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Most homeomorphisms of the circle are semiperiodic

By
G. CrAciun, P. Horia, M. PRUNESCU*) and T. ZAMFIRESCU

Several generic results about fixed points have been established by Vidossich [11].
De Blasi [3], [4]. Myjak [10], De Blasi and Myjak (5], Butler [1], Dominguez Benavides
[7], and other authors. Recently, the last author of this paper showed that under the
conditions of Schauder’s theorem the set of fixed points is generically homeomorphic ta
the Cantor set (see [13]). The homeomorphisms of the sphere S” may have no fixed points,
even generically. The situation changes, however. if we restrict ourselves to homeomor-
phisms which are orientation preserving, for even dimension, or orientation reversing, for
odd dimension. Our first author showed that, starting with dimension 2, such
homeomorphisms have generically uncountably many fixed points (see [2]). On the
circle ' each orientation reversing homeomorphism has precisely two fixed points,
while the orientation preserving homeomorphisms may even have no periodic
points!

It is easily seen that the space of all homeomorphisms of S! with the usual metric d is
a Baire space, i.e. every open subset is of second Baire category. This is true, as well, for
its subspace " of all orientation preserving homeomorphisms of S* and for the comple-
mentary subspace of all orientation reversing homeomorphisms.

In this paper we generically investigate the set P, of all periodic points of the orientation
preserving homeomorphisms h of S'. We show that all these homeomorphisms except
those in a nowhere dense set have periodic points and, for most h e #, the set B, is
homeomorphic to the Cantor set and 4 P, = 0, where 1 denotes Lebesgue measure on §!
and “most” means “all, except those in a first category set”.

InR orin §*, which is taken in the complex plane. let B(x, r) denote the (compact) arc
of midpoint x and length 2r; by B(x, r) we denote its relative interior.

We shall use the notion of porosity, introduced by E. Dolzhenko [6], but essential-
ly already known to Denjoy. We call a set M =S' porous at xeS! if there
is a positive number « such that for any &> 0, there is a point ye B(x, & such
that

B(y,alx —y)oM=20

*) This paper was written while the first three authors were visiting the University of Dortmund
in 1992. The first two authors thankfully acknowledge the support offered by TEMPUS and the
University of Dortmund.,
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(se2 [12]1 If z can be chosen as close to 1 as we wish, M is called strongly porous ar x. A
set which is strongly perous at all points of ' is said to be strongly porous. Every set
which 1s porous everywhere must have measure 0 by Lebesgue’s density theorem.

Ifh:S* — S* is an orientation preserving homeomorphism then one of the following
cases occurs (sce [8]).

L All points of §* are periodic (and h is called periodic).
IL. §* contains periodic and non-periodic points (h is semiperiodic).
1. No point of ' is periodic; there is no point x such that the set of points {x, h(x),
B (x),...} is everywhere dense on ! (h is intransitive).
IV. No point of §* is periodic; for some point x, the set of points {x, h(x), h*(x),...}
is everywhere dense on S! (h is transitive).

Which case appears most frequently? We already anticipated the short answer: case I1;
this follows from the following result.

Theorem 1. All orientation preserving homeomorphisms of S except those in a nowhere
dense set are semiperiodic.

Proof. Consider first a homecmorphism i : S' — S of type L. Then all points have
the same period n (see [8], p. 146). so h is topologically equivalent to a rotation R, of
angle @ with rational 6/x, ie. h=g=R,°g~"' with ge #. Then a rotation R, with
irrational /= and with ¢ sufficiently close to 6 yields a homeomorphism g° R,>g ™" of
type IV arbitrarily close to b

Since the set of all orientation preserving C *-diffeomorphisms is dense in #, for every
he # and ¢ > 0 it is possible to find a C*-diffeomorphism f € # such that d(f, h) < &.
and f is not of type I (see [9], p. 149).

Hence the homeomorphisms of type II or IV lie densely in .

Consider now a homeomeorphism h of type Il or 1V. If it is of type IV, it is topologically
equivalent to a rotation R, of angle 0§ with 8/n irrational (see [8], p.147), ie.
h=g=R,°g ' withgc # Because gandg ! are uniformly continuous, for every & > (
there exists 7 > 0 such that |y — y'| < n implies |g(y) — ¢())| < ¢ and we can then find
& > O such that |z — 2’| < & yields |g ™" (z) — g~ ! (z')| < n. But for every natural number
n the rotation R, is an isometry, whence, for every ¢ > 0, we could find 5 > 0 such that,
for all n, |z — Z’| < & mmplies

R (z) — B (2)] = |g(Rl(g ™' (2)) — g(R,a(g™ 1 (2))] < &.

Hence, for any & > 0, we can choose an arc V < S! and a natural number n such that
AV h*(V)) > 0 and A(Vu b (V)) < &/3. This is, of course, easily done in case h is of
type 11. We shall prove that it is possible to find a nonempty open set in ) consisting of
homeomorphisms of type II only, included in # (h, &), the open ball of radius £ around h
in #.

Consider an arc/ = S' and its middle third J. We define a homeomorphism
c:8' - S, which we call a local contraction associated to I, so that

i) ¢ acts on J as a metrically linear contraction, leaving one of the points of J fixed,
ii) ¢ is the identity outside 1.
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We can choose I so that AI <z and VUh"(¥)c J. Let ¢ be a local contraction
associated to I with the additional property that c(J) < int K, where K = ¥ h"(¥) (the
freedom in choosing the contraction in condition 1) above allows us to do this).

