CONTINUITY OF WEIGHTED OPERATORS, MUCKENHOUPT A, WEIGHTS,
AND STEKLOV PROBLEM FOR ORTHOGONAL POLYNOMIALS

MICHEL ALEXIS, ALEXANDER APTEKAREV, SERGEY DENISOV

ABsTrACT. We consider weighted operators acting on LP (Rd) and show that they depend continuously
on the weight w € A,(R?) in the operator topology. Then, we use this result to estimate L%, (T) norm
of polynomials orthogonal on the unit circle when the weight w belongs to Muckenhoupt class A2 (T)
and p > 2. The asymptotics of the polynomial entropy is obtained as an application.
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1. INTRODUCTION

Suppose p is a probability measure on the unit circle T and {®,(z, )} is the sequence of polynomials
orthonormal with respect to u, i.e.

deg ¢, = n, K, o coeff e, > 0, (@na QDk)Lﬁ('JT) = 5n,k7 (1'1)
where 8, 1, is the Kronecker symbol and coeff ;Q denotes the coefficient at the power 27 in polynomial Q.
One version of Steklov’s problem in the theory of orthogonal polynomials can be phrased as follows: given
a Banach space X with norm ||- || x, what regularity of x is needed to have sup,,cy [|on (2, )| x < 00?7 This
problem has a long history. It goes back to Steklov’s conjecture which asked to prove that the sequence
{pn(z, p)} is bounded for every z € (a,b), where {p,,} are polynomials orthonormal on the interval [a, b]
with respect to a weight p that satisfies p(z) > ¢ > 0, z € [a, b]. The negative answer to this question was
given by Rakhmanov [26,27] and the sharp estimates on supremum norm were obtained only recently
in [2]. If X = L%(T), we have |l¢,|x = 1 by definition. In this paper, we will be concerned with the
case when X = Lﬁ(']l‘),p > 2 and absolutely continuous p is given by its weight, i.e., du = 5-df. It is
the natural choice since the space LE (T) interpolates between the trivial case when X = L2 (T) and the
space L?(T), which was studied in [2,10] for weights w that satisfy Steklov’s condition: w=! e L®(T).

We recall the definition of Muckenhoupt class A,(T) (see [30], p.194).

Definition. The weight w e A,(T),p e (1,0) if

aycn s (o (o) ™) <en, ups 1 | was. (12

where [ is an arc in T.
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Given w € A5(T), we define the following quantity
Per(t) = sup{p : sup [@n (2, )| 1z (1) < 0, [W]a,1) <t}

Clearly, per(t) is non-increasing on [1,0) as a function in ¢ and p.(t) = 2. The study of how pe(¢)
depends on t amounts to considering another more precise version of Steklov’s problem. Our first main
result is the following theorem.

Theorem 1.1. We have
Der(t) > 2, }in}pcr@) =400, lim pe(t) =2.

t—00
Remark. In Appendix, we take w as Fisher-Hartwig weight and prove pe, (t) < C(t—1)~""/2 for t € (1, 2].
For t > 2, the estimate p.,(t) < 2 + Ct~'/% will be obtained in the third section.

The proof of this theorem in the perturbative regime, i.e., when ¢ is close to 1, requires the following
general result in the theory of weighted LP spaces. Consider spaces LP(R) or LP(T%), d € N. If 3 is
a linear bounded operator from LP(R?) to itself, its operator norm will be denoted by ||#([,, ,. Suppose
w e Ap(R?) and H is a linear operator that satisfies weighted bound

lw! P Hw™ P, < F([w]a,.p), pe(L,0) (1.3)

with some p € (1,00) and function F(¢,p) which is continuous in ¢ on (1,00). In what follows, we do
not need to know F explcitely. However, JF is known in many applications. For example, the Hunt-
Muckenhoupt-Wheeden theorem ( [30], p.205) shows that H can be taken as a singular integral operator
and recent breakthrough on domination of singular integrals by sparse operators provides the sharp

dependence of F on [w]a,. In particular, for a large class of singular integral operators, one can take
-1

F(t,p) = C(p)tm2xLr=1"")  (see, e.g., [19], p.264).
Recall that f € BMO(R?) if
Iflsogs = supd|f =<(Hpls < o,

where B denotes a ball in R? (see, e.g., p.140 in [30]). The theorem that comes next is a slight improve-
ment of a result by Pattakos and Volberg [24, 25], see also the paper [23] where the sublinear operators
were treated.

Theorem 1.2. Suppose p € (1,0), [w]a, ey < %, |flemo < 0, and H satisfies (1.3). Consider
ws = we®l . Then, there is 5o(p, [w]a,, | flBmo) > 0 such that

Jws” Hewg VP — w!P Hw ™[, < [8C(p, [w]a,, | floyo. )
for all § : 6] < do.

Two corollaries of theorem 1.1 are straightforward and we give their proofs in the end of section 3. To
state them, we need a few definitions. Given a weight w, define

Ger(w) = sup{q : [w ™ | acry < 0} (1.4)

Clearly, if w € A2(T) then ger(w) > 1 and limp,),, 1 ger(w) = o0 as follows from the definition of A,(T)
and inclusion of Muckenhoupt classes (see theorem 1 in [32] where the sharp bounds were obtained).

Definition. If w € L*(T) and it has finite logarithmic integral, i.e., logw € L*(T), we define function
D, the Szegd function, as an outer function in D that satisfies

DI = w. (1.5)

The formula for D is

D(z) = exp (217T£r 1 tZ log Vw(@)d@) L E=¢"Y zeD. (1.6)

Remark. If w € Ay(T), then w=! € LY(T). Thus, logw € L*(T) and D is well-defined.

Given a polynomial @ of degree at most n, its reversed polynomial Q* is defined by Q* = 2"Q(1/z).
Notice that the map @ — @Q* depends on n. Our first corollary establishes the asymptotics of {¢*} (and

thus of {py} since pa(€) = €@ (E) if & € T).




Corollary 1.3. Suppose [w]a, < o0 and |5%|1 =1, then

lim [ — D~ pe ) =0
n—o0

Jor every p € [2; min(pcr([w]A2)a 2(1 + QCr(w))))‘

Another application of theorem 1.1 has to do with the asymptotics of polynomial entropy E(n, u),
which is defined by

E(n,u) = j (o (€, )1 og [on (€, 1)t
where ¢ = €, 0 e [-7, 7).

Corollary 1.4. If w e Ay(T), then

. ("
nh_I)réoE(n,w) =~ J_ﬁ log wdf .

Given a probability measure p on T, let F' be defined by
14+ € ,
F(z) = f LG, = (1.7)
T1-§z
Notice that Re F' > 0 in D and F(0) = 1. For « € T, consider the following one-parameter family (see,
e.g., [28], p.36, formula (1.3.90))

aef ¢+ F'(2) l-a
Fo(z) = T3 CF0) C—1+aez(Ruoo).

Function F,, also has positive real part in D and F,(0) = 1, so

Fa2) :f L&,

T1—¢&z
which defines the family of Aleksandrov-Clark measures {u,}. Taking z = 0, we see that pu, is a
probability measure. If « = —1, then F_; = 1/F and the resulting measure is called dual for pu, we will

use notation pigua(= p—1) for it. Measure pgua plays an important role in the theory of polynomials
orthogonal on the circle. In fact, the polynomials of the second kind {t,,} defined by

1+ 2€ i
¥n(z) = J = (pn (& 1) = pnl(zm)dp, €= e
T1—2§
are orthonormal with respect to pqual (see, e.g., [28], formulas (3.2.32) and (3.2.50) or section 1 in [13]).
The Muckenhoupt class A5 (T) turns out to be invariant with respect to taking dual. In fact, more general

statement is true.

