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Abstract

We present a novel method for identifying a biochemical reaction network based on
multiple sets of estimated reaction rates in the corresponding reaction rate equations
arriving from various (possibly different) experiments. The current method, unlike
some of the graphical approaches proposed in the literature, uses the values of the
experimental measurements only relative to the geometry of the biochemical reactions
under the assumption that the underlying reaction network is the same for all the
experiments. The proposed approach utilizes algebraic statistical methods in order
to parametrize the set of possible reactions so as to identify the most likely network
structure, and is easily scalable to very complicated biochemical systems involving a
large number of species and reactions. The method is illustrated with a numerical
example of a hypothetical network arising form a “mass transfer”-type model.

Keywords: Biochemical reaction network, law of mass action, algebraic statistical
model, polyhedral geometry.
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1 Introduction

In modern biological research, it is very common to collect detailed information on
time-dependent chemical concentration data for large networks of biochemical reactions
(see survey papers [3, 12]). Often, the main purpose of collecting such data is to
identify the exact structure of a network of chemical reactions for which the identity
of the chemical species present in the network is known but a priori no information is
available on the species interactions (see e.g., [13]). The problem is of interest both in
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Figure 1: Identifiability of reaction networks given experimental data. Note that, for a determinis-
tic mass-action model, even if we can estimate the vector K of parameter values with great accuracy,
we cannot determine if the “correct” reaction network is {A1 → 2A1, A1 → A1 + A2, A1 → 2A3}
or {A1 → 2A2, A1 → A1 + A3, A1 → 2A3}, because K belongs to the span of either one of these
networks. However, if instead a single point K one has available a set D = {Ki, i = 1 . . . , k},
interpreted as a result of random selection of parameter rate values according to some probability
law, then the spanning cone of the data points may be used to identify the sets of reactions that
“best explain” the data.

the setting of classical theoretical chemistry, as well as, more recently, in the context
of molecular and systems biology problems and as such has received a lot of attention
in the literature over last several decades as evidenced by multiple papers devoted to
the topic [1, 7, 8, 9, 11, 18, 19, 20, 21].

In general, two very different reaction networks might generate identical mass-action
dynamical system models, making it impossible to discriminate between them, even if
one is given experimental data of perfect accuracy and unlimited temporal resolution.
Sometimes this lack of uniqueness is referred to as the “fundamental dogma of chemical
kinetics”, although it is actually not a well known fact in the biochemistry or chemical
engineering communities [3, 4, 5]. Necessary and sufficient conditions for two reaction
networks to give rise to the same deterministic dynamical system model (i.e., the same
reaction rate equations) are described in [2], where the problem of identifiability of
reaction networks given high accuracy data was analyzed in detail. The key observation
is that, if we think of reactions as vectors, it is possible for different sets of such vectors
to span the same positive cones, or at least to span positive cones that have nonempty
intersection (see Figure 1 for an example).

On the other hand, it is often the case that experimental measurements for the
study of a specific reaction network or pathway are being collected under many different
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experimental conditions, which affect the values of reaction rate parameters. Almost
always, the reactions of interest are not “elementary reactions”, for which the reaction
rates parameters must be constant, but they are so called “overall reactions” that
summarize several elementary reaction steps. In that case the reaction rates parameters
may reflect the concentrations of biochemical species which have not been included
explicitly in the model. In such circumstances the reaction rate parameters are not
constant, but rather depend on specific experimental conditions, such as concentrations
of enzymes and other intermediate species. Therefore, the estimated vector of reaction
rate parameters will not be the same for all experimental conditions, but each specific
experimental setting will give rise to one such vector of parameters. However, the set
of all these vectors should span a specific cone, whose extreme rays should identify
exactly the set of reactions that gave rise to the data.

