
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

DOI: 10.1002/ijch.201800003

Mathematical Analysis of Chemical Reaction Systems
Polly Y. Yu+*[a] and Gheorghe Craciun++*[b]

Abstract: The use of mathematical methods for the analysis
of chemical reaction systems has a very long history, and
involves many types of models: deterministic versus stochas-
tic, continuous versus discrete, and homogeneous versus
spatially distributed. Here we focus on mathematical models
based on deterministic mass-action kinetics. These models

are systems of coupled nonlinear differential equations on
the positive orthant. We explain how mathematical properties
of the solutions of mass-action systems are strongly related
to key properties of the networks of chemical reactions that
generate them, such as specific versions of reversibility and
feedback interactions.

Keywords: reaction networks · mathematical models · mass-action kinetics

1. Introduction

Standard deterministic mass-action kinetics says that the rate
at which a reaction occurs is directly proportional to the
concentrations of the reactant species. For example, according
to mass-action kinetics, the rate of the reaction X1 +X2!X3 is
of the form kx1x2, where xi is the concentration of species Xi

and k is a positive constant. If we are given a network that
contains several reactions, then terms of this type can be added
together to obtain a mass-action model for the whole network
(see example below). The law of mass-action was first
formulated by Guldberg and Waage[39] and has recently
celebrated its 150th anniversary.[68] Mathematical models that
use mass-action kinetics (or kinetics derived from the law of
mass-action, such as Michaelis-Menten kinetics or Hill
kinetics) are ubiquitous in chemistry and biol-
ogy.[1,16,28,30,36,40,45,47,66,68] The possible behaviors of mass-action
systems also vary wildly; there are systems that have a single
steady state for all choices of rate constants (Figure 2(a)),
systems that have multiple steady states (Figure 2(b)), systems
that oscillate (Figure 2(c)), and systems (e. g. a version of the
Lorentz system) that admit chaotic behavior.[67]

To illustrate mass-action kinetics, consider the reaction
network (N1) in Figure 1. According to mass-action kinetics,
the network (N1) gives rise to the following system of
differential equations on the positive orthant R4

>0:

dx1

dt
¼ �k1x1 þ k2x2

2 þ k3x1x3 � k4x2
1 � 2k5x2

1 þ k6x2x4

dx2

dt
¼ 2k1x1 � 2k2x2

2 þ k5x2
1 � k6x2x4

dx3

dt
¼ �k3x1x3 þ k4x2

1 þ k6x2x4

dx4

dt
¼ k5x2

1 � k6x2x4;

ð1Þ

where xi = [Xi] is the concentration of species Xi.
At any given time, the concentration vector x(t)= (x1(t), x2

(t), …, xn(t))
T is a point in Rn

>0. Tracing the path over time

gives a trajectory in the state space Rn
>0. For example,

Figure 2 shows several trajectories of three mass-action
systems. For this reason, any concentration vector x= (x1,
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Figure 1. Example network (N1).

Figure 2. Phase portraits showing possible behaviors of mass-action
systems: (a) uniqueness and stability of steady state, (b) bistability,
and (c) oscillation. The mass-action systems, with the rate constants

labeled on the reaction edges, are (a) 1
0:7
�!X1

1
!X1 þ X2

1
�!1, (b)

X1 þ X2

1
�!X1 G

3

1
H 2X1 and X1 þ X2

2
�!X2 G

2

1
H 2X2, (c) a version of the

Selkov model, or “Brusselator”, whose network (N2) is shown in
Figure 3 and rate constants given in Remark 2.5.
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x2,… , xn)
T is also called a state of the system, and we will

refer to it as such.
In vector-based form, this dynamical system can also be

written as

d
dt
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In order to write down a general mathematical formula for
mass-action systems we need to introduce more definitions
and notation.

The objects that are the source or the target of a reaction
are called complexes. For example, the complexes in the
network (N1) are X1, 2X2, X1 +X3, 2X1, and X2 +X4. Their

complex vectors are the vectors
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, respectively.

Let us introduce the notation

xy ¼ xy1
1 xy2

2 � � � xyn
n ð3Þ

for any two vectors x= (x1, x2, …, xn)
T2Rn

>0 and y= (y1, y2,… ,
yn)

T2Rn
�0. Then the monomials x1, x2

2, x1x3,…, in the reaction
rate functions in (2) can be represented as xy, where x is the
vector of species concentrations and y is the complex vector of
the source of the corresponding reaction. For example, X1 +X3

is the source of the reaction X1 +X3!X4, its complex vector

is
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, and the corresponding reaction rate function in (2) is

k3x1x3.

The vectors in (2) are called reaction vectors, and they are
the differences between the complex vectors of the target and
source of each reaction; a reaction vector records the
stoichiometry of the reaction. For example, the reaction vector

corresponding to X1 +X3!X4 is
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There is a naturally defined oriented graph underlying a
reaction network, namely the graph where the vertices are
complexes, and the edges are reactions. Therefore, a chemical
reaction network can be regarded as a Euclidean embedded
graph G= (V, E), where V�Rn

�0 is the set of vertices of the
graph, and E�V 3 V is the set of oriented edges of G.