Theorem 1.5. If w € Ay(T) and du = 3=df, then p, is absolutely continuous and dp, = F=d6 for
every a € T. Moreover, w, € Aa(T).

This has an immediate implication for regularity of ,,. Indeed, if w € A5(T), then duqua = 5221 d6
with wgyal € A2(T) so theorem 1.1 can be applied and we get

Wdual

sup [|¢n | Lz (T) < ©
n

with p € [2, per([Wauat] 4,))-

The proofs of the main results in this paper involve complex interpolation, a suitable choice of the
algebraic formulas, and a few facts from the general spectral theory.
Previous results. In [2], it was proved that, given every ¢ € [1,0) and n € N, there is w, that satisfies
|lwsl zaery < 1, |wy 2=y < c2 and nonetheless |, (&, wy)|ze(ry = Clc1,c2,¢)+/n with parameters
¢1 and c¢p being n-independent. By Nikolskii inequality (see p.102, theorem 2.6, [11]), we see that
ln (& ws)llLeery > Cler, c2, p, q)n/>=1/P for every p € [2,00). Since the weight wy is bounded below by

1. one also gets [, (&, wy)

cy L5, (T) > C(c1, ¢, p, q)n'/>~1/P. Therefore, the stated conditions on w, i.e.,

H’wHLq(T) <<y, Hw_lﬂLoomr) <cz, qe[l,o)
do not provide the uniform in n weighted LP estimates for polynomials if p > 2 is fixed. The question

what regularity of w is enough to have sup,, [n| zr(r)y < o0 or sup,, E(n,w) < oo has been addressed
in [3-5,9,10,22]. The following theorem was proved in [9].
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Theorem 1.6 (Denisov-Rush, [9]). Let s def |lw|emo(ry < 0 and t def lw™[Bmo(r) < 0. Then, there
is p(s,t) > 2 such that sup,, [©n (&, w)| Lrry < 0.

We will see later that theorem 1.1 implies theorem 1.6 and, in fact, gives a qualitatively stronger
statement. It appears that A, regularity of w is, to the best of our knowledge, the weakest general
condition that provides weighted LP estimates on {©,}.

As far as theorem 1.2 is concerned, the continuity of operators in the weighted spaces with respect to
a weight has been addressed previously. In [24,25], Pattakos and Volberg show that A, (R?) is a metric
space with metric defined by

def
ds (w1, w2) = | logwi — logws||BMmo -

These two authors studied other properties of A, (R%) as a metric space and established, among other
things, the Lipschitz continuity of |H| .z ;» in w € A,(R?) for H that satisfies (1.3).

wy

The structure of our paper is as follows. The second section contains the proof of theorem 1.2 along
with related information about the Muckenhoupt class. Theorem 1.1 and its corollaries are proved in
the third section. The analysis of the Christoffel-Darboux kernel for the case when w € A2(T) is done in
section four. In section five, we discuss Alexandrov-Clark measures and give proof of theorem 1.5. The
appendix contains an example of weight in the Fisher-Hartwig class for which the asymptotics of the
polynomials is known. This provides an upper estimate for p.,(¢) in the regime when ¢ is close to 1.

1.1. Notation.

e If p € [1, 0], the dual exponent is denoted by p’ = p/(p — 1).
e Given a set A S R? (or A < T), we will use notation A for its complement, i.e., A° = R?\A (or
=T\A).
e Given two Banach spaces LP(X,u), L4(Y,v), and a linear bounded operator T : LP(X, pu) —
L1(Y,v), its norm is denoted by |T,.q-
e By L% (T) we mean the space LL(T) where du = wi.
o If f is locally integrable in R? and B is a ball, then

def 1
o o | s

e Given function f € L*(T), we will write h(f) to denote the operator of harmonic conjugation [17],
ie.,

~

(/) = F(§) = lim ff )Qo(C.€)d0,  Qu(C,€) = Im

512

1+7rC¢
1—7r¢¢
e Given a function f € L'(T), the Poisson integral is defined by (see [17], pp.2-3)

C=¢€? ¢eT. (18)

—|Z|2 _ ,if
fiz 27rJ|1 CZ|2 (€Q)do, zeD, (=e". (1.9)

The Cauchy integral over T is defined by (see [17], p.35)
1 .
C(f,2) = 7 ), (g , zeD, (=é". (1.10)

e For two non-negative functions f; and fo, we write fi < fo if there is an absolute constant C
such that

f1<Cfa

for all values of the arguments of f; and f5. If the constant depends on a parameter «, we will
write f1 <o fo. We define 2 similarly and say that fi ~ fo if fi < fo and fo < f; simultaneously.
e The symbol C*(R?) denotes the space of infinitely smooth function with compact support in
R4,
e Given two operators, A and B, we use the symbol [A, B] = AB — BA for their commutator.
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2. WEIGHTED OPERATORS ARE CONTINUOUS IN w € A,(R%)

We start by recalling a few basic facts from the theory of A,(R%) weights (see, e.g., [18] and [30]).
Given the definition (1.2), the limiting case when p — o0 leads to Ay (R?) which is characterized by (see,

e.g., [15])
(0] .. gy < sup (G exp(—Clog w)s) ) (2.1)
The following results are well-known.
Lemma 2.1 (see, e.g., [30], p.218). If | flsmo < oo, then there is d1(|| fllBmo) > 0 such that
[ ]ap@mey S 1
for all § : 6] < 01(|flBMO)-
Proof. From John-Nirenberg theorem ( [30], pp.145-146), we have

sup (¢eT=0ehp) $1 (2.2)
provided |§| < 61 (| f|Bmo)- In (2.1), take w = %7, to get
[w]a, = sup (<65(f—<f>3)>3) <1
by (2.2). O
The proofs for the next two lemmas are immediate corollaries from theorem 14, and theorem 1 in [32].
Lemma 2.2. Suppose w € Ay(R?). For every p € (1,00), there is 62(p, [w] 4, (ra)) > 0 such that
[w]a, ey < C(p, [W] 4, @a)) (2.3)

for every 6 : [0 < d2(p, [w]a,, (ra))-

Remark. The exact dependence of the right-hand side in (2.3) on the parameters will not be needed in
this paper so we are only using the symbol C.

Lemma 2.3. Given p € (1,0) and w € A,(R?), there is d5(p, [w]a,®e)) > 0 such that [w1+5]AP(Rd) <
C(p, [w]a,ga)) for 6 €[0,d3).

Given these lemmas, we claim that
Lemma 2.4. For every p € (1,0), f € BMO(RY), and w € A,(R?), we have
[we?] 4, way < C(p, [w]a, ey, | flBMO) , (2.4)
if 0 2 0] < da(p, [w] 4, ®e), | flBMO)-

Proof. Consider (1.2). Given w and some nonnegative wy we use Holder’s inequality

p—1
<J wwodx> (j (wwo)l/(lp)dx) <
B B
1/a N (r=1)/a " (p-1)/a
(J w%lx) (f wg dx) (‘[ wa/(l_p)dx) (J wy /( p)dx> ,
B B B B

where o is dual to @ and a > 1 is chosen such that w® € A,(R?) (this choice is warranted by lemma 2.3).