The purpose of the current paper is to propose a statistical method based on the
above geometric considerations, which allows one to take advantage of the inherent
stochasticity in the data, in order to determine the unique reaction network that can
best account for the results of all the available experiments pooled together. The idea
is related to the notion of an algebraic statistical model (as described in [14] Chapter 1),
and relies on mapping the estimated reaction parameters into an appropriate convex
region of the span of reaction vectors of a network, using the underlying geometry to
identify the reactions which are most likely to span that region. As shown below, this
approach reduces the network identification problem to a statistical inference problem
for the parameters of a multinomial distribution, which may then be solved for instance
using the classical likelihood methods.

2 Maximum Likelihood Inference for a Biochemical
Reaction Network

In this section we develop a formal way of inferring a most likely subnetwork of a given
conic network (i.e., network represented by a cone like the one in Figure 1) of the
minimal spanning dimension. For the inference purpose, in the network of m reactions
we assume that the empirical data D = {Ki, i = 1 . . . , k} ⊂ Rd is available in the
form of (multiple) estimates of the parameters of the system of differential equations
corresponding to a hypothesized biochemical network. As illustrated in Figure 1, such
networks are in general “unidentifiable” in the sense that different chemical reaction
networks may give rise to the same system of differential equations. However, in
the stochastic or “statistical” sense it is possible to identify the “most likely” (i.e.,
maximizing the appropriate likelihood function) network as indicated by the data D.

2.1 Multinomial model

Consider d species, and m possible reactions with reaction vectors R = {R1, . . . , Rm} ⊂
Rd among the species. (For more details about how each reaction generates a reaction
vector see [2].) Let Rd denote the collection of all

(
m
d

)
positive cones spanned by

subsets of d reactions in R.
Denote by cone(R) the positive cone generated by the reaction vectors in R. Let
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S be the partition of cone(R) obtained by all possible intersections of non-degenerate
cones in Rd. Suppose S contains n full-dimensional regions S1, . . . , Sn; throughout we
shall refer to these regions as building blocks, and to n as the number of building blocks.

Let ∆m−1 be a probability simplex in Rm and let θ ∈ ∆m−1 be a vector of prob-
abilities associated with the reactions that give rise to R. We assume that these m
reactions have the same source complex (i.e., form a conic network), since, as explained
in [2], the identifiability of a network can be addressed one source complex at a time.
Define the polynomial map

g : ∆m−1 → Rn

where

gi(θ) =
∑

C=cone(Rσ(1),...,Rσ(d))∈Rd

vol(C ∩ Si)
vol(C)

θσ(1) · · · θσ(d) (1)

for i = 1, . . . , n.

We take1 vol(C∩Si)
vol(C) = 0 if vol(C) = 0. Define s(θ) =

∑
σ θσ(1) · · · θσ(d) and

p(θ) = (p1(θ) . . . , pn(θ)) = (g1(θ)/s(θ), . . . , gn(θ)/s(θ)). (2)

In this setting p ∈ Rn is our statistical model for the data, after we substitute
θm = 1 −

∑m−1
j=1 θj . Note that we may interpret the monomials θσ(1) · · · θσ(d) in (1)

as the probabilities of a given data point being generated by the d-tuple of reactions
σ(1), . . . , σ(d). With this interpretation the coordinate pi of the map p in (2) is sim-
ply the conditional probability that the data point is observed in Si given that it was
generated by a d-tuple of reactions. Note that the map p is rational but, as we shall
see below, the model may be re-parametrized into an equivalent one involving only the
multilinear map (1).

Let ui denote the number of data points in Si. The log-likelihood function corre-
sponding to a given data allocation is

l(θ) =
n∑
i=1

ui log pi(θ). (3)

Our inference problem is to find

θ̂ = argmaxθl(θ) subject to
m∑
i=1

θi = 1 and θi ≥ 0. (4)

Example 2.1. Consider the two reaction networks described in Figure 1. The model
has d = 3 species and a total of m = 5 possible reactions R = {R1, . . . , R5} = {A1 →
2A1, A1 → A1 + A2, A1 → 2A3, A1 → 2A2, A1 → A1 + A3}. In this case there are
n = 5 building blocks S1, . . . , S5 defined by the intersections of all non-trivial reaction
cones generated by reaction triples, illustrated in Figure 2.