For example, (N2) depicted in Figure 3 is the network for
a version of the Selkov model for glycolysis. Its Euclidean
embedded graph G in R2

>0 is shown in Figure 4.
Given a reaction network with its Euclidean embedded

graph G, and given a vector of reaction rate constants k, we
can use the notation (3) to write the mass-action system
generated by (G, k) as shown in (4)
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dx
dt

¼
X

y!y02G

ky!y0x
y y0 � yð Þ: ð4Þ

The stoichiometric subspace S of a reaction network G is
the vector space spanned by its reaction vectors:

S ¼ spanRfy0�y : y! y0 2 Gg: ð5Þ

The stoichiometric compatibility class of x02Rn
>0 is the

set (x0 +S)>0 = (x0 +S)\Rn
>0, i.e., the intersection between the

affine set x0 +S and the positive orthant. Note that the solution
x(t) of the mass-action system with initial condition x0 is
confined to (x0 +S)>0 for all future time, i. e., each stoichio-
metric compatibility class is a forward invariant set.[30]

We say that a network or a graph G is reversible if y’!y
is a reaction whenever y!y’ is a reaction. We say that G is
weakly reversible if every reaction is part of an oriented
cycle, i. e., each connected component of the graph G is
strongly connected. The network (N1) is weakly reversible,
while (N2) is reversible. When the underlying graph G is
weakly reversible, we will see that the solutions of the mass-
action system are known (or conjectured) to have many
important properties, such as existence of positive steady
states for all parameter values, persistence, permanence, and if
the network satisfies some additional assumptions, also global
stability.[17,18,23,30,40,42]

For example, in the next section we will see that the mass
action systems generated by network (N1) and any values of
rate constants are globally stable, i. e., there exists a globally
attracting steady state within each stoichiometric compatibility
class.

2. Results Inspired by Thermodynamic Principles

The idea of relating chemical kinetics and thermodynamics
has a very long history, starting with Wegscheider,[69] and
continuing with Lewis,[53] Onsager,[58] Wei and Prater,[70]

Aris,[8] Shear,[62] Higgins,[41] and many others. For example, the
notion of “detailed-balanced systems” was studied in depth,
and this notion has a strong connection to the thermodynam-
ical properties of microscopic reversibility which goes back to
Boltzmann.[12,13,38]

2.1 Detailed-balanced and Complex-balanced Systems

In 1972 Horn and Jackson[42] have identified the class of
“complex-balanced systems” as a generalization of detailed-
balanced systems. While complex-balanced systems are not
necessarily thermodynamically closed systems, Horn and
Jackson were interested in systems that behave as though the
laws of thermodynamics for closed systems are obeyed. In
particular, according to the Horn-Jackson theorem below, a
complex-balanced system has a unique steady state within
each stoichiometric compatibility class, and it is locally stable
within it.[42]

Of all the positive steady states, we call attention to two
kinds that are especially important. These are characterized by
the fluxes at a state x0, i. e., the values ky!y0x

y
0 of the reaction

rate functions evaluated at x0.

Definition 2.1. A state x0 of a mass-action system is a
detailed-balanced steady state if the network is reversible,
and every forward flux is balanced by the backward flux at
that state, i. e., for every reaction pair y)* y0, we have

ky!y0x
y
0 ¼ ky0!yx

y0

0 : ð6Þ

In particular, if a network is not reversible, then it cannot
admit a detailed-balanced steady state.

A state x0 of a mass-action system is a complex-balanced
steady state if at each vertex of the corresponding Euclidean
embedded graph G, the fluxes flowing into the vertex balance
the fluxes flowing out of the vertex at that state x0, i. e., for
every complex y we have

X

y!y02G

ky!y0x
y
0 ¼

X

y0!y2G

ky0!yx
y0

0 ð7Þ

In particular, it can be shown that if the network is not
weakly reversible, then it cannot admit a complex-balanced
steady state.

At a detailed-balanced steady state x0, the fluxes across
pairs of reversible reactions are balanced; hence x0 is also
called an edge-balanced steady state. At a complex-balanced
steady state x0, the net flux through any vertex is zero; hence
x0 is also called a vertex-balanced steady state.

Figure 3. Example network (N2), a version of the Selkov model for
glycolysis. Also can be regarded as a version of the “Brusselator”.

Figure 4. The Euclidean embedded graph G of the network (N2) as
shown in Figure 3.
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Definition 2.2. A detailed-balanced system is a mass-action
system (G, k) that has at least one detailed-balanced steady
state. A complex-balanced system is a mass-action system
(G, k) that has at least one complex-balanced steady state.

It is not difficult to check that if the state x0 is detailed-
balanced, then it is complex-balanced, i. e., complex balance is
a generalization of detailed balance. Complex-balanced sys-
tems enjoy many properties of detailed-balanced systems; the
Horn-Jackson theorem is the first such result.

