)). By duality
again,

}F pδq}p,p 6

ˆ
ż

BΠ

}F pξq}p,pdωδpξq

˙

.
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When δ Ñ 0, measure ωδpξq concentrates on the left side of BΠ around point 0 and we have limδÑ0 }F pδq}p,p “
0. Putting the estimates together, we can make it more precise. Recall that the harmonic measure on
the upper half-plane C` with the reference point z is given by

1

π

Im z

Im2 z ` pRe z ´ tq2
, z P C`, t P R .

Consider a conformal map ϕ from C` to Π. For example, we can take ϕ as the following Schwarz-
Christoffel integral (see [31], p.181 and pp.188-189, formula (6-76)):

ϕpzq “ C

ż z

0

dη
a

p1´ η2qp1´ k2η2q
, z P C`,

where C and k are constants that can be found explicitly and k P p0, 1q. Under the inverse map ϕ´1,
the left side tiξ, |ξ| ă 1u of Π goes to the interval r´1, 1s and its right side t1 ` iξ, |ξ| ă 1u goes to
rk´1,8q Y p´8,´k´1s. Clearly, ϕp0q “ 0. Now, we obtain

ż

BΠ

}F pξq}p,pdωδpξq .
ż

R

δ

δ2 ` t2
}F pϕptqq}p,pdt

where ϕptq : RÑ BΠ. Substituting the estimates for }F }p,p and using |ϕpzq{z| „ 1, |z| ă 0.5, we get
ż

R

δ

δ2 ` t2
}F pϕptqq}p,pdt 6

Cpp, rwsAp , }f}BMO,Fq

˜

ż 0.5

´0.5

δt2

δ2 ` t2
dt`

ż

|t|ą0.5

δ

δ2 ` t2
dt

¸

6

Cpp, rwsAp , }f}BMO,Fqδ .

Finally, we get the statement of the theorem since

w1{p exp pαδf{pqH exp p´αδf{pqw´1{p ´ w1{pHw´1{p “ F pδq ` δ
α

p
w1{prf,Hsw´1{p ,

and
}F pδq}p,p 6 Cpp, rwsAp , }f}BMO,Fqδ ,

}
α

p
w1{prf,Hsw´1{p}p,p 6 Cpp, rwsAp , }f}BMO,Fq .

�

Remark. Clearly, the theorem holds if AppRdq is replaced by AppTq.

3. Steklov problem in the theory of orthogonal polynomials: w P A2pTq and bounds for
}ϕnpz, wq}LpwpTq

This section contains the proofs of theorem 1.1 and its two corollaries. In the proof of theorem 1.1,
we will consider separately two cases: when rwsA2pTq P r1, 2q and when rwsA2pTq > 2. It will be more
convenient for us to work with monic orthogonal polynomials, which are defined as

Φnpz, µq “
ϕnpz, µq

kn
.

If w P A2pTq, then w´1 P L1pTq by definition. Thus, logw P L1pTq as well. This means that µ : dµ “
w
2πdθ belongs to Szegő class of measures and, consequently, the sequence tknu has a finite and positive
limit (see [13], section 2). More precisely, we have an estimate:

exp

ˆ

1

4π

ż

T
logwdθ

˙

ď

ˇ

ˇ

ˇ

ˇ

Φnpz, wq

ϕnpz, wq

ˇ

ˇ

ˇ

ˇ

6 1, @z P C, (3.1)

(see, e.g., [10]). This bound shows that we can focus on estimating }Φnpξ, wq}LpwpTq.
Later in the text, we will need to use the second resolvent identity which is contained in the following

proposition.
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Proposition 3.1. Suppose X is an Banach space and H,V are linear bounded operators from X to X.
Then,

pI `H ` V q´1 “ pI `Hq´1 ´ pI `H ` V q´1V pI `Hq´1,

pI `H ` V q´1 “ pI `Hq´1pI ` V pI `Hq´1q´1 ,

provided the operators involved are well-defined and bounded in X. Moreover, assuming }V } ¨ }pI `
Hq´1} ă 1, we get

}pI `H ` V q´1} 6
}pI `Hq´1}

1´ }V } ¨ }pI `Hq´1}
. (3.2)

Finally, if }V } ă 1, then

}pI ` V q´1} 6
1

1´ }V }
. (3.3)

The proof of this proposition is a straightforward calculation. The following well-known lemma (see,
e.g., [18], corollary 6) will be important later on.

Lemma 3.2. If rwsA2pTq “ 1` τ, τ P r0, 1s, then

} logw}BMO .
?
τ .

Let Pn denote the orthogonal L2pTq projection to the frequencies t1, . . . , einθu. Consider the pertur-
bative regime, i.e., the case when rwsA2pTq “ 1` τ and τ P r0, 1s.

Lemma 3.3. We have limτÑ0 pcrp1` τq “ 8.

Proof. Fix any p > 2. We need to show that there is τ ą 0 small enough so that rυsA2
ă 1` τ implies

sup
n
}Φnpz, υq}LpυpTq ă 8 .

Our argument is based on a representation (see, e.g., [9], formula (8) for Φ˚n):

Φn “ zn ´ υ´1rPn´1, υsΦn . (3.4)

This formula can be obtained by combining trivial identity Φn “ zn`Pn´1Φn, which holds for all monic
polynomials of degree n, with Pn´1pυΦnq “ 0, which follows from that fact that Φn is orthogonal to
t1, z, . . . , zn´1u in L2

υpTq. Thus, we infer from (3.4) that
´

υ1{pΦn

¯

“ υ1{pzn ´ υ´1{p1Pn´1υ
1{p1

´

υ1{pΦn

¯

` υ1{pPn´1υ
´1{p

´

υ1{pΦn

¯

.

Denoting ζn
def
“ υ1{pΦn, O1,n

def
“ υ´1{p1Pn´1υ

1{p1 ´Pn´1, O2,n
def
“ υ1{pPn´1υ

´1{p´Pn´1, we rewrite it as

ζn “ υ1{pzn ´O1,nζn `O2,nζn . (3.5)

If P` denotes the orthogonal L2pTq projection onto Hardy space H2pTq (Riesz projection), then we can
write an identity

Pn “ P` ´ zn`1P`z´pn`1q “ zn`1rz´pn`1q,P`s . (3.6)
We now apply theorem 1.2 with H “ P`, w “ 1, and wδ “ eδf “ υ. Then, f “ δ´1 log υ and lemma 3.2
gives

}f}BMO . δ
´1
?
τ 6 1 ,

when τ ă δ2. Since }w1{pP`w´1{p}p,p 6 FprwsAp , pq by Hunt-Muckenhoupt-Wheeden theorem, the
theorem 1.2 then yields

lim
τÑ0

}υ1{pP`υ´1{p ´ P`}p,p “ 0

for every p P p1,8q. In particular, it also holds for p1:

lim
τÑ0

}υ1{p1P`υ´1{p1 ´ P`}p1,p1 “ 0 .