1In general, it may be beneficial to consider various measures vol(·) which are absolutely continuous
w.r.t. the usual Lebesque measure. For instance in Section 3 we describe an example where this measure
is defined via gamma densities.
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Figure 2: Configuration of the five building blocks for the possible reactions R = {R1, . . . , R5} =
{A1 → 2A1, A1 → A1 +A2, A1 → 2A3, A1 → 2A2, A1 → A1 +A3} of example 2.1.

Thus denoting Cjkl = cone(Rj , Rk, Rl) for any triple {j, k, l} ∈ {1, . . . , 5} we have

S1 =C134 ∩ C234 ∩ C345

S2 =C134 ∩ C145 ∩ C234 ∩ C245

S3 =C123 ∩ C134 ∩ C235 ∩ C345

S4 =C123 ∩ C134 ∩ C145 ∩ C235 ∩ C245

S5 =C123 ∩ C125 ∩ C134 ∩ C145.

Note that the cones C124 and C135 are degenerate and are not involved in the definitions
of the Si’s. Denoting further v(i)

jkl = vol(Cjkl ∩ Si)/vol(Cjkl) for any triple {j, k, l} ∈
{1, . . . , 5}, we see that the the map (1) becomes

g1(θ) =v(1)
134θ1θ3θ4 + v

(1)
234θ2θ3θ4 + v

(1)
345θ3θ4θ5

g2(θ) =v(2)
134θ1θ3θ4 + v

(2)
145θ1θ4θ5 + v

(2)
234θ2θ3θ4 + v

(2)
245θ2θ4θ5

g3(θ) =v(3)
123θ1θ2θ3 + v

(3)
134θ1θ3θ4 + v

(3)
235θ2θ3θ5

g4(θ) =v(4)
123θ1θ2θ3 + v

(4)
134θ1θ3θ4 + v

(4)
145θ1θ4θ5 + v

(4)
235θ2θ3θ5 + v

(4)
245θ2θ4θ5

g5(θ) =v(5)
123θ1θ2θ3 + θ1θ2θ5 + v

(5)
134θ1θ3θ4 + v

(5)
145θ1θ4θ5,

where the coefficients satisfy
∑
i v

(i)
jkl = 1 for any triple {j, k, l} appearing on the right-
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hand-side in the formulas above. The rational map (2) is therefore given by

p =
g∑

jkl θjθkθl

where the sum in the denominator extends over all distinct triples {j, k, l} excluding
{1, 2, 4} and {1, 3, 5}, i.e., the ones corresponding to degenerate cones.

2.2 Multilinear representation

The model representation via a rational map (2) may be equivalently described in
terms of a simpler polynomial map (1) as follows. Let us substitute θ̃i = θis

−1/d for
i = 1, . . .m and define

g̃i(θ̃) = pi(θ).

Note that g̃i : Rm>0 → Rn and l(θ̃) = l(θ). Thus we may consider a following more
convenient version of (4). Find

θ̂ = argmaxθ̃ l(θ̃)

subject to
∑
σ

θ̃σ(1) · · · θ̃σ(d) =
∑
i

g̃i(θ̃) =
n∑
i=1

pi(θ) = 1, ∀i θ̃i ≥ 0. (∗)

Consider a fixed d-tuple of reactions (say, σ1) and in the formulas for g̃i (i = 1 . . . , n)
substitute θ̃σ1(1) · · · θ̃σ1(d) = 1−

∑
σ 6=σ1

θ̃σ(1) · · · θ̃σ(d). Note that the resulting algebraic
statistical map is multilinear i.e, linear in one parameter θ̃k when all others are fixed.
For instance, as a function of θ̃1 we have

pi(θ̃1|·) = aiθ̃1 + bi i = 1 . . . , n

where
∑
i ai = 0 and

∑
i bi = 1 and ai, bi are given in terms of θ̃l for l > 2.