Theorem 2.3 (Horn-Jackson theorem[42]). Consider a reaction
network G and a vector of reaction rate constants k. Assume that
the mass-action system generated by (G, k) has a complex-
balanced steady state x*; in other words, (G, k) is a complex-
balanced system. Then all of the following properties hold:

1. All positive steady states are complex-balanced, and
there is exactly one steady state within every stoichiometric
compatibility class.

2. The set of complex-balanced steady states Zk satisfies
the equation ln Zk = ln x*+S?, where S is the stoichiometric
subspace of G.

3. The function

LðxÞ ¼
X

n

j¼1

xiðlnxi � lnx�i � 1Þ: ð8Þ

is a strictly convex Lyapunov function of this system,
defined on Rn

>0 and with global minimum at x=x*.

4. Every positive steady state is locally asymptotically
stable within its stoichiometric compatibility class.

Remark 2.4. The original paper of Horn and Jackson[42]

claimed that each complex-balanced steady state is a global
attractor within its stoichiometric compatibility class. Later,
Horn[44] realized that this claim does not follow from the
existence of the Lyapunov function above, and formulated it
as a conjecture, later known as the “global attractor
conjecture” (see Section 4).

Remark 2.5. Horn and Jackson referred to the Lyapunov
function (8) as a “pseudo-Helmholtz function”. This function
can be regarded as a finite-dimensional version of the
Boltzmann entropy, and the fact that it decreases along
trajectories of a complex-balanced system can be regarded as
a version of the Boltzmann’s H-theorem.[38] Shear[62] claimed
this to be true for any steady state of a reversible system (not
necessarily complex-balanced), but this claim was later shown
to be false by Higgins.[41] For example, the mass-action system
generated by network (N2) in Figure 3 with rate constants

k1 ¼ 0:5, k2 ¼ k6 ¼ k8 ¼ 0:1,

k3 ¼ k4 ¼ 0:01, k5 ¼ k7 ¼ 1,

has a unique positive steady state that is unstable and sits

inside a stable limit cycle. Several trajectories, including the
limit cycle, of this mass-action system are featured in
Figure 2(c).

Remark 2.6. As we discussed earlier, ideas inspired by
thermodynamics (specifically the Boltzmann equation) can be
used to analyze chemical reaction networks. On the other
hand, results obtained for chemical reaction networks can be
used to analyze discrete versions of the Boltzmann equa-
tion.[26]

2.2 Deficiency Theory

The existence of a complex-balanced steady state is difficult
to check in practice, but simple sufficient conditions for
complex balance exist. The best known result, due to Feinberg
and Horn,[29,33,43] is based on deficiency, a non-negative integer
associated to a reaction network.

Definition 2.7. If the underlying graph G of a reaction
network has m nodes and ‘ connected components, and the
dimension of the stoichiometric subspace is s, then the
deficiency of the network is the non-negative integer d=
m�‘�s.

Theorem 2.8 (Deficiency zero theorem[29,33,43]). A mass-action
system is complex-balanced for all values of its reaction rate
constants if and only if it is weakly reversible and has
deficiency zero.

The complex balance property has rich algebraic structure,
and deficiency can be regarded as a measure of how far a
weakly reversible system is from being complex-balanced. In
particular it has been shown that, given a weakly reversible
network G, the mass-action system generated by (G, k) is
complex-balanced if and only if the vector of reaction rate
constants k lies on an algebraic subvariety of codimension
d.[18] In this context, the deficiency zero theorem refers to the
codimension zero case, i. e., the case where the mass-action
system is complex-balanced for all k.

Example 2.9. Consider again the reaction network (N1) from
Figure 1. This network is weakly reversible and has deficiency
d=5�2�3=0. Therefore, according to the deficiency zero
theorem, the network (N1) is complex-balanced for all values
of its reaction rate constants k1, k2, …, k6. Furthermore,
according to the Horn-Jackson theorem, it follows that the
mass-action system (2) has a unique (locally asymptotically
stable) steady state within each stoichiometric compatibility
class, for all choices of reaction rate constants. Global stability
follows from recent results in [17].

Example 2.10. The dynamical properties of mass-action
systems with d>0 may depend on the values of the rate
constants ki. For example, the network (N2) in Figure 3 has
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deficiency d=5�2�2=1. The deficiency zero theorem is
silent in this case. Indeed, we have already seen in Remark 2.5
that for some chosen rate constants, this system has a limit
cycle and an unstable steady state. However, if we choose all
ki =1, the system is complex-balanced, and thus it has a
unique locally asymptotically stable steady state.

Remark 2.11. If a network has deficiency d=0 but is not
weakly reversible, then it cannot have any positive steady
states, i. e., its steady states (if there are any) must be on the
boundary of Rn

�0.[30] On the other hand, according to
Feinberg’s “deficiency one theorem”, some networks that have
d>0 are known to have a unique steady state within each
stoichiometric compatibility class for all rate constants.[14,30–32]

For results on existence of steady states for “generalized mass
action systems”, see [22, 57].