Now, if we let wy = €*/, then wg’ € A,(R?) for small § thanks to lemma 2.1 and lemma 2.2. This yields
(2.4). O

Lemma 2.5. Ifpe (1,0), we A,(RY), f e BMO(R?), and H satisfies (1.3), then

w PLH, [l < C(p, [w]a, e, |0, 9) (25)
and
lwVPLf, [H, ™ P ]pp < C(p, [w] a4, ey, | flBM0, F). (2.6)



Proof. Given two test functions u,v € C®(R?), define operator-valued function
G(z) def /Pt Fre—=F = 1/P

and consider G(z) = (G(z)u,v), where the inner product is in Ly(R?). G(z) is analytic in z around the
origin and we can write Cauchy integral formula with |z| < €, when ¢ is small enough (and depends only
on p, [W]A,,(Rd), and || f|Bmo):

Ay = L G(¢)
) o gl=e § =2

é G
@, G’(0>—<w1/P[f7H]w—1/pu,v>—;mfm g(f)ds,

SO

[(w! L, flw™Pu,0)] S € max G(&)].

For any point z : [2| = € on the circle, we can apply lemma 2.4 and (1.3) to choose €(p, [w]a,, | f|Bm0)
such that max¢—. |G(&)| < C(p, [w]a,, | flBMO, F)|ulp|v]y (here p”is dual to p). This implies (2.5) by
the standard duality argument, i.e., by employing an identity

|0

pp = sup |(Ouv U)' ,
u,weCP (RY), lul» <1, )0, <1

which holds for every linear bounded operator O and p € (1, o0).
The estimate (2.6) follows from (2.5) by taking H in (2.5) as a commutator [H, f] itself and using
(2.5). O

Proof of theorem 1.2. Consider analytic operator-valued function defined for z : Re z € [0, 1],

F(z) = w'? exp (azf/p) H exp (—azf /p) w™ P — w'/P Huw='/P — z%wl/p[f, Hlw™ P

where the parameter a will be chosen later, it will depend on p, | f|smo, and [w] 4, gay only. Consider
rectangle IT = {z : [Im z| < 1,0 < Rez < 1}. We will estimate the operator norm of F on 0II as follows.
Ifze{z:|Imz|=1,Reze[0,1]} u {z: Rez = 1,Imz € [-1, 1]}, the estimate is straightforward:

|EE)pp < O, [w]a,, F)+Cp, [we ], F) < Cp, [wa,. [ fleyo, F),  a:la] < au(p, [wla,, |flemo),

where we first used (2.5), (1.3), and then lemma 2.4. Now, we take test functions u,v € C*(R%) and

consider }?‘(z) = (F(2)u,v). It is anaytic in II and continuous on II. On the interval z = ¢, |¢| < 1, have

_iag

F(0)=0, F'(0)=0, 0cF(i€) WPttt P £ H)e "8 Iy =1y, v) — %wl/”[ f, Hlw™ /7

. 2
- (3¢ (Yo —i —
&2, P (i) = (p) (!PT £, £, H]Je 0% P/, ),

|02 F'(i€)| < C(p, [w]a,, | 3o, Pl o]

by lemma 2.5. The Fundamental Theorem of Calculus gives

~ 3 T ~ ~
Fie) = J (j aETFuT)dT) de, P 6)] < €0, [wla,. | flmnio, Hlulpol,-

The last bound implies
|F (i) ]pp < E2C(p, [w]a,, | Mo, F)

after we use duality argument. Notice that the function |Z3 | is subharmonic in ITI. Thus, by mean-value
inequality, one has

)] < ( [ ﬁ<5>|dw5<s>) ,

where w,(€) denotes the harmonic measure at point z (see, e.g., [12] p.13, formula (3.4)). By duality

again,
@) < (

[ 1F@1 )
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When § — 0, measure ws(§) concentrates on the left side of 1T around point 0 and we have lims_o [|F/(0)||p,p =
0. Putting the estimates together, we can make it more precise. Recall that the harmonic measure on
the upper half-plane C* with the reference point z is given by

1 Im z

7Im?z + (Rez — )2’

zeC*,teR.

Consider a conformal map ¢ from C* to II. For example, we can take ¢ as the following Schwarz-
Christoffel integral (see [31], p.181 and pp.188-189, formula (6-76)):

zeCH,

d
9=c| L ,
o V(1 —n?)(1—k?)
where C' and k are constants that can be found explicitly and k € (0,1). Under the inverse map ¢~ 1,

the left side {i&, |¢| < 1} of II goes to the interval [—1,1] and its right side {1 + &, |§| < 1} goes to
[k=1,00) U (=00, —k~1]. Clearly, ¢(0) = 0. Now, we obtain

|| 1P ©ente) 5 [ 1P e0)

where ¢(t) : R — JII. Substituting the estimates for |F|, , and using |¢(2)/z] ~ 1, |z| < 0.5, we get

| Frmirew)

00 ot 5
Clplula, Slmio ) | st | o) <
>
O, [wla,» | Flnior 9)5.

PaP

P»P

Finally, we get the statement of the theorem since
w'P exp (ad f/p) H exp (—ad f/p) w™ P — w/PHw™ /P = F(§) + 5gw1/p[f, Hlw™ P
p

and
1E0)lp.p < C(p, [w]a,, | flBMo, F)I,

« _
H;w“ﬂ[ﬁ Hlw™ 7|, , < Clp, [w]a,, | flzmo, F) .

Remark. Clearly, the theorem holds if A,(R?) is replaced by A,(T).

3. STEKLOV PROBLEM IN THE THEORY OF ORTHOGONAL POLYNOMIALS: w € As(T) AND BOUNDS FOR
lon (2, w) HL{L (T)
This section contains the proofs of theorem 1.1 and its two corollaries. In the proof of theorem 1.1,

we will consider separately two cases: when [w]a2(r) € [1,2) and when [w]2¢py = 2. Tt will be more
convenient for us to work with monic orthogonal polynomials, which are defined as

@n(z N)
kn

If w e Ay(T), then w=! € L(T) by definition. Thus, logw € L*(T) as well. This means that u : du =

5=df belongs to Szegé class of measures and, consequently, the sequence {k,} has a finite and positive
limit (see [13], section 2). More precisely, we have an estimate:

1 &
exp <4f logwd9> < ‘”(zw)' <1, VzeC, (3.1)
T Jr on (2, w)

(see, e.g., [10]). This bound shows that we can focus on estimating |®,, (&, w)| .z, (r)
Later in the text, we will need to use the second resolvent identity which is contained in the following
proposition.

P (2, 1) =



Proposition 3.1. Suppose X is an Banach space and H,V are linear bounded operators from X to X.
Then,

(I HA V)™ = (L4 B = (I H4 V)V H)
I+H+V) =T +H) (I +V({I+H)™),

provided the operators involved are well-defined and bounded in X. Moreover, assuming |V| - [(I +
H)7Y <1, we get

_ I+ H)™
I+H+V) L I ) 3.2
It S v a T m (32)
Finally, if |V|| < 1, then
1
I+v) ! < —. 3.3
I+ V)1 < = (3.3)

The proof of this proposition is a straightforward calculation. The following well-known lemma (see,
e.g., [18], corollary 6) will be important later on.