By Varchenko’s theorem (see, [14] chapter 1) the conditional, one dimensional ver-
sion of problem (∗) may be now solved iteratively for each pi(θ̃1|·), i = 1, . . . , n by
finding a unique root of the score equations in the regions bounded by the ratios
−bi/ai.

Maximization algorithm. Due to the conditional convexity of the one dimensional
problems the above considerations suggest that the following algorithm for (local)
maximization of l(θ̃) should be valid (cf. also [14], Example 1.7, page 11):

Algorithm 2.1.
1. Pick initial vectors θ̃ and θ̃old ∈ Rm.
2. While |l(θ̃)− l(θ̃old)| > ε

• θ̃old ← θ̃

• for k=1 to m do
– compute ai, bi (as functions of θ̃j , j 6= k)
– identify the bounded interval as determined by Varchenko’s fromula which

is statistically meaningful (there is only one).
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– use a simple hill-climbing algorithm to find an optimal θ̃optk in that in-
terval

– update θ̃k ← θ̃optk

3. Recover θ from θ̃ by taking θk = θ̃k/
∑
i θ̃i.

The advantage of the algorithm above is that it reduces a potentially very com-
plicated multivariate optimization problem in which d and m are large to iteratively
solving of a simple, univariate one. The disadvantage is that due to its dimension-
iterative character the algorithm is seen to be slow and for smaller networks perhaps
less efficient than some off-the-shelf optimization algorithms available in commercial
software (e.g., some modified hill-climbing methods with random restarts). For that
reason in our numerical example below we used the standard Matlab optimization
package rather than Alg. 2.1.

In the reminder of the paper we revert to the notation of Section 1 and the original
problem (4). Based on (∗) in this section we may thus extend map g to Rm>0, take
s(θ) = 1 in (3) and re-cast the original likelihood maximization problem (4) as

θ̂ = argmaxθ
∑
i

ui log gi(θ) subject to
∑
σ

θσ(1) · · · θσ(d) = 1 and θi ≥ 0 (4′)

where the gi’s are given by (1).

3 Simulated Numerical Example

In this section we illustrate the ideas discussed above by analyzing a specific numerical
example in detail.

If we have d chemical species and data of the form D = {Ki, i = 1 . . . , k}, then we
would hope that the statistical algorithm described above should recover the most likely
d reactions out of a given list of m ≥ d possible reactions, by finding the maximizing
vector θ̂ of the corresponding log-likelihood function. In what follows the setup of the
problem is that of (4′). To this end, consider the following four-dimensional example:

A0

A1 +A2

����
��
��
�

A1 __???????

2A3??�������

A2 +A3

��?
??

??
??

(5)

where Ai, i = 0, 1, 2, 3, denote four chemical species. We shall use the above reaction
network to simulate “experimentally measured” data and to test the performance of
our method outlined in Section 2. To this end we shall augment the above network by
including one or more “incorrect” reactions, and shall check whether our likelihood-
based algorithm (4′) is able to identify the original “correct” set of four reactions.
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Parameter True Values Estimated Values Estimators SEs
γ0 (-6.259, -4.097,-3.369) (-5.974, -4.134, -3.63) (0.210, 0.148, 0.125)
γ1 (3.310, 2.205, 2.451) (3.012, 2.254, 2.75) (0.148, 0.109, 0.106)
γ2 (1.281, 0.966, 1.805) (1.199, 1.017, 1.93) (0.107, 0.082, 0.093)
γ3 (4.945, 3.154, 1.771) (5.026, 3.092, 1.704) (0.190, 0.124, 0.088)

Table 1: Three sets of parameters (γ0, γ1, γ2, γ3) of system (6) corresponding to the trajectories
depicted in Figure 3 along with their estimated values (obtained via least-squares fitting) and
standard errors of the estimates.