3. Multistability and Chemical Switches

There is great interest in biological applications in under-
standing “biochemical switches”, i. e., reaction networks that
have multiple positive steady states within the same stoichio-
metric compatibility class. As a consequence of the Horn-
Jackson theorem, if the network is weakly reversible, then
these steady states cannot be complex-balanced, and the
deficiency of such a network must be strictly positive.

3.1 The SR Graph

Some mathematical criteria for multistability are able to detect
very subtle differences between networks. One such approach
was introduced in [20] and is based on a bipartite labeled
graph associated to the reaction network, called the species-
reaction graph (SR graph). The SR graph is defined as
follows. The nodes of the SR graph are either species nodes
(one for each chemical species in the network) or reaction
nodes (one for each reversible or irreversible reaction in the
network). There are no edges between two species nodes, or
between two reaction nodes. Consider a species node X and a
reaction node y!y’ (or y)* y0). The SR graph contains an
edge between these two nodes if and only if X is involved in
this reaction, either as a reactant or as a product. Each edge
has a complex label, as follows. If X is a reactant (i. e., is in
the support of y), we label the edge with the complex y;
similarly, if X is a product (i. e., is in the support of y’), we
label the edge with the complex y’. If X is both a reactant and
a product, we draw two edges from the species node to the
reaction node, and we label one with y and the other with y’.

Example 3.1. Consider the network (N3) in Figure 5.
The SR graph of this network is shown in Figure 6. Note

how, for reversible reactions, the forward and backward
reactions share the same reaction node in the SR graph. The
complex labels of all the edges are shown in blue in Figure 6.

In order to describe criteria for multistability that are based
on the SR graph, we have to distinguish between various types
of cycles that may occur in it.

Definition 3.2. If a pair of edges in an SR graph shares a
reaction node and have the same complex label, then it is
called a c-pair. If a cycle in an SR graph contains an odd
number of c-pairs, then it called an odd cycle; otherwise it is
called an even cycle. The stoichiometric coefficient of an edge
that is adjacent to species X and has complex label y is the
coefficient of X within y. If all the edges of a cycle have
stoichiometric coefficient equal to 1, then that cycle is called a
1-cycle. Also, we say that two cycles have an S-to-R
intersection if all connected components of their intersection
are paths from a species node to a reaction node.

Using this classification of cycles, we can formulate the
following necessary condition for multistability:

Theorem 3.3 ([20,21, 25]). Assume that the SR graph of a
reaction network satisfies the following two conditions:

(i) all cycles are odd cycles or 1-cycles, and
(ii) no two even cycles have an S-to-R intersection.
Then the corresponding mass-action system cannot have

multiple non-degenerate steady states within the same
stoichiometric compatibility class, for any values of the
reaction rate constants.

Figure 5. Example network (N3).

Figure 6. The SR graph of reaction network (N3) in Figure 5.
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Let us use this theorem to analyze the reaction network
whose SR graph is shown in Figure 6. Note that the
stoichiometric coefficients of all the edges are 1, except for the
edge that connects the species S1 and the reaction E2S2!
2S1+E2. Therefore, all the cycles are 1-cycles, except for the
cycles that contain this particular edge. On the other hand, it is
easy to check that the four cycles that contain this edge are
odd cycles, so condition (i) of the theorem above is satisfied.
Condition (ii) is also satisfied, since in order for two cycles to
have an S-to-R intersection we would need to have at least one
species node with three or more adjacent edges; but all species
nodes in this SR graph have at most two adjacent edges.

The network (N3) contains two substrates S1, S2, and a
single product P1. A similar network with three substrates S1,
S2, S3, and two products P1, P2 does give rise to multistable
systems for some values of the rate constants; in that case,
some of the cycles that fail to be 1-cycles also fail to be even
cycles, so condition (i) of the theorem does not hold. On the
other hand, a similar network with four substrates and three
products cannot give rise to multiple steady states, and so
on.[25] This shows that the capacity for multistability is not
only a result of having a complex network with many species
and reactions, but more subtle features must be present, some
of which are described by Theorem 3.3. More examples of the
use of this theorem and related results can be found in
[20,25], and further results and generalizations can be found
in [10,21].

3.2 The Jacobian Criterion

The results presented in the previous section on the lack of
multistability rely on the injectivity property for reaction
networks (see below). This property was introduced in [19],
where the Jacobian criterion was shown to be a sufficient
condition for injectivity, which, in turn, implies uniqueness of
steady states for “open” mass-action systems, i. e., systems
where there is a non-negative inflow rate for each species, and
also a positive outflow/degradation rate for each species. The
inflow terms are represented by “inflow reactions” of the form
1!X, and the outflow/degradation terms are represented by
“outflow reactions” of the form X!1. Note that such a
network has a single stoichiometric compatibility class, which
is the whole positive orthant.

Definition 3.4. We say that a reaction network G is injective
if the right-hand side of the differential equation (4), regarded
as a function of x is injective (i. e., one-to-one) for all values
of the reaction rate constants.

It is easy to see that injectivity implies that there cannot
exist multiple steady states. In general it is difficult to check
the global injectivity of nonlinear functions such as the right-
hand side of (4). The following theorem (called the Jacobian
criterion) addresses this challenge.