Lemma 3.2. If [w]a,r) =1+ 7,7 €[0,1], then

|log w|smo S V/T-

Let P,, denote the orthogonal L?(T) projection to the frequencies {1,...,e"?}. Consider the pertur-
bative regime, i.e., the case when [w],(r) =1+ 7 and 7 € [0,1].

Lemma 3.3. We have lim, o pe,(1 4+ 7) = o0.
Proof. Fix any p > 2. We need to show that there is 7 > 0 small enough so that [v]4, < 1+ 7 implies

sup | ©,(z,0)| Ly (r) < 0.
n

Our argument is based on a representation (see, e.g., [9], formula (8) for ®¥):
®, = 2" — v P, 1,v] P, . (3.4)

This formula can be obtained by combining trivial identity ®,, = 2" + P,,_1®,,, which holds for all monic
polynomials of degree n, with P,,_1(v®,) = 0, which follows from that fact that ®,, is orthogonal to
{1,z,...,2" 1} in L2(T). Thus, we infer from (3.4) that

<v1/p<I>n) = /Py vil/”/(Pn_lvl/p/ (vl/pq)n> +oMPP, /P (Ul/pq)n) .

. def def / def _ ..
Denoting ¢, = v'/?®,,, O1n = o WPp, ol P Oz, = pYPP, v~ VP — P, we rewrite it as

Cn = Ul/pzn - Ol,nCn + O2,nCn . (35)

If P* denotes the orthogonal L?(T) projection onto Hardy space H?(T) (Riesz projection), then we can
write an identity

Pp =P — gnHlpt (et _ pnbl=(ndl) p] (3.6)
We now apply theorem 1.2 with H = P+, w = 1, and ws = €’7 = v. Then, f = 6 ' logv and lemma 3.2
gives

| flevo S 0'WT <1,

when 7 < §2. Since |w'/PPTw 1P|, , < F([w]ar,p) by Hunt-Muckenhoupt-Wheeden theorem, the
theorem 1.2 then yields

lir% HUl/pjﬁ_U_l/p =P pp =0
T
for every p € (1,00). In particular, it also holds for p':

lim 0! o - PF ] = 0.

T
Indeed, we use the standard identity in the operator theory, which follows from duality considerations:

[00p.p = 10%]pr.r »
where O* is adjoint operator to O with respect to L? inner product and O is linear bounded operator in
LP space. Since P is self-adjoint in L?(T), we get
i At P i At
8

p,p



and hence
lim o= VPP let P = 0.
Summarizing, (3.6) gives two bounds

1010 lp,p < 207 POV ¥ pp < 2[0PPrYTVP Pt

P> HOQ,n |p7p

that hold uniformly in n. Therefore,

i [Oo,nfpp =0, lim |O1npp = 0.
T—0 T—0

Now, we apply (3.3) with V' = Oy, to (3.5) in the space LP(T). This gives the statement of the lemma.
Here, we notice that sup,, ||z"v"/?||, < co because v € As(T) < Ly (T). O

Next, we consider more complicated case when [w] Ao(T) Z 2.
Remark. We have w—1/7" = (w—P/P,)l/P and

(w4 p) = [w]ix/ﬁ (T) (3.7)

as can be directly verified.

Lemma 3.4. For every w € Ay(T) and | € N, define a simple function w; as follows: let w; = {w);; on
each interval I; =271 (2m)[4,7 + 1), = 0,...,2L — 1. Then, limy_,o @ (2,w;) = ®,,(2,w) uniformly in z
over compacts in C and

[wil ay(ry < C([w]ag(m)-

Proof. From the construction, we immediately get {w;}—w in the weak—(*) sense when [ — oo. Since the
coeffcients of ®,,(z, ) depend continuously on the moments of measure u, we have the first statement of
the lemma. The second one can be verified directly using the definition of A5(T) characteristic.

d
Next, we need the following interpolation result. Given w € Ay(T) and p, = 2, define

Qup(e) L w W OPp, /P g pE@p, ) (3.8)

where 1 z 1—=2 1 1 1+2 =z
ﬁzp—*%— 5 p/(Z)zl—m: SR Rez € [0,1], (3.9

so that 1/p(z) + 1/p'(z) = 1.

Proposition 3.5. Suppose w,w=! € L®(T), parameter k is real, and

sup || Qu,p(2)llpty.p(ey < (3.10)

0<Re 2<1
where t < Re z € [0,1]. If there is a positive number A such that

H (I - "{Qw,p(t-‘riy))ilHp(t),p(t) < 2A
for allt € [0,1] and y € R, then there is an t«(A) € (0,1], so that

H(I - KQw,p(H—iy))_lHp(t),p(t) < A
forallyeR and t € [0,t4].

Proof. We notice that Q,, ,(iy) is bounded and antisymmetric operator in Hilbert space L?(T). Therefore,
[(I— meyp(iy))_l [2.2 < 1. Given conditions w,w™! € L®(T), it is easy to check that the operator-valued
function (I — KQy p(»)) " is analytic and continuous in the sense of Stein (p.209, [6]). Applying Stein’s
interpolation theorem, we get

_ sin(7t) log(2A)
I-— )7t < dy) =1+0(), t—0,
(I = £Qu pt+iy)) ™ lp(e).p(ry < exp ( 5 _[R cosh(ry) + cos(m) ¥ +0(t)
which proves the proposition. O

Remark. We emphasize here that positive ¢, does not depend on n or w.
Now, we are ready to prove the following lemma.

Lemma 3.6. For every t > 2, we have pe(t) > 2.
9



Proof. Consider w € As(T). It will be more convenient later on to work with weights which are bounded
above and below. With fixed n, we can use lemma 3.4 to approximate w by w, which satisfies

|lwn |z < Cln,w),  |lwy | ze(ry < Cln,w),

[wal ayery <7 € C[w]a,), ne N

and
@y (2, w)| < 2[Pn (2, wn)]

for each z € T. In what follows, we suppress the dependence of w, in n and do the proof understanding
that w depends on n and satisfies

|wlzeery <00, Jw™Hpem <0, [wlaym <7 <0,

where v does not depend on n.
As in the proof of lemma 3.3, we can write

Cn = wl/pzn + Qw,an )

where (, def wl/P®,, and Qu.p def -B, +C,,B, def w_l/p/Tn,lwl/p/,C’n def wPP, 1w YP and all
operators are considered in Banach space LP(T). It is sufficient to prove that
-1
sSup H(I - Qw7§'y) Hij’wﬁ’y <@ (3']‘1)
n

with some P, > 2 because sup,, [w'/P2"||, < oo and
G = (I = Quyp) (w!Pz").
By open inclusion of Muckenhoupt classes (see [30], corollary on p.202 or theorem 1 in [32]), there is
P, > 2 such that 7, < 2 and 5 < [wla,, <o0. Thus, by (3.7),
[w /] = [w]i/ﬁ' S AP (3.12)
for all p € [2,p,]. We need this bound to control B,, through writing it as
B, = (w—p/p')l/p(pnA(w—p/p')—l/p

and viewing w; def w=P/P" as element of Ap(T). Now, we use Hunt-Muckenhoupt-Wheeden theorem,
which implies that

Sup [ Bulp.p = sup [wy"Prswy 7 < F1(p,7) (3.13)
where J; is defined for p € [2,p,]. Analogous bound for C,, is obvious:
sup [Cnllp.p < F2(p,7) (3.14)
n

for all p € (2,0) since w € As(T) = Ay(T). Define Q,, (=) by (3.8) and take py € [2,p,]. The bounds
(3.13) and (3.14) imply that
sup ”Qw,p(z) Hp(t),p(t) < 0
for t = Rez € [0,1].
Now, we proceed as follows. Recall, see (3.11), that our goal is to show that (I — Q5 )" is
bounded in LP(T) for some Dy > 2 with bound on the operator norm independent in n. In (3.8), we

take parameter p, as follows: pfkl) = D, and define p;(2) def p(z) where p(z) is from (3.9). Consider
Qg?p(z) def JQuwp(z)/N,j =1,...,N where N is large and will be fixed later (it will depend on v only).