Indeed, we use the standard identity in the operator theory, which follows from duality considerations:

}O}p,p “ }O
˚}p1,p1 ,

where O˚ is adjoint operator to O with respect to L2 inner product and O is linear bounded operator in
Lp space. Since P` is self-adjoint in L2pTq, we get

}υ1{p1P`υ´1{p1 ´ P`}p1,p1 “ }υ
´1{p1P`υ1{p1 ´ P`}p,p

8



and hence
lim
τÑ0

}υ´1{p1P`υ1{p1 ´ P`}p,p “ 0 .

Summarizing, (3.6) gives two bounds

}O1,n}p,p 6 2}υ´1{p1P`υ1{p1 ´ P`}p,p, }O2,n}p,p 6 2}υ1{pP`υ´1{p ´ P`}p,p

that hold uniformly in n. Therefore,

lim
τÑ0

}O2,n}p,p “ 0, lim
τÑ0

}O1,n}p,p “ 0 .

Now, we apply (3.3) with V “ O1,n to (3.5) in the space LppTq. This gives the statement of the lemma.
Here, we notice that supn }z

nυ1{p}p ă 8 because υ P A2pTq Ă L1pTq. �

Next, we consider more complicated case when rwsA2pTq > 2.
Remark. We have w´1{p1 “ pw´p{p

1

q1{p and

rw´p{p
1

sAppTq “ rws
p{p1

Ap1 pTq
(3.7)

as can be directly verified.

Lemma 3.4. For every w P A2pTq and l P N, define a simple function wl as follows: let wl “ xwyIj on
each interval Ij “ 2´lp2πqrj, j ` 1q, j “ 0, . . . , 2l ´ 1. Then, limlÑ8 Φnpz, wlq “ Φnpz, wq uniformly in z
over compacts in C and

rwlsA2pTq 6 CprwsA2pTqq.

Proof. From the construction, we immediately get twluÑw in the weak–p˚q sense when lÑ8. Since the
coeffcients of Φnpz, µq depend continuously on the moments of measure µ, we have the first statement of
the lemma. The second one can be verified directly using the definition of A2pTq characteristic.

�

Next, we need the following interpolation result. Given w P A2pTq and p˚ ě 2, define

Qw,ppzq
def
“ w´1{p1pzqPn´1w

1{p1pzq ´ w1{ppzqPn´1w
´1{ppzq , (3.8)

where
1

ppzq
“

z

p˚
`

1´ z

2
,

1

p1pzq
“ 1´

1

ppzq
“

1` z

2
´

z

p˚
, Re z P r0, 1s , (3.9)

so that 1{ppzq ` 1{p1pzq “ 1.

Proposition 3.5. Suppose w,w´1 P L8pTq, parameter κ is real, and

sup
06Re z61

}Qw,ppzq}pptq,pptq ă 8 , (3.10)

where t def
“ Re z P r0, 1s. If there is a positive number Λ such that

}pI ´ κQw,ppt`iyqq
´1}pptq,pptq 6 2Λ

for all t P r0, 1s and y P R, then there is an t˚pΛq P p0, 1s, so that

}pI ´ κQw,ppt`iyqq
´1}pptq,pptq 6 Λ

for all y P R and t P r0, t˚s.

Proof. We notice that Qw,ppiyq is bounded and antisymmetric operator in Hilbert space L2pTq. Therefore,
}pI´κQw,ppiyqq

´1}2,2 6 1. Given conditions w,w´1 P L8pTq, it is easy to check that the operator-valued
function pI ´ κQw,ppzqq´1 is analytic and continuous in the sense of Stein (p.209, [6]). Applying Stein’s
interpolation theorem, we get

}pI ´ κQw,ppt`iyqq
´1}pptq,pptq 6 exp

ˆ

sinpπtq

2

ż

R

logp2Λq

coshpπyq ` cospπtq
dy

˙

“ 1`Optq, tÑ 0 ,

which proves the proposition. �

Remark. We emphasize here that positive t˚ does not depend on n or w.
Now, we are ready to prove the following lemma.

Lemma 3.6. For every t > 2, we have pcrptq ą 2.
9



Proof. Consider w P A2pTq. It will be more convenient later on to work with weights which are bounded
above and below. With fixed n, we can use lemma 3.4 to approximate w by wn which satisfies

}wn}L8pTq ă Cpn,wq, }w´1
n }L8pTq ă Cpn,wq ,

rwnsA2pTq 6 γ
def
“ CprwsA2

q, n P N
and

|Φnpz, wq| 6 2|Φnpz, wnq|

for each z P T. In what follows, we suppress the dependence of wn in n and do the proof understanding
that w depends on n and satisfies

}w}L8pTq ă 8, }w´1}L8pTq ă 8, rwsA2pTq 6 γ ă 8 ,

where γ does not depend on n.
As in the proof of lemma 3.3, we can write

ζn “ w1{pzn `Qw,pζn ,

where ζn
def
“ w1{pΦn and Qw,p

def
“ ´Bn ` Cn, Bn

def
“ w´1{p1Pn´1w

1{p1 , Cn
def
“ w1{pPn´1w

´1{p and all
operators are considered in Banach space LppTq. It is sufficient to prove that

sup
n
}pI ´Qw,rpγ q

´1}
rpγ ,rpγ ă 8 (3.11)

with some rpγ ą 2 because supn }w
1{pzn}p ă 8 and

ζn “ pI ´Qw,pq
´1pw1{pznq .