Data generation. Note that the (deterministic) dynamics of the chemical reaction
network (5) is governed by linear differential equations of the form

dAi/dt = γiA0 i = 0, . . . , 3. (6)

where the parameters γi, i = 0 . . . 3 are linear combinations of the rate constants, given
by the stoichiometry of the true network. In our example each data point Ki ∈ D
(i = 1, . . . , k) was generated by estimating the set of parameters (γi) of the true
reaction network (5). For each one of the k data points the set of parameters (γi)
was obtained from rate constants drawn independently from a gamma distribution
G(α, λ) with parameters α = 1.5 and λ = 1. In order to identify the coordinates
of the points in D, the estimated parameters γ̂i, i = 0, 1, 2, 3, were calculated each
time by fitting the trajectories (6) to the time series data points generated from the
stochastic process tracing (6) (see [6]). The Gillespie algorithm (see [15]) was used
to generate the 20 equally-spaced values of the trajectory of random process on the
interval (0, 1) with the fixed initial condition. An example of three random trajectories
with independently generated reaction constants values is given in Figure 3. These
three trajectories would give rise to three independently estimated sets of values (γi)
and consequently to three data points Ki ∈ D. The fitting was based on the least-
squares criterion which is statistically justified for estimation purpose of (γi) in this
particular case by an appropriate central limit theorem (cf. e.g., [6] chapter 11).

We view the single resulting (γ̂0, γ̂1, γ̂2, γ̂3) as coordinates of a point K in the species
coordinate system [A0, A1, A2, A3]. This representation of data points is not related
to a choice of the reactions; note, however, that if the estimation error is sufficiently
small2, each data point lies inside the open convex cone generated by the true reactions
(5). As shown in [2] the coordinates of Ki in the basis given by the reaction vectors in
(5) are precisely the estimates of the true rate constants.

The data set D = {Ki, i = 1 . . . , k} used in the simulation described above was
based on multiple batches of k = 10 data points. The first three data points from the

2Here we assume tacitly that the estimation error is sufficiently small and that the statistical estimation
procedure is consistent. It turns out this is typically the case in the settings similar to our simulated example,
but the discussion of the precise conditions under which this is true in real experimental settings goes beyond
the scope of our present discussion. For our current example a brief inspection of the Table 3 indicates
a reasonably good agreement between the estimates and the true values of the parameters (γ0, γ1, γ2, γ3)
both in terms of actual values as well as the corresponding SE’s.
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first batch are summarized in Table 3.
In order to test our method, let us first add one incorrect reaction, A0 → A2,

and from this point on suppose we have no a priori knowledge of the true chemistry;
therefore, the five possible reactions are as shown in (7).

Figure 3: An example of generation of the data points Ki ∈ D for i = 1, 2, 3 via a two-step
process of simulation and estimation. Three stochastic trajectories of the reaction network (5) were
simulated via Gillespie algorithm with propensity (reaction) constants drawn randomly according
to gamma G(1.5, 1) distribution. The trajectories values at the data collection points are marked at
20 equally-spaced time-points from 0 to 1. The data from the set of trajectories was used in order to
estimate the coordinates of Ki = (γ0, γ1, γ2, γ3), i = 1, 2, 3. The numerical values of the coordinates
corresponding to the given trajectories along with their least-squares estimates are presented in
Table 1.
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A0

A1 +A2

����
��
��
�

A1 __???????

2A3OO A2??�������

A2 +A3

��?
??

??
??

(7)

Later in this section we also consider the case where we add not just one, but several
incorrect reactions.