Notice that, by (3.13) and (3.14), we get
|Quaperin) ooty < 0™ P OPa_ gt Oy iy + [0t POPy ™ PO iy < O
Let A be an absolute constant larger than one. We take IV to satisfy
1-C,A/N >1)2. (3.15)
Next, we use (3.3) to get

1 1
1—QW 7! < < <
7 = Qi) oo < =47 < T=o AT
10
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since A > 1 by our choice. We continue with an inductive argument in which the bound for {Q(j ) )}

w,p(z
provides the bound for {Q(]+(1))} when j=1,...,N — 1.

e Base of induction: handling Q
constant ¢, so that

wop(z)* Apply proposition 3.5 with kK = 1/N to get an absolute

1) _
I = Q5 usiy) ooy < A

for t € [0,t4] and y € R. Next, we use (3.2) with H = 7Q'(wl,)p(t+iy) and V = fole’p(tH-y). This gives
1—QY -1 < A <2A, telo,t 3.16
H( - Qw,p(t+iy)) ”p(t),p(t) X m X ) € [ ) *] ( . )

by (3.15).

That finishes the first step. Next, we will explain how estimates on Q( »(2) give bounds for Qw (=)

e Handling Qfﬂ )p(z). In proposition 3.5, we now take Kk = kKo ef 2/N,p (2) def p1(ts) = p(ty) (here
p(t) is obtained at the previous step) and compute new pa(z), p5h(2) by (3.9 )
1 z 1—2 2ty 1—zt, 1 1

2@ ) T2 T o T T2 T (et p(ete) (3.17)

Therefore, when z belongs to 0 < Rez < 1, zt* belongs to 0 < Rez < t, and p2(z) = p(zt4). In this
domain, we have an estimate (3.16) which can be rewritten as

2 _
1= Q2 rin) sty <24, te[0,1], yeR,

where po(z) is different from p;(z) = p(z) only by the choice of parameter p, in (3.9) and is in fact a
rescaling of the original p(z) as follows from (3.17). Thus, from proposition 3.5, we have

2 —
1T = QY i) a0y maiey < A

for t € [0,t4],y € R. We use the perturbative bound (3.2) one more time with H = —fo)pz(tHy) and
V = =N"'Qu py(s+iy) to get

H(I Q w,pa (t+iy) )_1|‘P2(t)7p2(t) <2A
for t € [0,t4],y € R.

e Induction in j and the bound for Q
in which the bound

o p(z Next, we take p;?’) def pg?) (t4) and repeat the process

1= Q% i) Moy sy <27, te[0,1], yeR,
implies
+1) 1
I~ Qujf Dj+1 (t+iy) ) HPHl(t),ij(t) <2A

for ¢t € [0,1] and y € R. Notice that each time the new p;(z) is in fact a rescaling of the original p(z) by
tfk_ as can be seen from a calculation analogous to (3.17

). In N — 1 steps, we get
H([ Qw,pN 1(t+iy) )7 HPN 1(t),pn—1(t) S2A, te [O,t*], yeR.
Thus, taking y = 0 and t = t,, and recalling that py_1(2) = p(t) ~22), one has
(N) -1
I - Qw,p(tﬁ’l)) ”p(tﬁ’l),p(ti'*U < 2A.

Since Q = Qu p(tl)s We get (3.11) with

w p(tN)
= 0,
Do g (-
The estimates (3.15) implies that we can take N ~ C, . O

Proof of theorem 1.1. From lemma 3.3 and lemma 3.6, we get that p.,(t) > 2 and lim;_,1 per(t) = 0.
To show that pe,(t) — 2 when t — 0, it is enough to start with arbitrarily large ¢ and present a weight
@ such that [@]4,(r) < t and sup, H<pn(§, )||me(T) = 400 with some p(t) which depends on ¢t and
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lim; o p(t) = 2. To this end, we use the following result established in [10], theorem 3.2: given any
t > 2, there is a weight w that satisfies 1 < w < t and a subsequence {k,} such that

e 1/6
|k, (& w) [ Lo (my = C(E)R>~

The weight w in the statement does not satisfy condition ||3% |1 (ry = 1. However, for @ = 27w/|wl|p1 (1),
we will have

W supyq W
- = — <t 3.18
H 27 ) L(T) " infr @ ( )
and
~ _ot—1/6
[@r, (€ ®) | Lor(my = C(ORY>
Nikolskii inequality (see p.102, theorem 2.6, [11]) gives |y, (§,D)| s () = C’(t,p)k:rl/z_l/p_crl/6 and thus

0 —_ —c —1/6
Ik, (f’w)”L%(T) > C(t, p)kl/2—p=et™ 7
The weight @ satisfies the trivial bound [@] 4,1y < t. Therefore,

2t1/¢ ~1/6
pcr(t)ém:2+0(t ), t — 0.

O

Remark. Some lower bounds on pe,(t) when ¢ — 1 and t — o0 can be traced through the proof. We do
not include these calculations here.

Proof of corollary 1.3. We have (see [16], formula (5.37) or [13], section 2)
Tim [} — D712 m) = 0. (3.19)

Recall that g, (w) was defined in (1.4). Take p € [2, min(pe,([w]a2),2(1 + ger(w)))). For p € [2,p), we
use Holder’s inequality

1/ 1/
J |k — D7HPwdh < (J |k — D1|p1°‘wd0> : (J |k — D71 P2 wd@) , (3.20)
T T T

where p; + p2 = p,pra = P, p2c’ =2, + o/ =1,a € (1,0). In fact, solving these equations gives
a={p-2)/p-2),p1 =0 —2)/(p—2), p2 =2(p—p)/(p— 2). The second factor in the right hand
side of (3.20) converges to zero due to (3.19). For the first one, we apply the triangle inequality to write

1/p
sup ( [ w:—D-lede) < sup 9%l + [ D -
n n

The first term is finite thanks to theorem 1.1. For the second one, we use w = |D|? to write
DL, - L D~ Pudy — Lwl-mcze <o,
because p/2 — 1 < ger(w). O

Proof of corollary 1.4. Let S %€ D=1 for shorthand. Recall that lon| = |@X| on T. The following

inequality follows from the Mean Value Formula
|2*logx — y logy| < (1 + z[log x| + yllogy|)lz —yl, z,y>0.

Hence,
|| lesirog 1ozl - I 10g[Sllwds < | 1+ I toglin] + IS 1oglSIDek] ~ IS]wdo.
Then, one can write

J (1 + |y lognll + [Slog S]]l ] — [Slwd6 <

T 1/2 1/2
e (| arie +isEua) ([ 1ot - suas)
T

—T

12



by applying Cauchy-Schwarz inequality and the trivial bound: (1 + u|logu|)? < C(6)(1 + u?*?), § > 0.
The second factor converges to zero when n — o due to (3.19). For the first one, theorem 1.1 and
identity |S| = w~'/? allow us to find § > 0 such that

SUPJ (I T + 1S )wdf < o0
n o J—m
O
In the rest of this section, we will show that theorem 1.1 implies theorem 1.6. We start with the
following lemma.