By open inclusion of Muckenhoupt classes (see [30], corollary on p.202 or theorem 1 in [32]), there is
ppγ ą 2 such that pp1γ ă 2 and pγ

def
“ rwsA

pp1γ
ă 8 . Thus, by (3.7),

rw´p{p
1

sAp “ rws
p{p1

Ap1
6 pγ pp{pp1 (3.12)

for all p P r2, ppγs. We need this bound to control Bn through writing it as

Bn “ pw
´p{p1q1{pPn´1pw

´p{p1q´1{p

and viewing w1
def
“ w´p{p

1

as element of AppTq. Now, we use Hunt-Muckenhoupt-Wheeden theorem,
which implies that

sup
n
}Bn}p,p “ sup

n
}w

1{p
1 Pn´1w

´1{p
1 }p,p ă F1pp, γq , (3.13)

where F1 is defined for p P r2, ppγs. Analogous bound for Cn is obvious:

sup
n
}Cn}p,p ă F2pp, γq (3.14)

for all p P p2,8q since w P A2pTq Ă AppTq. Define Qw,ppzq by (3.8) and take p˚ P r2, ppγs. The bounds
(3.13) and (3.14) imply that

sup
n
}Qw,ppzq}pptq,pptq ă 8

for t “ Re z P r0, 1s.
Now, we proceed as follows. Recall, see (3.11), that our goal is to show that pI ´ Qw,rpγ q

´1 is
bounded in LrppTq for some rpγ ą 2 with bound on the operator norm independent in n. In (3.8), we
take parameter p˚ as follows: pp1q˚ “ ppγ and define p1pzq

def
“ ppzq where ppzq is from (3.9). Consider

Q
pjq
w,ppzq

def
“ jQw,ppzq{N, j “ 1, . . . , N where N is large and will be fixed later (it will depend on γ only).

Notice that, by (3.13) and (3.14), we get

}Qw,ppt`iyq}pptq,pptq 6 }w
´1{p1ptqPn´1w

1{p1ptq}pptq,pptq ` }w
1{pptqPn´1w

´1{pptq}pptq,pptq ă Cγ .

Let Λ be an absolute constant larger than one. We take N to satisfy

1´ CγΛ{N ą 1{2 . (3.15)

Next, we use (3.3) to get

}pI ´Q
p1q
w,ppt`iyqq

´1}pptq,pptq 6
1

1´ Cγ{N
6

1

1´ CγΛ{N
6 2 6 2Λ
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since Λ ą 1 by our choice. We continue with an inductive argument in which the bound for tQpjqw,ppzqu

provides the bound for tQpj`1q
w,ppzqu when j “ 1, . . . , N ´ 1.

‚ Base of induction: handling Q
p1q
w,ppzq. Apply proposition 3.5 with κ “ 1{N to get an absolute

constant t˚ so that
}pI ´Q

p1q
w,ppt`iyqq

´1}pptq,pptq 6 Λ

for t P r0, t˚s and y P R. Next, we use (3.2) with H “ ´Q
p1q
w,ppt`iyq and V “ ´N

´1Qw,ppt`iyq. This gives

}pI ´Q
p2q
w,ppt`iyqq

´1}pptq,pptq 6
Λ

1´ CγΛ{N
6 2Λ, t P r0, t˚s (3.16)

by (3.15).
That finishes the first step. Next, we will explain how estimates on Qp2qw,ppzq give bounds for Qp3qw,ppzq.

‚ Handling Q
p2q
w,ppzq. In proposition 3.5, we now take κ “ κ2

def
“ 2{N, p

p2q
˚

def
“ p1pt˚q “ ppt˚q (here

ppt˚q is obtained at the previous step) and compute new p2pzq, p
1
2pzq by (3.9):

1

p2pzq
“

z

ppt˚q
`

1´ z

2
“
zt˚
p˚

`
1´ zt˚

2
“

1

p1pzt˚q
“

1

ppzt˚q
. (3.17)

Therefore, when z belongs to 0 ă Re z ă 1, zt˚ belongs to 0 ă Re z ă t˚ and p2pzq “ ppzt˚q. In this
domain, we have an estimate (3.16) which can be rewritten as

}pI ´Q
p2q
w,p2pt`iyq

q´1}p2ptq,p2ptq 6 2Λ, t P r0, 1s, y P R ,

where p2pzq is different from p1pzq “ ppzq only by the choice of parameter p˚ in (3.9) and is in fact a
rescaling of the original ppzq as follows from (3.17). Thus, from proposition 3.5, we have

}pI ´Q
p2q
w,p2pt`iyq

q´1}p2ptq,p2ptq 6 Λ

for t P r0, t˚s, y P R. We use the perturbative bound (3.2) one more time with H “ ´Q
p2q
w,p2pt`iyq

and
V “ ´N´1Qw,p2pt`iyq to get

}pI ´Q
p3q
w,p2pt`iyq

q´1}p2ptq,p2ptq 6 2Λ

for t P r0, t˚s, y P R.
‚ Induction in j and the bound for QpNqw,ppzq. Next, we take p

p3q
˚

def
“ p

p2q
˚ pt˚q and repeat the process

in which the bound

}pI ´Q
pjq
w,pjpt`iyq

q´1}pjptq,pjptq 6 2Λ, t P r0, 1s, y P R ,

implies
}pI ´Q

pj`1q
w,pj`1pt`iyq

q´1}pj`1ptq,pj`1ptq 6 2Λ

for t P r0, 1s and y P R. Notice that each time the new pjpzq is in fact a rescaling of the original ppzq by
tj´1
˚ as can be seen from a calculation analogous to (3.17). In N ´ 1 steps, we get

}pI ´Q
pNq
w,pN´1pt`iyq

q´1}pN´1ptq,pN´1ptq 6 2Λ , t P r0, t˚s, y P R.

Thus, taking y “ 0 and t “ t˚, and recalling that pN´1pzq “ pptN´2
˚ zq, one has

}pI ´Q
pNq

w,pptN´1
˚ q

q´1}pptN´1
˚ q,pptN´1

˚ q
6 2Λ .

Since QpNq
w,pptN˚ q

“ Qw,pptN˚ q, we get (3.11) with

rpγ “
2ppγ

2tN´1
˚ ` ppγp1´ t

N´1
˚ q

.

The estimates (3.15) implies that we can take N „ Cγ . �

Proof of theorem 1.1. From lemma 3.3 and lemma 3.6, we get that pcrptq ą 2 and limtÑ1 pcrptq “ 8.
To show that pcrptq Ñ 2 when tÑ8, it is enough to start with arbitrarily large t and present a weight
pw such that r pwsA2pTq 6 t and supn }ϕnpξ, pwq}Lpptq

xw
pTq “ `8 with some pptq which depends on t and
11



limtÑ8 pptq “ 2. To this end, we use the following result established in [10], theorem 3.2: given any
t ą 2, there is a weight w that satisfies 1 6 w 6 t and a subsequence tknu such that

}ϕknpξ, wq}L8pTq > Cptqk
1{2´ct´1{6

n .