Calculation of the log-likelihood function. In order to obtain an estimate θ̂ via
(4′) one needs to be able to evaluate the map (1), i.e., in addition to the data counts
vector u ∈ Rn in (3) one also needs to know the values of the coefficients of the poly-
nomial map. Whereas the calculation of the exact values is difficult for d > 2, one may
typically resort to Monte-Carlo approximations (see, e.g., [10]). In our current example,
for a non-degenerate (i.e., 4-dimensional) cone C, we have computed the approximate
relative volumes vol(C∩Si)/vol(C) using the following Monte Carlo method. For each
cone C we generated N = 2000 points inside C with the corresponding conical coor-
dinates randomly drawn from the four independent gammaG(1.5, 1) random variable
and then counted the proportion of the total points falling into C ∩ Si i.e., used the
approximation

vol(C ∩ Si)
vol(C)

≈ (#points in C ∩ Si)/N i = 1 . . . , n.

With the coefficient values determined as above, the coordinate polynomial maps gi in
(1) were easily calculated now by identifying the cones that contained the appropriate
building block regions Si.

Visualization of the chemical network. The geometry in (7) can be visualized
in the 3-dimensional subspace W ⊂ Rn generated by {A1, A2, A3}. This follows as all
the reaction targets are in this subspace, and we can understand the configuration of
relevant four-dimensional cones by looking at their intersections with W. Each four-
dimensional cone with vertex X0 intersects W along a tetrahedron. The intersections
of all these tetrahedra cut out the building blocks corresponding to our example (7), as
illustrated in Figures 4 and 3. There are five vertices labeled by numbers corresponding
to the five target reactions in (7); they form a six-faced convex polyhedron P. Let C
be the intersection of line passing through points 1 and 2, denoted (12), with the plane
(345). Then all building blocks are tetrahedra with a vertex at C and the opposite
face being one of the six faces of the polyhedron P. For example, the building block
(C245) is depicted in Figure 4.

Not surprisingly, the 10 data points generated in our example were distributed
among the building blocks that compose the tetrahedron (1234) corresponding to the
true reactions; 6 data points fell inside the building block (C234) and 4 inside (C134).
The log-likelihood function was found in this case as

l(θ) = 6 log(.706 · θ1θ2θ3θ4 + .35 · θ2θ3θ4θ5) + 4 log(.294 · θ1θ2θ3θ4 + .339 · θ1θ3θ4θ5).
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Figure 4: Geometry of building blocks for
reaction network (7).

X1

X2

1

3

4

5

2

X3

Figure 5: Faces of polyhedron corresponding
to reaction network (7).

Maximization of log-likelihood. In order to maximize l(θ) or, equivalently, to
minimize −l(θ), rather than using the conditional Algorithm 2.1 we used the Matlab
function fmincon for constrained optimization. As in (4’), the constraint is given by
the condition s(θ) =

∑
σ θσ(1) · · · θσ(4) = 1 and comes from the fact that there are

4 reactions in the true network. This constraint also assures that g̃ maps into the
probability simplex ∆n−1, i.e., defines an algebraic variety (polynomial map) which
corresponds to a valid tstatistical model.

The optimization is repeated 2m−1 times (i.e., 16 times for the example for network
(7)) with random initial conditions satisfying the constrain. A list of (local) minima
was created and entries were merged if they were sufficiently close. The point θ that
realized the smallest local minimum was reported together with the percentage of time
the algorithm ended up at that particular point (success rate). The output for example
(7) given by the customized Matlab function was

Minimum of negative log-likelihood: 6.94
Theta:
1 1 1 1 0.
Hits: 16 out of 16, 100%.

As we may see from these results, in the notation of Figures 4 and 3 the algorithm
identified the true reactions (targets) 1, 2, 3 and 4 and discarded the incorrect reac-
tion 5.