Theorem 3.5 ([19,21]). Consider an open reaction network G.
Then the following hold:

1. The open reaction network G is injective if and only if
the determinant of the Jacobian matrix of the right-hand side
of its differential equation (4) is different from zero for all
values of x and for all values of the reaction rate constants k.

2. Consider a reaction network G’ such that its corre-
sponding open reaction network is G, i. e., G includes the
reactions of G’ and inflow and outflow reactions for all
species. If G is injective, then for all choices of reaction rate
constants, G cannot give rise to multiple steady states, and G’
cannot give rise to multiple non-degenerate steady states.

Example 3.6. For example, consider the network (N4) in
Figure 7.

The reactions Xi)*1 are due to the inflow and outflow of
the species Xi. The mass-action system for this network is
given by

dx1

dt
¼ k5 � k4x1 � k1x1x2 þ k2x3 � k3x1

dx2

dt
¼ k7 � k6x2 � k1x1x2 þ k2x3 þ 2k3x1

dx3

dt
¼ k9 � k8x3 þ k1x1x2 � k2x3:

ð9Þ

The Jacobian matrix of the right-hand side of (9) is

Jacðx;kÞ ¼

�k4 � k1x2 � k3 �k1x1 k2

�k1x2 þ 2k3 �k6 � k1x1 k2

k1x2 k1x1 �k8 � k2

0

B

B

B

@

1

C

C

C

A

:

ð10Þ

Then a simple calculation shows that we have

detðJacðx; kÞÞ ¼ �k4k6k8 � k2k4k6 � k1k4k8x1 � k1k6k8x2

�k3k6k8 � k2k3k6 � 3k1k3k8x1:

ð11Þ

Since x and k have positive coordinates, this implies that
the determinant of the Jacobian of the right-hand side of (9) is
different from zero for all x and all k.

Then, by applying Theorem 3.5, it follows that the network
(N4) cannot give rise to multiple steady states for any values
of the reaction rate constants.

Figure 7. Example network (N4).
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More details and examples about the use of the Jacobian
criterion can be found in [19]. Further results and general-
izations for closed or “semi-open” systems can be found in
[9–11,21, 34, 48, 49, 56,63].

4. Persistence and Global Stability

Starting with the work of Horn[42,44] and Feinberg,[32] there has
been ever an increasing interest in understanding the long-time
dynamics of solutions of mass-action systems. For example, in
1974 Horn has conjectured that the unique complex-balanced
steady state is not only locally stable, but is actually globally
stable.[44] This statement was later[18] called the global attractor
conjecture:

Global Attractor Conjecture. Any complex-balanced mass-
action system has a globally attracting point within every
stoichiometric compatibility class.

This conjecture is widely regarded as the most important open
problem in this field. Its study led to an increased interest in
the limit behavior of solutions of mass-action systems as t!
1, and has inspired the following more general conjectures:[23]

Persistence Conjecture. Any weakly reversible mass-action
system is persistent, i. e., its solutions cannot have a limit
point on the boundary of the positive orthant.

Permanence Conjecture. Any weakly reversible mass-action
system is permanent, i. e., there exists a globally attracting
compact set within every stoichiometric compatibility class.

Figure 2(a) and (c) demonstrate persistence (i. e., none of the
species become extinct) as well as permanence (i. e., the
eventual concentrations of all the species become bounded and
bounded away from 0). In contrast, the system corresponding
to Figure 2(b) is not persistent.

The global attractor conjecture is the oldest and best
known of these conjectures, and has resisted efforts for a proof
for over four decades, but proofs of many special cases have
been obtained during this time, for example in [2, 7,18, 23,59,
64–66]. The conjecture originated from the 1972 breakthrough
work by Horn and Jackson,[42] and was formulated in its
current form by Horn in 1974.[44] As a historical note, actually
Horn and Jackson[42] stated that the complex-balanced steady
state within each stoichiometric compatibility class is a global
attractor, but soon afterwards Horn explained that they have
not actually proved this claim, and he proposed this global
convergence property as a conjecture.[44]

Recently, Craciun, Nazarov and Pantea[23] have proved the
three-dimensional case of the global attractor conjecture, and
Pantea[59] has generalized this result for the case where the
dimension of the stoichiometric compatibility class is at most
three. Using a different approach, Anderson[2] has proved the
conjecture under the additional hypothesis that the reaction

network has a single linkage class, and this result has been
generalized by Gopalkrishnan, Miller, and Shiu[37] for the case
where the reaction network is strongly endotactic. A proof of
the global attractor conjecture in full generality has been
recently proposed in [17].

For example, the weakly reversible mass-action system
with deficiency d=0 corresponding to Figure 2(a) has a
globally attracting point for all choices of rate constants. This
follows from the results in [23] because the system has
dimension n�3. Alternatively it also follows from [2] because
it has a single linkage class. However, the reversible mass-
action system corresponding to Figure 2(c) is complex-bal-
anced only for some choices of rate constants,[18] and therefore
has a globally attracting point for those choices of rate
constants.[23] In contrast, the mass-action system corresponding
to Figure 2(b) is never complex-balanced for any value of the
rate constants, because it is not weakly reversible.