The weight w in the statement does not satisfy condition } w2π }L1pTq “ 1. However, for pw “ 2πw{}w}L1pTq,
we will have

›

›

›

pw

2π

›

›

›

L1pTq
“ 1,

supT pw

infT pw
6 t (3.18)

and
}ϕknpξ, pwq}L8pTq > Cptqk

1{2´ct´1{6

n .

Nikolskii inequality (see p.102, theorem 2.6, [11]) gives }ϕknpξ, pwq}LppTq > Cpt, pqk
1{2´1{p´ct´1{6

n and thus

}ϕknpξ, pwq}Lp
xw
pTq > Cpt, pqk

1{2´1{p´ct´1{6

n .

The weight pw satisfies the trivial bound r pwsA2pTq 6 t. Therefore,

pcrptq 6
2t1{6

t1{6 ´ 2c
“ 2`Opt´1{6q, tÑ8 .

�

Remark. Some lower bounds on pcrptq when tÑ 1 and tÑ8 can be traced through the proof. We do
not include these calculations here.

Proof of corollary 1.3. We have (see [16], formula (5.37) or [13], section 2)

lim
nÑ8

}ϕ˚n ´D
´1}L2

wpTq “ 0 . (3.19)

Recall that qcrpwq was defined in (1.4). Take rp P r2,minppcrprwsA2q, 2p1 ` qcrpwqqqq. For p P r2, rpq, we
use Hölder’s inequality

ż

T
|ϕ˚n ´D

´1|pwdθ 6

ˆ
ż

T
|ϕ˚n ´D

´1|p1αwdθ

˙1{α

¨

ˆ
ż

T
|ϕ˚n ´D

´1|p2α
1

wdθ

˙1{α1

, (3.20)

where p1 ` p2 “ p, p1α “ rp, p2α
1 “ 2, α´1 ` α1´1 “ 1, α P p1,8q. In fact, solving these equations gives

α “ prp ´ 2q{pp ´ 2q, p1 “ rppp ´ 2q{prp ´ 2q, p2 “ 2prp ´ pq{prp ´ 2q. The second factor in the right hand
side of (3.20) converges to zero due to (3.19). For the first one, we apply the triangle inequality to write

sup
n

ˆ
ż

T
|ϕ˚n ´D

´1|rpwdθ

˙1{rp

6 sup
n
}ϕ˚n}rp,w ` }D

´1}
rp,w .

The first term is finite thanks to theorem 1.1. For the second one, we use w “ |D|2 to write

}D´1}
rp
rp,w “

ż

T
|D´1|rpwdθ “

ż

T
w1´rp{2dθ ă 8 ,

because rp{2´ 1 ă qcrpwq. �

Proof of corollary 1.4. Let S def
“ D´1 for shorthand. Recall that |ϕn| “ |ϕ˚n| on T. The following

inequality follows from the Mean Value Formula

|x2 log x´ y2 log y| . p1` x| log x| ` y| log y|q|x´ y|, x, y > 0 .

Hence,
ż π

´π

||ϕ˚n|
2 log |ϕ˚n| ´ |S|

2 log |S||wdθ .
ż π

´π

p1` |ϕ˚n log |ϕ˚n|| ` |S log |S||q||ϕ˚n| ´ |S||wdθ .

Then, one can write
ż π

´π

p1` |ϕ˚n log |ϕn|| ` |S log |S||q||ϕ˚n| ´ |S||wdθ 6

Cpδq

ˆ
ż π

´π

p1` |ϕ˚n|
2`δ ` |S|2`δqwdθ

˙1{2 ˆż

T
|ϕ˚n ´ S|

2wdθ

˙1{2
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by applying Cauchy-Schwarz inequality and the trivial bound: p1` u| log u|q2 6 Cpδqp1` u2`δq, δ ą 0.
The second factor converges to zero when n Ñ 8 due to (3.19). For the first one, theorem 1.1 and
identity |S| “ w´1{2 allow us to find δ ą 0 such that

sup
n

ż π

´π

p|ϕ˚n|
2`δ ` |S|2`δqwdθ ă 8 .

�
In the rest of this section, we will show that theorem 1.1 implies theorem 1.6. We start with the

following lemma.

Lemma 3.7. If w,w´1 P BMOpTq, then w P A2pTq.

Proof. Let s def
“ }w}BMOpTq, t

def
“ }w´1}BMOpTq for shorthand. Consider any interval I Ď T. We define

a
def
“ xwyI , b

def
“ xw´1yI . We have

x|w ´ a|yI 6 s, x|w´1 ´ b|yI 6 t

by the definition of BMO space. To estimate A2pTq characteristic, we need to bound ab. We assume
without loss of generality that I “ r0, 1s and that a 6 b. Apply triangle’s inequality and an estimate

1

|I|
}w ´ xwyI}

2
L2pIq . s

2

(see [30], p.144, formula (7)), to get

}w}2 6 }w ´ a}2 ` }a}2 . s` a , (3.21)

where here and in the rest of the proof all estimates are done with respect to I “ r0, 1s. Consider a set
Ω

def
“ t|w´1 ´ b| 6 0.5bu. By John-Nirenberg inequality ( [30], p.145, formula (8)), we can estimate the

measure of its complement via
|Ωc| . exp

`

´c1bt
´1

˘

, (3.22)

where c1 is an absolute positive constant. We can rewrite Ω as follows Ω “ t0.5b 6 w´1 6 1.5bu “
t2{p3bq 6 w 6 2{bu and this formula shows that

ż

wą2{b

dθ 6 |Ωc| . expp´c1bt
´1q . (3.23)

Then,

a “

ż

w62{b

wdθ `

ż

wą2{b

wdθ

and consequently
ż

wą2{b

wdθ “ a´

ż

w62{b

wdθ > a´ 2{b .

On the other hand, by Cauchy-Schwarz inequality and (3.23),

ż

wą2{b

wdθ 6 }w}2

˜

ż

wą2{b

dθ

¸1{2

. ps` aq exp
`

´c1bt
´1{2

˘

.