Lemma 3.7. If w,w~! € BMO(T), then w e Ay(T).

def def _
Proof. Let s = |w|pmor),t = [w™!]

a {wyr, b def (w~t);. We have

lBmo(t) for shorthand. Consider any interval I < T. We define

(w—alr <s, (w™ —b); <t

by the definition of BMO space. To estimate A3(T) characteristic, we need to bound ab. We assume
without loss of generality that I = [0, 1] and that a < b. Apply triangle’s inequality and an estimate

1
me —wiliary < 5°
(see [30], p.144, formula (7)), to get

lwlz < w—al2 + alz < s +a, (3.21)

where here and in the rest of the proof all estimates are done with respect to I = [0,1]. Consider a set

oL {|Jw™t — b] < 0.5b}. By John-Nirenberg inequality ( [30], p.145, formula (8)), we can estimate the
measure of its complement via

|9°] S exp (—eabt™) (3.22)

where ¢; is an absolute positive constant. We can rewrite Q as follows Q = {0.5b < w™! < 1.5b} =
{2/(3b) < w < 2/b} and this formula shows that

J df < |Q°| < exp(—eibt™t). (3.23)
w>2/b

Then,

a= f wdf + f wdl
w<2/b w>2/b

J wd0=a—f wdf > a—2/b.
w>2/b w<2/b

On the other hand, by Cauchy-Schwarz inequality and (3.23),

1/2
J wdf < ||wl2 J de S(s+a)exp (—ebt™1/2) .
w>2/b w>2/b

Putting these bounds together, we get
ab <14 (s +a)bexp(—c bt 1/2).

and consequently

Since sup,- o bt~ exp(—c1bt~1/2) < 1, the following estimate holds
ab <1+ st + abexp(—cibt™1/2).
Recall that a < b. Thus, an elementary bound sup,. o b*t 2 exp(—c1bt~1/2) < o0 yields
abexp(—cibt™/2) < b? exp(—cibt™1/2) <2,
We finally get
ab<1+st+t2 <1+ 82 +¢82

and that proves the lemma. O
13



Now, given this lemma, we can argue in the following way. If w,w= € BMO(T), then w € A5(T) and
theorem 1.1 yields

sup f onlPwdd < o0, 2<p < perl[w]az) (3.24)
n Jr

Therefore, for every ¢ € [2,p), we can use Holder’s inequality

1/ 1/a’
f [on|?dO =f |@n|TwPw=Pdl < <J |<pn|qawﬁad9) <J whe da) (3.25)
T T T T

and choose « € (1,0) and 8 > 0 such that Sa = 1, gae = p. The first factor in the right hand side of (3.25)
is controlled by (3.24). Since w—! € BMO(T), the second factor is finite due to John-Nirenberg estimate
and we get sup,, |[¢@nllLe(ry < © as claimed in theorem 1.6. This argument shows that theorem 1.1 is
qualitatively stronger than theorem 1.6.

4. THE CHRISTOFFEL-DARBOUX KERNEL AND BOUNDS FOR THE ASSOCIATED PROJECTION
OPERATOR

In this section, we study the projection operators associated to {¢,(z, w)}n>0. Recall the Christoffel-
Darboux kernel is defined as (see [28], p.120)

n

Z k(2 w)en(C w).

In particular, K, (z,(,w) is integral kernel assoc1ated to the orthogonal projection operator fP[ onto

0,n]
Span{(o, . .., ¢n} in L2 (T); see [28] for more details. In this section, we prove that these projections are

uniformly bounded:

Theorem 4.1. Suppose w € Ay(T), with v def [w]a,(ry- Then, there exists e, > 0 such that
sup || Pyl 2,1y, L2, (1) < 0
n

forallpe[2—ey,2+ €,].

Recall (check (1.6)) that the Szegs function D can be introduced for any weight w that satisfies
logw € L*(T). We define the subspace Hs ,,(T) as the closure of Span{e, }n=0 = Span{z"},>0 in L2 (T)
metric. Denote by iP[O o] the operator of orthogonal projection onto Hs ., (T) in L2 (T). By Beurling’s
theorem ( [17], p.79), function f belongs to Ha,(T) if and only if f = D~'g where g is an element of
the Hardy space Hs(T), e.g., Ho ., (T) = D71 Hs(T). Recall the standard notation that Hs(T) denotes
the restriction of functions in Hy(D) onto T. Since w = |D|?, the map g — D~!g is unitary isomorphism
between L?(T) and L2 (T). The restriction of the same map to H?(T) is unitary isomorphism between
Hy(T) and Ha ,,(T). Finally, the orthogonal projection of f € L?(T) to Ha(T) is given by lim,_,; C(f, r¢)
(see (1.10) and [14], p.2) where the limit exists for a.e. £ € T. Thus, we can write

w def . 1 ( )
where C is Cauchy integral.

Lemma 4.2. Ifpe (1,0) and w'=P/2 € A,(T), then Pl0,001 s bounded on Lr(T).
Proof. Let ¢ € T and z € D. The Cauchy kernel in (1.10) can be written as
1 1/1+¢
__LIxe Y
1—-¢z 2\1-¢(z

The first term inside the parenthesis ~

1+¢z (+z

1-Cz (-2

is the so-called Schwarz kernel. Two real parts of Schwarz kernel is Poisson kernel (1.9) and its imaginary
part, when restricted to T, defines b in (1 8). Therefore, for f € LP (']I‘) we can use (4.1) and (1.5) to get

[P ()] < lim - 0(1 D], 1) + f 7Dldb+ | S0 (/D)

IDI [D]

= [f1+

14
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due to (see p.11, [17]) and the identity
lim Plg,r6) = g(¢). ac. €T
which holds for g € L'(T). Since f € L2 (T) and w = |D|?, we get

1/p
o Lol , = ([owrran) = ([ivias)

Since w!™P/2 € A,(T) and A,(T) < L(T), the first integral converges. For the second one, we use
Holder’s inequality

1/p )
J | flv/wd = J (| f|w'/P) (w2~ P)do < U f|pwd0> (J w(/2=1/Pp d9)
T T T T

To show that the integral

1/p’

(p—2)
J wV2=1P)P gp — J w2e=1) do
T T
(p—2)

converges, we recall that w!=?/2 € A,(T) implies that w2®=1 € L'(T) as follows from the definition of
A, (T) given in (1.2). We are left with estimating L? (T) norm of the third term in (4.2). The operator
of harmonic conjugation b is one of the basic singular integral operators and the Hunt-Muckenhoupt-
Wheeden theorem claims (see, e.g., [30], p.205) that v'/Phv~1/P is a bounded operator on LP(T) if
ve Ay(T) and p € (1,0). Since w = |D|? and w'~?/2 € A,(T), we get statement of the lemma thanks to
the formula

lw™ 20 (w2 f) [ 12,y = ™ 2HPH (2P (WP )| Loy
after one takes v = w'~?/2 and notices that le/pf”LP(T) = |l (T)- O
This yields the following corollary.
Corollary 4.3. Let w € Ay(T). Then, Pfg  is bounded on LY, (T) for all p € [4/3,4].