More numerical comparisons. We also ran example (5) with, respectively, two,
three, four and five incorrect reactions added to the set of four correct ones. The true
network was always identified and the success rate (percentage of correct hits for various
random initial guess) was high. The results of these experiments are summarized in
Table 2. Aditionally, in order to investigate the robustness of our procedure against
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Figure 6: The rate of recovery of the correct reactions out of the network (7) as a function of
the size of the Gaussian noise added to the least-squares estimates of the (γi) parameters. The
solid graph is a smoothed representation of the empirical values (marked as circles) based on 3000
batches of k = 10 sets of estimates. The recovery rate is over 90% for the Gaussian noise with 0.5
SD and about 50% for 1 SD.

the lack of precision in the estimates of the γ’s, we have added the zero-mean Gaussian
term with varying variance to the multiple batches (3000) of k = 10 sets of estimators γ̂
in the network (7) with one erroneous reaction. The estimated probability of assigning
the lowest probability to the extraneous reaction vector as a function of increased noise
added to the mean-squared estimated values γ̂ is presented in Figure 6. As seen from
the figure with small to moderate random noise added to the values of the reaction
constants the likelihood method is still able to recover the correct set of reactions at
remarkably high rate. Not surprisingly, for very noisy data (above one SD) the recovery
rate decreases significantly.
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4 Summary and Discussion

We have proposed herein a statistical method for inferring a biochemical reaction net-
work given several sets of data that originate from “noisy” versions of the reaction rate
equations associated with the network. As illustrated in the earlier work of some of
the authors [2], in the usual deterministic sense such networks are in general uniden-
tifiable, i.e., different chemical reaction networks may give rise to exactly the same
reaction rate equations. In practice, the matters are further complicated since the co-
efficients of the reaction rate equations are estimated from available experimental data,
and hence are subject to measurement error and, moreover, their actual values may
differ at different experimental conditions, i.e. at different data points. The statistical
approach described here is largely unaffected by these problems, as it only relies on
the geometry of the network relative to the data distribution, in order to identify the
sets of most likely reactions. Hence, the method takes advantage of the algebraic and
geometric representation of the network rather than merely the observed experimental
values of the network species, as is commonly the case in network inference models
based on graphical methods, like e.g. Bayesian or probabilistic boolean networks (cf.
[16]). Still, in order to use the proposed multinomial parametrization of a biochemical
network, the method does require a valid way of mapping the experimentally esti-
mated rate coefficients into the networks’ appropriate convex regions, and with very
large measurement errors is likely to perform poorly as illustrated in Figure 6. On
the other hand, precisely because of the need for the experimental data mapping, the
method has a very attractive feature of being able to potentially combine variety of
different data sets obtained by various methods into one set of experimental points
placed in a convex hull of the network building blocks. These universality properties
of the method require further studies and possibly a development of additional sta-
tistical methodology beyond the scope of our present work. In the current paper our
main goal was to present a proof-of-concept example based on simulated data, with
a purposefully straightforward but non-trivial model discrimination problem. For the
example provided in this paper the method was seen to perform very well, with almost
perfect discrimination against incorrect models even as the complexity of the model

# reactions # cones # non-degenerate # building avg. running avg. success
cones blocks time rate

m=5 5 5 6 4 sec 100%
m=6 15 11 15 30 sec 95%
m=7 35 30 133 6 min 94%
m=8 70 64 871 1h 97%
m=9 126 115 2397 8.5 h 96%

Table 2: Summary of average numerical results obtained from multiple experiments, each with
k = 10 data points, N = 2000 rays in the Monte Carlo relative volume computation, and 2m−1

optimizations with random initial guess. The analysis was performed on a 2.8 Ghz Intel Core2Duo
iMac machine.
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selection problem increased.
Nonetheless, further studies and developments are needed to assess how well the

method may perform on more challenging and realistic data sets. In particular, one of
the aspects of the methodology which was not pursued here, and which could improve
its computational scalability, is the utilization of techniques from computational algebra
in order to increase the efficiency and further automate the proposed maximization
algorithm.
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