Putting these bounds together, we get

ab . 1` ps` aqb expp´c1bt
´1{2q .

Since suptą0 bt
´1 expp´c1bt

´1{2q . 1, the following estimate holds

ab . 1` st` ab expp´c1bt
´1{2q .

Recall that a 6 b. Thus, an elementary bound suptą0 b
2t´2 expp´c1bt

´1{2q ă 8 yields

ab expp´c1bt
´1{2q 6 b2 expp´c1bt

´1{2q . t2 .

We finally get
ab . 1` st` t2 . 1` s2 ` t2

and that proves the lemma. �
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Now, given this lemma, we can argue in the following way. If w,w´1 P BMOpTq, then w P A2pTq and
theorem 1.1 yields

sup
n

ż

T
|ϕn|

pwdθ ă 8 , 2 6 p ă pcrprwsA2q . (3.24)

Therefore, for every q P r2, pq, we can use Hölder’s inequality
ż

T
|ϕn|

qdθ “

ż

T
|ϕn|

qwβw´βdθ 6

ˆ
ż

T
|ϕn|

qαwβαdθ

˙1{αˆż

T
w´βα

1

dθ

˙1{α1

(3.25)

and choose α P p1,8q and β ą 0 such that βα “ 1, qα “ p. The first factor in the right hand side of (3.25)
is controlled by (3.24). Since w´1 P BMOpTq, the second factor is finite due to John-Nirenberg estimate
and we get supn }ϕn}LqpTq ă 8 as claimed in theorem 1.6. This argument shows that theorem 1.1 is
qualitatively stronger than theorem 1.6.

4. The Christoffel-Darboux Kernel and bounds for the associated Projection
Operator

In this section, we study the projection operators associated to tϕnpz, wquně0. Recall the Christoffel-
Darboux kernel is defined as (see [28], p.120)

Knpz, ζ, wq “
n
ÿ

k“0

ϕkpz, wqϕkpζ, wq.

In particular, Knpz, ζ, wq is integral kernel associated to the orthogonal projection operator Pw
r0,ns onto

Spantϕ0, . . . , ϕnu in L2
wpTq; see [28] for more details. In this section, we prove that these projections are

uniformly bounded:

Theorem 4.1. Suppose w P A2pTq, with γ
def
“ rwsA2pTq. Then, there exists εγ ą 0 such that

sup
n
}Pwr0,ns}LpwpTq,LpwpTq ă 8

for all p P r2´ εγ , 2` εγs.

Recall (check (1.6)) that the Szegő function D can be introduced for any weight w that satisfies
logw P L1pTq. We define the subspace H2,wpTq as the closure of Spantϕnuně0 “ Spantznuně0 in L2

wpTq
metric. Denote by Pw

r0,8s the operator of orthogonal projection onto H2,wpTq in L2
wpTq. By Beurling’s

theorem ( [17], p.79), function f belongs to H2,wpTq if and only if f “ D´1g where g is an element of
the Hardy space H2pTq, e.g., H2,wpTq “ D´1H2pTq. Recall the standard notation that H2pTq denotes
the restriction of functions in H2pDq onto T. Since w “ |D|2, the map g Ñ D´1g is unitary isomorphism
between L2pTq and L2

wpTq. The restriction of the same map to H2pTq is unitary isomorphism between
H2pTq and H2,wpTq. Finally, the orthogonal projection of f P L2pTq to H2pTq is given by limrÑ1 Cpf, rξq
(see (1.10) and [14], p.2) where the limit exists for a.e. ξ P T. Thus, we can write

Pwr0,8spfqpξq
def
“ lim

rÑ1

1

Dpξq
C
´

fD, rξ
¯

, ξ P T, (4.1)

where C is Cauchy integral.

Lemma 4.2. If p P p1,8q and w1´p{2 P AppTq, then Pw
r0,8s is bounded on LpwpTq.

Proof. Let ζ P T and z P D. The Cauchy kernel in (1.10) can be written as

1

1´ ζ̄z
“

1

2

ˆ

1` ζ̄z

1´ ζ̄z
` 1

˙

.

The first term inside the parenthesis
1` ζ̄z

1´ ζ̄z
“
ζ ` z

ζ ´ z

is the so-called Schwarz kernel. Two real parts of Schwarz kernel is Poisson kernel (1.9) and its imaginary
part, when restricted to T, defines h in (1.8). Therefore, for f P LpwpTq, we can use (4.1) and (1.5) to get

|Pwr0,8spfq| . lim
rÑ1

1

|D|
Pp|fD|, rξq `

1

|D|

ż

T
|fD|dθ `

ˇ

ˇ

ˇ

ˇ

1

D
h pfDq

ˇ

ˇ

ˇ

ˇ

“ |f | `
1

|D|

ż

T
|fD|dθ `

ˇ

ˇ

ˇ

ˇ

1

D
h pfDq

ˇ

ˇ

ˇ

ˇ

(4.2)
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due to (see p.11, [17]) and the identity

lim
rÑ1

Ppg, rξq “ gpξq, a.e. ξ P T

which holds for g P L1pTq. Since f P LpwpTq and w “ |D|2, we get
›

›

›

›

1

|D|

ż

T
|fD|dθ

›

›

›

›

LpwpTq
“

ˆ
ż

T
w1´p{2dθ

˙1{p

¨

ˆ
ż

T
|f |
?
wdθ

˙

.

Since w1´p{2 P AppTq and AppTq Ă L1pTq, the first integral converges. For the second one, we use
Hölder’s inequality

ż

T
|f |
?
wdθ “

ż

T
p|f |w1{pqpw1{2´1{pqdθ 6

ˆ
ż

T
|f |pwdθ

˙1{pˆż

T
wp1{2´1{pqp1dθ

˙1{p1

.

To show that the integral
ż

T
wp1{2´1{pqp1dθ “

ż

T
w
pp´2q
2pp´1q dθ

converges, we recall that w1´p{2 P AppTq implies that w
pp´2q
2pp´1q P L1pTq as follows from the definition of

AppTq given in (1.2). We are left with estimating LpwpTq norm of the third term in (4.2). The operator
of harmonic conjugation h is one of the basic singular integral operators and the Hunt-Muckenhoupt-
Wheeden theorem claims (see, e.g., [30], p.205) that υ1{phυ´1{p is a bounded operator on LppTq if
υ P AppTq and p P p1,8q. Since w “ |D|2 and w1´p{2 P AppTq, we get statement of the lemma thanks to
the formula

}w´1{2hpw1{2fq}LpwpTq “ }w
´1{2`1{phpw1{2´1{ppw1{pfqq}LppTq

after one takes υ “ w1´p{2 and notices that }w1{pf}LppTq “ }f}LpwpTq. �

This yields the following corollary.