The persistence conjecture and the permanence conjecture
have only been proved for two-dimensional systems.[23]

Remark 4.1. Note that the applicability of all the results
described in the previous sections can be extended by using
the fact that a reaction network is not uniquely identified by
the mass-action systems that it generates. In other words,
different networks may give rise to the same dynamical
systems.[24] Therefore, one may be able to deduce properties of
the dynamical systems generated by a given network by using
the fact that there exists another network that gives rise to the
same model, and this second network may exhibit useful
properties that the first one did not (for example, the second
network may be weakly reversible, or its SR graph may have
useful properties[24,46]).

5. Other models: Non-polynomial Models,
Stochastic Mass-action Systems,
Reaction-diffusion Equations

We have mostly focused on deterministic mass-action kinetics,
which is a finite-dimensional system of differential equations
that is best suited for high molecular counts in well-mixed
dilute solutions. Many other models of chemical reaction
systems exist, and they may be more suitable for very low
molecular counts and/or spatially inhomogeneous systems. In
this section, we describe some of these types of models, all of
which are active areas of research.

5.1 Anomalous Reaction Orders and Time-dependent
Reaction Rate constants

To model spatially inhomogeneous systems, one can modify
mass-action kinetics in several ways. For example, one can
allow the rate constants to become time-dependent,[51] or one
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can allow the kinetic orders (i. e., the powers in the reaction
rate functions) to be different from standard mass-action
kinetics.[51,61] The latter is sometimes called power-law
kinetics.

In the case where the rate constants are time-dependent,
the system of differential equations becomes non-autonomous,
but one may still be able to draw conclusions about persistence
or permanence properties. One approach embeds this non-
autonomous dynamical system into an autonomous differential
inclusion model, and then constructs forward invariant sets,
i. e., invariant regions, for the differential inclusion model.[15,17]

The reaction rate functions for power-law kinetics are
generalized monomials (whose exponents may be non-
integer). Some of the techniques used for the analysis of
classical mass-action systems can be carried over to this
setting.[22,23,42,57]

5.2 Michaelis-Menten Kinetics, Hill Kinetics, and
Quasi-steady State Approximation

In biochemistry, it is common to see the Michaelis-Menten
enzyme kinetics or the Hill binding kinetics. These are derived
from mass-action kinetics by quasi-steady state approxima-
tion, which is a method of model reduction based on
elimination of fast intermediates.[28,45,60]

Mathematically, the Michaelis-Menten and the Hill ki-
netics give rise to reaction rate functions that are rational
functions, i. e., ratios of polynomial functions. The analysis of
these systems can be reduced to the analysis of dynamically
equivalent mass-action systems by using time-rescaling to
eliminate all denominators.[15]

For example, consider the reversible reaction
X1 þX2 )* 2X1, where the forward reaction X1 +X2!2X1 is
modeled with a Michaelis-Menten reaction rate function k1xy

k2þx,
and the backward reaction 2X1!X1 +X2 is modeled using
standard mass-action kinetics with reaction rate function k3x2

1.
Then the system of differential equations corresponding to
these two reactions is

dx1

dt
¼ k1x1x2

k2 þ x1
� k3x2

1

dx2

dt
¼ � k1x1x2

k2 þ x1
þ k3x2

1:

Instead of studying the above equations, one may study the
mass-action system

dx1

dt
¼ k1x1x2 � k2k3x2

1 � k3x3
1

dx2

dt
¼ �k1x1x2 þ k2k3x2

1 þ k3x3
1

corresponding to the reaction network X1 þX2 )* 2X1 and
3X1!2X1 +X2. To get from the original system to the mass-
action system, we have multiplied the vector field by the non-

zero scalar field k2 +x1; this preserves the trajectory curves of
the system and corresponds to a time-rescaling along the
trajectories.[15]

5.3 Stochastic Mass-action Systems

For a system whose chemical species are in very low
abundance, the notion of concentration may no longer be a
meaningful quantity and molecular count should be used
instead. In this scenario, the most common model is stochastic
mass-action kinetics, where the dynamics is given by a
continuous-time Markov process.[6]

There are strong connections between stochastic and
deterministic mass-action systems.[3–5,52] For example, under
appropriate volume scaling, the solutions of the stochastic
system converge to those of the deterministic system.[52]

Moreover, if the deterministic system is complex-balanced,
then the stochastic system has a unique stationary distribution,
which is a product of Poisson distributions.[5]

Alternatively, instead of studying a Markov process, one
may choose to study the time evolution of the distribution on
the state space, as governed by the chemical master equation,
a system of ordinary differential equations whose dimension is
the size of the state space.[45]

5.4 Reaction-diffusion Equations

If spatial inhomogeneity and specific diffusion rates play an
important role, then one may use partial differential equations
(PDEs) to model that system. Reaction-diffusion equations are
the most common such PDEs in practice. For example, they
are used for analyzing biological pattern formation and, in
particular, Turing patterns.[50,54] Recent work features strong
connections between reaction-diffusion equations and com-
plex-balanced mass-action systems.[27,35,55]

References

[1] U. Alon, An Introduction to Systems Biology: Design Principles
of Biological Circuits, Chapman & Hall/CRC, Boca Raton, 2006.