Proof. The projection is self-adjoint operator in L2 (T). Therefore, by duality, it is enough to consider
p € [2,4]. For p = 4, we have w™! € Ay(T) = A4(T) and the previous lemma applies. If p = 2,
the projection operator has norm 1. Thus, by Riesz-Thorin interpolation, we have an estimate for all

p € [2,4]. O
Define the projection operator onto Span{y,}n>a+1 by
w def pw w
[a+1,00] = Y[0,00] — jD[o,a] :
When w € A5(T) and p € [4/3,4], {:Pq[l(}),n]}ngo is uniformly bounded on L2 (T) if and only if {?1[Irjz+1,oo,] bns0

is uniformly bounded on L2 (T). We will show the latter. To apply the same process as in section 3 for
getting bounds for the polynomials {¢,}, one needs the following identities.

Lemma 4.4. If TEO n] corresponds to the unperturbed case w = 1, then

{T?H—l,oo] = - {P%O,n]){]?i%m] + T%o,n]Tl[ﬁLH,oo]
P wP?
[0n] ™ [

n+1,00] =0

Proof. To prove the first identity, first note that applying both operators to a function f is the same as
applying it to T%, o] f, so it suffices to verify the identity for all functions in the range of 9’1[’67 o] which
is the closure of finite sums Z;YZO a;p;i(%). The formula then follows from {‘Pﬁo,n]‘»pk = ¢y for all k < n.

To prove the second identity, it suffices to note that the range of PV ] will be the closed span of

[n+1,
{@Ont1sPnt2,s-. -} since pnij Ly {1,2,...,2"}, it follows that CP%OAn]wganﬂ- =0 for all j > 1, whence the
identity. O
Proof of theorem J.1. By duality, it is sufficient to consider p > 2. Let X,, % wl/pﬂ)ﬁﬂ)oo]w*l/p and

X, & wl/pﬂ’”[l(’) OO)w_l/”. We need to estimate | X[, . Rewriting the relations of the above lemma in

terms of operators on L?(T), we get
X, = w'/P(I - fPEO’n])wfl/pXoo + wl/”fPEO’n]w’l/an
wil/p'?%o n]wl/p/Xn =0
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Subtracting the bottom from the top and rearranging, we get back
(I = Qup)Xn = w'/P(I =Pl D P X,

Notice that sup,, le/p(ff?%o,n])wfl/pXoo Ip.p < o0 by Hunt-Muckenhoupt-Wheeden theorem and lemma 4.3.

Furthermore, the proof of lemma 3.6 implies that (I — @, p) on the left side of the equality has an inverse
which is bounded in LP(T) uniformly in n for all p € [2,2 4+ ¢,] < [2,4] if €, is small enough. Putting all
of this together, we get

Xo = (I = Qup) ™ (w7 (1 = Py w7 X.0 )
Therefore, { X, }n>0 is uniformly bounded, completing the proof. O

5. WEIGHTS IN A2(T) AND THEIR ALEKSANDROV-CLARK MEASURES

Several generalizations of A3(T) and A (T) classes were studied in the literature (see, e.g., [29]). We
will need two definitions here.
Definition. We say that w € AL (T) if

[w] 4P (1) def su}g (fP(w, z)ﬂ)(w_l,z)) < (5.1)
ZE
and w € AL (T) if
[w]AO;;(T) def sug(?(w,z) exp(—P(logw, z))) < 0. (5.2)
A4S

By Jensen’s inequality, we have

[w]ae () < [w]ap ) - (5.3)
The following lemma is part of the folklore of modern Harmonic Analysis, we include its proof for
completeness.

Lemma 5.1. We have A5(T) = AL(T) < AL (T).
Proof. By (5.3), we get the second inclusion. The inclusion A¥(T) € Ay(T) follows from a bound

ﬁ (JI wd0> (L w‘1d0> < Plw, z0)P(w™, 2r),
f

where z; cr(1 —0.1|1]) and ¢; denotes the center of I. Thus, we only need to show Ax(T) < ALY (T).
Due to the rotational symmetry of D, it is enough to take a point z = 1 — ¢, e € [0,1) and prove that

™ € - c B
(| atgwem) (| aigeom) < cwlim), (5.4)
We can assume without loss of generality that

Wio,g =1, W Ho.q < [w]ay)-

In [20], Lerner and Perez proved, in particular, that:
Given p € (1,0), we have w € A,(R) if and only if for every v > 0 there is C(v, [w]a,) such that

where I is any interval in R and E < 1.
Since each w € A2(T) can be considered as a 27-periodic weight on R with [w]a,®) S [w]a,(T), the
result of Lerner and Perez holds for T as well. We take p =2, E = [0,¢€],I = [0,2],2¢ < 2 < 7 to get

1(* T o (T
3| et < 6ol Toe (£

Therefore when v > 1/2 is fixed,

J” cw(x) de < ¢ 1 Tw(x)dx + efr wlo) dr < C([w]a,) + Efr i2 (

o 2 +x2 ) 9 T2 9 T

Cllwla) +e |

2e

- ’
J w(T)dT) dx <
2e

w(z)dz + C(, [wlay(m) E M

dz < C([w]ay(m)) 5
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where in the second inequality we used that Ay weights are doubling, along with our normalization. The
integral over [—m, 0] can be estimated in the same way. Thus,

qu W) Gy < C([w]aym) (5.5)

€2 + a?
and we get a similar estimate for w™! because w™! € A5(T). We obtained (5.4) and the lemma is
proved. [l

The following lemma was proved in [7] (see lemma 2 in this reference). We provide the sketch of the
proof here.

Lemma 5.2. Ifwe AL (T) and dp = 5-d0, then po is absolutely continuous and du, = 5>d0 for every
a € T. Moreover, w, € AL (T).

Proof. Given probability measure p : du = 5-df + dps, consider a generalized entropy
K(p, z) = log P(u, z) — P(logw, 2), zeD.
If we introduce f, the Schur function of measure u, through the formula
1 1+&
+zf(z):F(Z):J' +§z
1—-2f(z) T1—-¢z
then the straightforward but lengthy calculation shows that
1 1= 2f ()P 122
K(w, z =flog< ——df . 5.7
T N G AT 7
On the other hand, it is known that the Schur function of each measure p, is given by f, = af.

Therefore, K(pa,z) = K(u,z). Notice that w € AL (T) is equivalent to K(w,z) € L*®(D). Thus, if
w e AL (T), then K(piq,z) € L*(D). On the other hand, this condition implies that s, has no singular

part. Indeed, if du, = 5>df + duga) where uéa) is a singular measure, then

d:“(§)7 z €D, 5 = ei9 ) (56)

log (‘J’(ug“),z) + P(wa, z)) —P(logwey,2) <C, zeD.