Corollary 4.3. Let w P A2pTq. Then, Pw
r0,8s is bounded on LpwpTq for all p P r4{3, 4s.

Proof. The projection is self-adjoint operator in L2
wpTq. Therefore, by duality, it is enough to consider

p P r2, 4s. For p “ 4, we have w´1 P A2pTq Ă A4pTq and the previous lemma applies. If p “ 2,
the projection operator has norm 1. Thus, by Riesz-Thorin interpolation, we have an estimate for all
p P r2, 4s. �

Define the projection operator onto Spantϕnuněa`1 by

Pwra`1,8s
def
“ Pwr0,8s ´ Pwr0,as .

When w P A2pTq and p P r4{3, 4s, tPwr0,nsuně0 is uniformly bounded on LpwpTq if and only if tPw
rn`1,8,suně0

is uniformly bounded on LpwpTq. We will show the latter. To apply the same process as in section 3 for
getting bounds for the polynomials tϕnu, one needs the following identities.

Lemma 4.4. If P1
r0,ns corresponds to the unperturbed case w “ 1, then

#

Pw
rn`1,8s “ pI ´ P1

r0,nsqP
w
r0,8s ` P1

r0,nsP
w
rn`1,8s

P1
r0,nswP

w
rn`1,8s “ 0

.

Proof. To prove the first identity, first note that applying both operators to a function f is the same as
applying it to Pw

r0,8sf , so it suffices to verify the identity for all functions in the range of Pw
r0,8s which

is the closure of finite sums
řN
j“0 ajϕjpzq. The formula then follows from P1

r0,nsϕk “ ϕk for all k ď n.
To prove the second identity, it suffices to note that the range of Pw

rn`1,8s will be the closed span of
tϕn`1, ϕn`2, . . .u; since ϕn`j Kw t1, z, . . . , znu, it follows that P1

r0,nswϕn`j “ 0 for all j ě 1, whence the
identity. �

Proof of theorem 4.1. By duality, it is sufficient to consider p ą 2. Let Xn
def
“ w1{pPw

rn`1,8sw
´1{p and

X8
def
“ w1{pPw

r0,8qw
´1{p. We need to estimate }Xn}p,p. Rewriting the relations of the above lemma in

terms of operators on LppTq, we get
#

Xn “ w1{ppI ´ P1
r0,nsqw

´1{pX8 ` w
1{pP1

r0,nsw
´1{pXn

w´1{p1P1
r0,nsw

1{p1Xn “ 0
.
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Subtracting the bottom from the top and rearranging, we get back

pI ´Qw,pqXn “ w1{ppI ´ P1
r0,nsqw

´1{pX8.

Notice that supn }w
1{ppI´P1

r0,nsqw
´1{pX8}p,p ă 8 by Hunt-Muckenhoupt-Wheeden theorem and lemma 4.3.

Furthermore, the proof of lemma 3.6 implies that pI´Qw,pq on the left side of the equality has an inverse
which is bounded in LppTq uniformly in n for all p P r2, 2` εγs Ď r2, 4s if εγ is small enough. Putting all
of this together, we get

Xn “ pI ´Qw,pq
´1

´

w1{ppI ´ P1
r0,nsqw

´1{pX8

¯

.

Therefore, tXnuně0 is uniformly bounded, completing the proof. �

5. Weights in A2pTq and their Aleksandrov-Clark measures

Several generalizations of A2pTq and A8pTq classes were studied in the literature (see, e.g., [29]). We
will need two definitions here.
Definition. We say that w P AP2 pTq if

rwsAP2 pTq
def
“ sup

zPD

´

Ppw, zqPpw´1, zq
¯

ă 8 (5.1)

and w P AP8pTq if
rwsAP8pTq

def
“ sup

zPD

´

Ppw, zq expp´Pplogw, zqq
¯

ă 8 . (5.2)

By Jensen’s inequality, we have
rwsAP8pTq 6 rwsAP2 pTq . (5.3)

The following lemma is part of the folklore of modern Harmonic Analysis, we include its proof for
completeness.

Lemma 5.1. We have A2pTq “ AP2 pTq Ď AP8pTq.

Proof. By (5.3), we get the second inclusion. The inclusion AP2 pTq Ď A2pTq follows from a bound

1

|I|2

ˆ
ż

I

wdθ

˙ˆ
ż

I

w´1dθ

˙

. Ppw, zIqPpw
´1, zIq ,

where zI
def
“ cIp1´ 0.1|I|q and cI denotes the center of I. Thus, we only need to show A2pTq Ď AP2 pTq.

Due to the rotational symmetry of D, it is enough to take a point z “ 1´ ε, ε P r0, 1q and prove that
ˆ
ż π

´π

ε

ε2 ` θ2
wpθqdθ

˙ˆ
ż π

´π

ε

ε2 ` θ2
w´1pθqdθ

˙

ă CprwsA2pTqq . (5.4)

We can assume without loss of generality that

xwyr0,εs “ 1, xw´1yr0,εs 6 rwsA2pTq .

In [20], Lerner and Perez proved, in particular, that:
Given p P p1,8q, we have w P AppRq if and only if for every γ ą 0 there is Cpγ, rwsApq such that

|E|

|I|
logγ

ˆ

|I|

|E|

˙

6 Cpγ, rwsApq

ˆ

wpEq

wpIq

˙1{p

,

where I is any interval in R and E Ă I.
Since each w P A2pTq can be considered as a 2π-periodic weight on R with rwsA2pRq . rwsA2pTq, the

result of Lerner and Perez holds for T as well. We take p “ 2, E “ r0, εs, I “ r0, xs, 2ε ă x ă π to get

1

x

ż x

0

wpsqds 6 Cpγ, rwsA2pTqq
x

ε
log´2γ

´x

ε

¯

.