[2] D. F. Anderson, SIAM J. Appl. Math. 2011, 71, 1487–1508.
[3] D. F. Anderson, D. Cappelletti, T. G. Kurtz, SIAM J. Appl. Dyn.

Syst. 2016, 16, 13091339.
[4] D. F. Anderson, G. Craciun, M. Gopalkrishnan, C. Wiuf, Bull.

Math. Biol. 2015, 77, 1744–1767.
[5] D. F. Anderson, G. Craciun, T. G. Kurtz, Bull. Math. Biol. 2010,

72, 1947–1970.
[6] D. F. Anderson, T. G. Kurtz, Stochastic Analysis of Biochemical

Systems, Springer International Publishing, New York, 2015.
[7] D. Angeli, P. de Leenheer, E. D. Sontag, SIAM J. Appl. Math.

2011, 71, 128–146.
[8] R. Aris, Arch. Ration. Mech. Anal. 1965, 19, 81–99.
[9] M. Banaji, P. Donnell, S. Baigent, SIAM J. Appl. Math. 2007, 67,

1523–1547.

Isr. J. Chem. 2018, 58, 1 – 10 © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.ijc.wiley-vch.de 8

These are not the final page numbers! ��

Review

www.ijc.wiley-vch.de


1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

[10] M. Banaji, G. Craciun, Commun. Math. Sci. 2009, 7, 867–900.
[11] M. Banaji, C. Pantea, SIAM J. Appl. Dyn. Syst. 2016, 15, 807–

869.
[12] L. Boltzmann, Wien. Ber. 1887, 95, 153–164.
[13] L. Boltzmann, Gastheorie, Johann Ambrosius Barth, Leipzig,

1896.
[14] B. Boros, Math. Biosci. 2013, 245, 157–170.
[15] J. D. Brunner, G. Craciun, SIAM J. Appl. Math., to appear.
[16] B. L. Clarke, Stability of Complex Reaction Networks, in

Advances in Chemical Physics, Vol. 43, (Eds.: I. Prigogine, S. A.
Rice), John Wiley, Hoboken NJ, 1980, 1–216.

[17] G. Craciun, arXiv.org, e-Print Arch., Dyn. Syst. 2006, avail. at
https://arxiv.org/abs/1501.02860.

[18] G. Craciun, A. Dickenstein, A. Shiu, B. Sturmfels, J. Symb.
Comp. 2009, 44, 1551–1565.

[19] G. Craciun, M. Feinberg, SIAM J. Appl. Math. 2005, 65, 1526–
1546.

[20] G. Craciun, M. Feinberg, SIAM J. Appl. Math. 2006, 66, 1321–
1338.

[21] G. Craciun, M. Feinberg, SIAM J. Appl. Math. 2010, 70, 1859–
1877.

[22] G. Craciun, S. Müller, C. Pantea, P. Y. Yu, arXiv.org, e-Print
Arch., Dyn. Syst. 2018, avail. at https://arxiv.org/abs/1802.06919.

[23] G. Craciun, F. Nazarov, C. Pantea, SIAM J. Appl. Math. 2013, 73,
305–329.

[24] G. Craciun, C. Pantea, J. Math. Chem. 2008, 44, 244–259.
[25] G. Craciun, Y. Tang, M. Feinberg, Proc. Natl. Acad. Sci. U.S.A.

2006, 103, 8697–8702.
[26] G. Craciun, M. B. Tran, arXiv.org, e-Print Arch., Math. Phys.

2016, avail. at https://arxiv.org/abs/1608.05438.
[27] L. Desvillettes, K. Fellner, B. Q. Tang, SIAM J. Math. Anal.

2017, 49, 2666–2709.
[28] P. Érdi, J. Tóth, Mathematical Models of Chemical Reactions,

Manchester University Press, Manchester, 1989.
[29] M. Feinberg, Arch. Ration. Mech. Anal. 1972, 49, 187–194.
[30] M. Feinberg, Lectures on Chemical Reaction Networks, written

version of lectures given at the Mathematical Research Center,
University of Wisconsin–Madison, 1979, avail. at http://
www.crnt.osu.edu/LecturesOnReactionNetworks.

[31] M. Feinberg, Arch. Ration. Mech. Anal. 1995, 132, 311–370.
[32] M. Feinberg, Chem. Eng. Sci. 1987, 42, 2229–2268.
[33] M. Feinberg, F. Horn, Chem. Eng. Sci. 1974, 29, 775–787.
[34] E. Feliu, C. Wiuf, Appl. Math. Comput. 2012, 219, 1449–1467.
[35] K. Fellner, B. Q. Tang, arXiv.org, e-Print Arch., Math. Phys.