This implies
P, 2) < P, 2) + P(wa, 2) < Cexp (P(logwy, 2)) < CP(wa, 2)

by Jensen inequality, hence, uéa) =0.
O

Proof of theorem 1.5. The first claim is immediate from lemma 5.1 and lemma 5.2. Now, let us
show that w, € Aa(T). We will consider w_1 = wqual only, the cases of other « can be handled
similarly. We can write F'(e’’) = w + iw, where @ is a harmonic conjugate function. Then, since

ReF_; =ReF~! =ReF/|F|?, we get
w

Waual = 5 ~9 -
U w? 4 2

Without loss of generality, we can consider an interval I, %' [—¢, €] when checking A5(T) condition for

Waual- We need to control
€ € ~2 2
def —2 (J 2w~2d9) (J Mdg) (5.8)
_e Wt w e w

(wyr, =1, (w™ Dy, < [w]ayer - (5.9)

([ ) ([ wto) Stolae (5.10)

by definition and we are left with estimating

€ € ~2
_9 w w
([ ) ([ Par). o

N det def
@ =hy +hy, h1 = B(wx—2e2e); 2 S Bwx[—2e24¢) 5
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Clearly,

We can write



where ) is harmonic conjugation, a standard singular integral operator. Hence,
2e

f w‘l\h1|2d6<Jw_1\h1\2d9=f w-1|r;(w1/2-wl/QX[_Qe,ge]Pde<C([w]A2(T))f wdf
—€ T T

—2e

if we use the Hunt-Muckenhoupt-Wheeden theorem with weight w=! € A%(T) and w~2pw'/? applied
to function wl/QX[,QEge]. In (5.11), this gives the contribution

([ ) (. ) <t () ([ 0) <t

(5.12)

L € w € @
([ ) ([ ) 19

ha(p) =ImU ("), ol <e,

We are left with controlling

Notice that

where »
def 1 e +¢
Ul) = — .

(©) 21 Jjgj>2e € — ¢

wdh, CeD.

When [ — 1| < €, we have
1 €
1A < 4 dd<e'| ——wdh < et
‘U (C)| ~ J|9>26 |€“9 — 1‘271) ~ € J:[[‘ 02 + 62w € C([w]Az(T))a
where we used the bound (5.5). Therefore,
[ImU (") ~ImU(1 - ¢)] < C([w]ay(m), ol <e
as follows from the Fundamental Theorem of Calculus. Therefore,

f hgd@ < (ImU(1 - ¢))? J_e wtdf + C([w] ay(r)) r wtdo. (5.14)

The second term gives the following contribution in (5.13):
- ‘ w < _ 2
([ ) Clula) | wmas < ol (@)’ < Clolan). (519

where we used (5.9). For the first term in (5.14), recall that Re(F~1) = w/(w? + @?) a.e. on T and
estimate

e 2 (f_: Md&) (ImU(1—e¢))? J_:w—lde < (?(RQ(F—l)’ 1—¢)-(Im U(l—e))2) . (6—1 J_: w—1d0) .

For the last factor, one can write
€
6_1J w_1d9 S./ [w]Az(T) .
—€

Since Re(F 1) is harmonic, fqua1 is absolutely continuous, and Re(F~!) = Re F/|F|?, we get
5 ReF(l—¢)

P(Re(F~),1—¢) - (ImU(1 —¢))? = TFa—oP

(ImU(1 - €))2
Notice that our normalization gives

1= (20 J_ wd < Re F(1— ¢) ~ J

s
——w
2 1 2
< 0%+ ¢

where the last bound is (5.5). Let us compare ImU(1 — €) and Im F(1 — €). By definition of F' and U,

df < C([w]a,(m) (5.16)

2e

[U(l—¢€)—F(1—-¢)|=< %Jﬂ wdf < C([w]a, ) -
Thus,
Re F(1 —¢) Re F(1 —¢)
TP —gp MU =) S g —gp (FU = oF + C[w]aym))

< Cllwlaen) (ReF0 -0+ oy )
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which, thanks to (5.16), is bounded by C([w]a,(r)). Summing up, we estimate K in (5.8) by K <
C([w] a,()) and the lemma is proved. O

6. APPENDIX: FISHER-HARTWIG WEIGHTS

The Fisher-Hartwig weights are a large class of weights on the circle, which generalizes the class of
Jacobi weights. It was at the focus of recent research (see, e.g., [8]) mainly due to some connections
with probability and mathematical physics. For these weights, the asymptotics of polynomials is now
well-understood [8]. In this section, we provide an upper bound for the function p.,(t) using some results
obtained in [21]. In particular, the analysis developed for Fisher-Hartwig weights will give us the proof
of the following lemma.

Lemma 6.1. Ifte (1,2), we have p.(t) < C(t —1)~1/2.

We provide its proof in the end of this section. For § > 0, consider the weight wg = |z — 1|2 on
the unit circle for and the associated orthogonal polynomials {®,,(z,wg)}. This is a particular choice for
the Fisher-Hartwig weight with the single point of singularity located at z = 1. Note that in order for
wg € Ay(T), one needs 28 < 1, i.e. §€ [0, %) We start with the the following proposition:

Proposition 6.2. Suppose S € [0, %) Then

1 1
[ws]a (T) ~ ~ .
2 1—-482 1-28

Furthermore, if 5 € [0,1/4], then
[wplazery — 1~ B
Remark. The first asymptotics is useful in particular when [wg]4,(r) > 2, i.e. when our weight varies

quite a bit, whereas when [wg] 4,1y — 1 < 1, the second formula is more helpful.

Proof. Tt is the straightforward calculation in which the integrals over intervals I involved in the definition
of A5(T) can be explicitly computed and estimated. We omit considering all cases here. The formula
which best explains the resulting bound is

e 1 o
@y r = 1-452 w = |9|2ﬂ

for I = [0,a] and any 0 < a < 7.
O

The next proposition makes use of some statements from [21]. Similar results for Jacobi weights were
obtained in [3].
Proposition 6.3. Let ws = |z — 1/?#, 3€[0,1/2). Then,

”(I)n('awﬁ)Hquﬁ(T) ~B,p logn, 28—-pB+1=0.
n~(2B=pB+1) 23 _pB 41 <0

In particular, sup H‘I)n(HwB)”LﬁB(T) < oo if and only if p <2+ %
Proof. First, write
00y = | I@alzwn)Pupdd + [ e wa)lPusds,
|0]>6 |0]<é
where § is a parameter independent of n. To control the first term, we use formula (1.13) of [21] to get
1-p/2
J D, (2, wp)[Pwsdd < C(B,p, 5)f wy "2d0 < C(B,p,9) .
|6]>6 |0|>6
As for the second term, using the asymptotics provided in (1.17) of [21] and applying a change of variables
x =nb/2, we get
on/2
f |0 (2, wg)[Pwpdf ~5 0?2 f 2P PEDi T 5 () + g1 p0(w) Pd,
10]<é

0
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where J,(z) is the Bessel function of the first kind. One can then split this new integral in 2 up into
two: when z € (0,1) and when & > 1. We then use the known asymptotics for Bessel functions (see,
e.g., [1]) to get

né/2 1, 26—pB+1>0
J |®,, (2, wp)[Pwsdd ~g n—(28—pB+1) (1 + J xwfpﬁdx) ~p.p 3 logn, 28—pB+1=0.
191< i n=(28-pB+1) 28 _pB4+1<0

In particular, this quantity is bounded precisely when 28—pB8+1 > 0, i.e. when 8 < ﬁ. The proposition
now follows from combining the given estimates. (I

Now, we are ready to prove the main lemma of this section.

Proof of lemma 6.1. From the first proposition in appendix, we get [wg]a,r) — 1 ~ B2 if B is small.
The second proposition shows that sup,, || P, (&, w5)||L55 (1) < o0 if and only if p < 2+ 7', Combining
these results we get the statement of the lemma. O
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