Therefore when γ ą 1{2 is fixed,

ż π

0

εwpxq

ε2 ` x2
dx . ε´1

2ε
ż

0

wpxqdx` ε

ż π

2ε

wpxq

x2
dx 6 CprwsA2

q ` ε

ż π

2ε

1

x2

ˆ
ż x

2ε

wpτqdτ

˙1

dx .

CprwsA2q ` ε

ż π

2ε

wpxqdx` Cpγ, rwsA2pTqq

ż π

2ε

log´2γ
px{εq

x
dx ă CprwsA2pTqq ,
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where in the second inequality we used that A2 weights are doubling, along with our normalization. The
integral over r´π, 0s can be estimated in the same way. Thus,

ż

T

εwpxq

ε2 ` x2
dx ă CprwsA2pTqq (5.5)

and we get a similar estimate for w´1 because w´1 P A2pTq. We obtained (5.4) and the lemma is
proved. �

The following lemma was proved in [7] (see lemma 2 in this reference). We provide the sketch of the
proof here.

Lemma 5.2. If w P AP8pTq and dµ “ w
2πdθ, then µα is absolutely continuous and dµα “ wα

2π dθ for every
α P T. Moreover, wα P AP8pTq.

Proof. Given probability measure µ : dµ “ w
2πdθ ` dµs, consider a generalized entropy

Kpµ, zq “ logPpµ, zq ´ Pplogw, zq, z P D.

If we introduce f , the Schur function of measure µ, through the formula

1` zfpzq

1´ zfpzq
“ F pzq “

ż

T

1` ξ̄z

1´ ξ̄z
dµpξq, z P D, ξ “ eiθ , (5.6)

then the straightforward but lengthy calculation shows that

Kpµ, zq “
1

2π

ż

T
log

ˆ

1´ |zfpzq|2

1´ |fpξq|2

˙

1´ |z|2

|1´ ξ̄z|2
dθ . (5.7)

On the other hand, it is known that the Schur function of each measure µα is given by fα “ αf .
Therefore, Kpµα, zq “ Kpµ, zq. Notice that w P AP8pTq is equivalent to Kpw, zq P L8pDq. Thus, if
w P AP8pTq, then Kpµα, zq P L

8pDq. On the other hand, this condition implies that µα has no singular
part. Indeed, if dµα “ wα

2π dθ ` dµ
pαq
s where µpαqs is a singular measure, then

log
´

Ppµpαqs , zq ` Ppwα, zq
¯

´ Pplogwα, zq 6 C, z P D .

This implies
Ppµpαqs , zq 6 Ppµpαqs , zq ` Ppwα, zq 6 C exp pPplogwα, zqq 6 CPpwα, zq

by Jensen inequality, hence, µpαqs “ 0.
�

Proof of theorem 1.5. The first claim is immediate from lemma 5.1 and lemma 5.2. Now, let us
show that wα P A2pTq. We will consider w´1 “ wdual only, the cases of other α can be handled
similarly. We can write F peiθq “ w ` i rw, where rw is a harmonic conjugate function. Then, since
ReF´1 “ ReF´1 “ ReF {|F |2, we get

wdual “
w

w2 ` rw2
.

Without loss of generality, we can consider an interval Iε
def
“ r´ε, εs when checking A2pTq condition for

wdual. We need to control

K
def
“ ε´2

ˆ
ż ε

´ε

w

w2 ` rw2
dθ

˙ˆ
ż ε

´ε

rw2 ` w2

w
dθ

˙

(5.8)

under assumptions
xwyIε “ 1, xw´1yIε 6 rwsA2pTq . (5.9)

Clearly,

ε´2

ˆ
ż ε

´ε

w

w2 ` rw2
dθ

˙ˆ
ż ε

´ε

wdθ

˙

. rwsA2pTq (5.10)

by definition and we are left with estimating

ε´2

ˆ
ż ε

´ε

w

w2 ` rw2
dθ

˙ˆ
ż ε

´ε

rw2

w
dθ

˙

. (5.11)

We can write
rw “ h1 ` h2, h1

def
“ hpwχr´2ε,2εsq, h2

def
“ hpwχr´2ε,2εscq ,
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where h is harmonic conjugation, a standard singular integral operator. Hence,
ż ε

´ε

w´1|h1|
2dθ 6

ż

T
w´1|h1|

2dθ “

ż

T
w´1|hpw1{2 ¨ w1{2χr´2ε,2εs|

2dθ 6 CprwsA2pTqq

ż 2ε

´2ε

wdθ

if we use the Hunt-Muckenhoupt-Wheeden theorem with weight w´1 P A2pTq and w´1{2hw1{2 applied
to function w1{2χr´2ε,2εs. In (5.11), this gives the contribution

ε´2

ˆ
ż ε

´ε

w

w2 ` rw2
dθ

˙ˆ
ż ε

´ε

h2
1

w
dθ

˙

6 CprwsA2pTqqε
´2

ˆ
ż 2ε

´2ε

wdθ

˙ˆ
ż 2ε

´2ε

w´1dθ

˙

6 CprwsA2pTqq .

(5.12)
We are left with controlling

ε´2

ˆ
ż ε

´ε

w

w2 ` rw2
dθ

˙ˆ
ż ε

´ε

h2
2

w
dθ

˙

. (5.13)

Notice that
h2pϕq “ ImUpeiϕq, |ϕ| ă ε ,

where

Upζq
def
“

1

2π

ż

|θ|ą2ε

eiθ ` ζ

eiθ ´ ζ
wdθ, ζ P D .

When |ζ ´ 1| ă ε, we have

|U 1pζq| .
ż

|θ|ą2ε

1

|eiθ ´ 1|2
wdθ . ε´1

ż

T

ε

θ2 ` ε2
wdθ 6 ε´1CprwsA2pTqq,

where we used the bound (5.5). Therefore,

| ImUpeiϕq ´ ImUp1´ εq| 6 CprwsA2pTqq, |ϕ| ă ε

as follows from the Fundamental Theorem of Calculus. Therefore,
ż ε

´ε

h2
2

w
dθ . pImUp1´ εqq2

ż ε

´ε

w´1dθ ` CprwsA2pTqq

ż ε

´ε

w´1dθ . (5.14)

The second term gives the following contribution in (5.13):

ε´2

ˆ
ż ε

´ε

w

w2 ` rw2
dθ

˙

CprwsA2pTqq

ż ε

´ε

w´1dθ 6 CprwsA2pTqq
`

xw´1yIε

˘2
6 CprwsA2pTqq , (5.15)

where we used (5.9). For the first term in (5.14), recall that RepF´1q “ w{pw2 ` rw2q a.e. on T and
estimate

ε´2

ˆ
ż ε

´ε

w

w2 ` rw2
dθ

˙

pImUp1´εqq2
ż ε

´ε

w´1dθ .
´

PpRepF´1q, 1´εq¨pImUp1´εqq2
¯

¨

´

ε´1

ż ε

´ε

w´1dθ
¯

.