2017, avail. at https://arxiv.org/abs/1708.01427.
[36] G. Gnacadja, Bull. Math. Biol. 2017, avail. at https://doi.org/

10.1007/s11538-017-0369-z.
[37] M. Gopalkrishnan, E. Miller, A. Shiu, SIAM J. Appl. Dyn. Syst.

2014, 13, 758–797.
[38] A. N. Gorban, I. V. Karlin, Invariant Manifolds for Physical and

Chemical Kinetics, Lecture Notes in Physics, Springer-Verlag
Berlin Heidelberg, New York, 2005.

[39] C. M. Guldberg, P. Waage, Studier i affiniteten, Forhandlinger:
Videnskabs-Selskabet i Christiania 1864, 35–45.

[40] J. Gunawardena, Chemical Reaction Network Theory for in-silico
biologists, 2003, avail. at http://vcp.med.harvard.edu/papers.html.

[41] J. Higgins, J. Theor. Biol. 1968, 21, 293–304.
[42] F. Horn, R. Jackson, Arch. Ration. Mech. Anal. 1972, 47, 81–116.
[43] F. Horn, Arch. Ration. Mech. Anal. 1972, 49, 172–186.
[44] F. Horn, The dynamics of open reaction systems, in Mathematical

Aspects of Chemical and Biochemical Problems and Quantum
Chemistry (Proc. SIAM-AMS Sympos. Appl. Math.) 1974, 125–
137.

[45] B. P. Ingalls, Mathematical Modeling in Systems Biology: An
Introduction, The MIT Press, Cambridge, 2013.

[46] M. D. Johnston, D. Siegel, G. Szederkényi, J. Math. Chem. 2012,
50, 274–288.

[47] H. de Jong, J. Comput. Biol. 2002, 9, 67–103.
[48] B. Joshi, A. Shiu, SIAM J. Appl. Math. 2012, 72, 857–876.
[49] B. Joshi, A. Shiu, Math. Modell. Nat. Phenom. 2015, 10, 47–67.
[50] S. Kondo, T. Miura, Science 2010, 329, 1616–1620.
[51] R. Kopelman, Science 1988, 241, 1620–1626.
[52] T. G. Kurtz, J. Chem. Phys. 1972, 57, 2976–2978.
[53] G. N. Lewis, Proc. Natl. Acad. Sci. U.S.A. 1925, 11, 179–183.
[54] M. Mincheva, G. Craciun, Math. Biosci. Eng. 2013, 10, 1207–

1226.
[55] F. Mohamed, C. Pantea, A. Tudorascu, J. Math. Chem. 2017, 56,

30–68.
[56] S. Müller, E. Feliu, G. Regensburger, C. Conradi, A. Shiu, A.

Dickenstein, Found. Comput. Math. 2016, 16, 69–97.
[57] S. Müller, G. Regensburger, SIAM J. Appl. Math. 2012, 72,

1926–1947.
[58] L. Onsager, Phys. Rev. 1931, 37, 405–426.
[59] C. Pantea, SIAM J. Math. Anal. 2012, 44, 1636–1673.
[60] C. Pantea, A. Gupta, J. B. Rawlings, G. Craciun, The QSSA in

chemical kinetics: As taught and as practiced, in Discrete and
Topological Models in Molecular Biology (Eds.: N. Jonoska, M.
Saito), Springer Berlin Heidelberg, Berlin, 2014, 419–442.

[61] M. A. Savageau, Math. Comput. Model. 1988, 11, 546–551.
[62] D. Shear, J. Theor. Biol. 1967, 16, 212–228.
[63] G. Shinar, M. Feinberg, Math. Biosci. 2012, 240, 92–113.
[64] A. Shiu, B. Sturmfels, Bull. Math. Biol. 2010, 72, 1448–1463.
[65] D. Siegel, D. MacLean, J. Math. Chem. 2000, 27, 89–110.
[66] E. D. Sontag, IEEE Trans. Autom. Control 2001, 46, 1028–1047.
[67] J. C. Sprott, J. A. Vano, J. C. Wildenberg, M. B. Anderson, J. K.

Noel, Phys. Lett. A 2005, 335, 207–212.
[68] E. O. Voit, H. A. Martens, S. W. Omholt, PLoS Comput. Biol.

2015, 11, e1004012, avail. at https://doi.org/10.1371/journal.-
pcbi.1004012

[69] R. Wegscheider, Z. Phys. Chem. 1902, 39, 257–303.
[70] J. Wei, C. D. Prater, Adv. Catal. 1962, 13, 203–392.

Received: January 10, 2018
Accepted: March 20, 2018

Published online on &&&, &&&&

Isr. J. Chem. 2018, 58, 1 – 10 © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.ijc.wiley-vch.de 9

These are not the final page numbers! ��

Review

http://vcp.med.harvard.edu/papers.html.
www.ijc.wiley-vch.de


1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

REVIEW

P. Y. Yu*, G. Craciun*

1 – 10

Mathematical Analysis of Chemical
Reaction Systems