For the last factor, one can write

ε´1

ż ε

´ε

w´1dθ . rwsA2pTq .

Since RepF´1q is harmonic, µdual is absolutely continuous, and RepF´1q “ ReF {|F |2, we get

PpRepF´1q, 1´ εq ¨ pImUp1´ εqq2 “
ReF p1´ εq

|F p1´ εq|2
pImUp1´ εqq2.

Notice that our normalization gives

1 “ p2εq´1

ż ε

´ε

wdθ . ReF p1´ εq „

ż π

´π

ε

θ2 ` ε2
wdθ 6 CprwsA2pTqq , (5.16)

where the last bound is (5.5). Let us compare ImUp1´ εq and ImF p1´ εq. By definition of F and U ,

|Up1´ εq ´ F p1´ εq| .
1

ε

ż 2ε

´2ε

wdθ 6 CprwsA2pTqq .

Thus,
ReF p1´ εq

|F p1´ εq|2
pImUp1´ εqq2 .

ReF p1´ εq

|F p1´ εq|2
p|F p1´ εq|2 ` CprwsA2pTqqq

ă CprwsA2pTqq

ˆ

ReF p1´ εq `
1

ReF p1´ εq

˙

,
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which, thanks to (5.16), is bounded by CprwsA2pTqq. Summing up, we estimate K in (5.8) by K 6
CprwsA2pTqq and the lemma is proved. �

6. Appendix: Fisher-Hartwig weights

The Fisher-Hartwig weights are a large class of weights on the circle, which generalizes the class of
Jacobi weights. It was at the focus of recent research (see, e.g., [8]) mainly due to some connections
with probability and mathematical physics. For these weights, the asymptotics of polynomials is now
well-understood [8]. In this section, we provide an upper bound for the function pcrptq using some results
obtained in [21]. In particular, the analysis developed for Fisher-Hartwig weights will give us the proof
of the following lemma.

Lemma 6.1. If t P p1, 2q, we have pcrptq ă Cpt´ 1q´1{2.

We provide its proof in the end of this section. For β ě 0, consider the weight wβ “ |z ´ 1|2β on
the unit circle for and the associated orthogonal polynomials tΦnpz, wβqu. This is a particular choice for
the Fisher-Hartwig weight with the single point of singularity located at z “ 1. Note that in order for
wβ P A2pTq, one needs 2β ă 1, i.e. β P r0, 1

2 q. We start with the the following proposition:

Proposition 6.2. Suppose β P r0, 1
2 q. Then

rwβsA2pTq „
1

1´ 4β2
„

1

1´ 2β
.

Furthermore, if β P r0, 1{4s, then
rwβsA2pTq ´ 1 „ β2 .

Remark. The first asymptotics is useful in particular when rwβsA2pTq ą 2, i.e. when our weight varies
quite a bit, whereas when rwβsA2pTq ´ 1 ă 1, the second formula is more helpful.

Proof. It is the straightforward calculation in which the integrals over intervals I involved in the definition
of A2pTq can be explicitly computed and estimated. We omit considering all cases here. The formula
which best explains the resulting bound is

x rwyIx rw
´1yI “

1

1´ 4β2
, rw “ |θ|2β

for I “ r0, as and any 0 ď a ď π.
�

The next proposition makes use of some statements from [21]. Similar results for Jacobi weights were
obtained in [3].

Proposition 6.3. Let wβ “ |z ´ 1|2β, β P r0, 1{2q. Then,

}Φnp¨, wβq}Lpwβ pTq „β,p

$

’

&

’

%

1, 2β ´ pβ ` 1 ą 0

log n, 2β ´ pβ ` 1 “ 0

n´p2β´pβ`1q, 2β ´ pβ ` 1 ă 0

.

In particular, sup
n
}Φnp¨, wβq}Lpwβ pTq ă 8 if and only if p ă 2` 1

β .

Proof. First, write

}Φnp¨, wβq}
p
Lppwβq

“

ż

|θ|ąδ

|Φnpz, wβq|
pwβdθ `

ż

|θ|ăδ

|Φnpz, wβq|
pwβdθ ,

where δ is a parameter independent of n. To control the first term, we use formula (1.13) of [21] to get
ż

|θ|ąδ

|Φnpz, wβq|
pwβdθ 6 Cpβ, p, δq

ż

|θ|ąδ

w
1´p{2
β dθ 6 Cpβ, p, δq .

As for the second term, using the asymptotics provided in (1.17) of [21] and applying a change of variables
x “ nθ{2, we get

ż

|θ|ăδ

|Φnpz, wβq|
pwβdθ „β n

pβ´2β´1

δn{2
ż

0

x2β´ppβ´1{2q|iJβ`1{2pxq ` Jβ´1{2pxq|
pdx ,
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where Jνpxq is the Bessel function of the first kind. One can then split this new integral in x up into
two: when x P p0, 1q and when x > 1. We then use the known asymptotics for Bessel functions (see,
e.g., [1]) to get

ż

|θ|ăδ

|Φnpz, wβq|
pwβdθ „β n

´p2β´pβ`1q
´

1`

nδ{2
ż

1

x2β´pβdx
¯

„β,p

$

’

&

’

%

1, 2β ´ pβ ` 1 ą 0

log n, 2β ´ pβ ` 1 “ 0

n´p2β´pβ`1q, 2β ´ pβ ` 1 ă 0

.

In particular, this quantity is bounded precisely when 2β´pβ`1 ą 0, i.e. when β ă 1
p´2 . The proposition

now follows from combining the given estimates. �

Now, we are ready to prove the main lemma of this section.
Proof of lemma 6.1. From the first proposition in appendix, we get rwβsA2pTq ´ 1 „ β2 if β is small.

The second proposition shows that supn }Φnpξ, wβq}Lpwβ pTq ă 8 if and only if p ă 2 ` β´1. Combining
these results we get the statement of the lemma. �
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