Then (c°h)(K) < h(K) and (c= h/"(K) = ¢ h*(K) < c(J) = K, so by Brouwer’s fixed
point theorem (c = h)" has a fixed point, that isc h has a periodic point. But ¢(J) < int K,
so there exists a & > 0 such that every i € #(c>h, §) has a periodic point.

We conclude that # (c = h, 8) entirely consists of homeomorphisms admitting periodic
points,

Actually this open ball contains only homeomorphisms of type I1. Indeed, we saw at
the beginning of the proof that arbitrarily close to every homeomorphism of type I there
is a homeomorphism of type IV, which cannot belong to & (c= h, 8).

This completes the proof of the theorem.

Theorem 2. Most orientation preserving homeomorphisms of S* have a strongly porous
set of periodic points,

Proof. Let M c S'. If, for every natural number n,
VxeS', Ve>0, Ine(0.£), such that B(x, nnMc B(x,nin),

then the set M is strongly porous.
Let 5, be the family of all homeomorphisms h verifying the condition

VxeS', 3ne(0, 1/n], such that B(x, n)n B, < B(x, n/n).

If f € &, for all n, then P, is strongly porous. We show that the complement of ), in #°
is nowhere dense for any n.

Let 0 be an open set in #. By Theorem 1, there is a semiperiodic function f € (. Let
d > 0 be such that d(f, g) < é implies g € €. Since f is uniformly continuous, we find an
¢ >0, such that d(x, y) < ¢ yields [ f(x) = f(y)| < 4. From the open covering {B(x,
&/2): x € B} of the compact set P, we select the finite subcovering {B(x, &/2): x € F}. For
every pair of consecutive points x;, x,, , € F at distance d(x;, x;4+,) > &, consider the
largest open arc y,y;,, < x;x;,\P, and add y,, Yi+y 10 F to get a new set F*. Now for
every pair of consecutive points in F* there is no periodic point between them or their
distance is less than &. In the second case we replace the restriction of  to the arc between
the two points by a strictly convex monotone function. Then it is easily seen that the
function h* constructed in this way has no periodic points outside F*, Put

= mi 1 mi -
4 = min {1, 231;%“ y}}
and xty =
& = min {Ix —hP(x)|:xe8'\ U B(x, d;‘(Zn})}.
xef=
For some v > 0, d(g, h) < v implies d(g*, h*) < &, whence every fixed point of g” must
lie in some arc B(x, 4/(2n))(x € F*). Then g has the property that, in any arc of length

24 centred at a point y belonging to Bi(x, 4/(2n)) for some x € F*, the only periodic
points lie in B(x, 4/(2n)) = B(y, A/n). Thus ge X, (ifd(g, h) < v)and #\ 3, is nowhere

dense, as claimed. Hence most elements of # lie in M #, and have therefore a strongly
porous set of periodic points. "=1
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Lemma 1. Let I =R be an open interval and g:1— R an increasing continuous
function. Let x € I and & > 0 be such that Bix, 8) < I. Then there is some & € (0, 0) such
that for every ¢ € (0, &) there is some increasing continuous function §: 1 — R satisfying the
properties

i) g(t) = glr) for any te I\B(x, é)

i) for y=x—3¢ z=x+ 3z, we have G(B(y,28) < B(g(y),é), g(B(z, 2e) =

B(g(z). o) g(y)=g(» — 38 d(2) =gk + 3¢

Proof. Let goe(0. %) be such that B(g(x), 4&o) = g(B(x, 9)). For every fixed
£€(0, &), define g as

glt) ft<x—9, tel

t—x+34
gix—6}+—6%5;—[g(x)—4£—g{x—6]), fx—dst<x—S5¢

g(x)—4e+3(t—x—35¢), fx—3est<x—e
gty ={glx)+ 2(t — x, if x—estSx+e
glx)+2e+ 3t —x—2e) if x+egr<x+35¢
f—x—35
g[x}+4c+—5—xxflg(xf—5}—g{x)—48]. fx+5e<t<x+d
lg2). if x+o0<t, tel.

From the manner &, was chosen it follows that
glx —8) <gix)—4z glx)+4e<glx+ 8).

Therefore g is well defined, increasing, continuous, and satisfies i) and ii).

Lemma 2. Let h € X, be semiperiodic and x°eP,, xX' =h(x"H(1Zigp). La 6>0
be such that the arcs B(x'. 8) are mutually disjoint for 0Si<p—1. Then there is some
£g (0, %) such that for every £ €0, &;) there is some h e i, satisfyving the properties

e . =
i) h(x) = h(x) for any x< S5 '\:u B(x', 8)

_ _ i=0 — < i
ii) if 2 = B, 32) then R(B(Y. 28) < B(y'*", ) and h(B(2', 2¢)) = B(""", 2). where
yri=h(y)and P =hiHO02icp—1)

Proof. Let G,= S' be disjoint connected open sets such that B(x'. 8) < G; for
0 <i £ p — 1. For any G, consider an open interval I; = R such that G; can be identified
with I, the distance and the orientation remaining unchanged. The same can be done
for h{G). Thus we obtain from hlg, an increasing continuous function h: I; - R. Using
Lemma 1 we obtain for h a number &. Apply this procedure for every i and define
g =min {eh:0<iSp—1} N -

Lete e (0, &) We can now define ki (x) ash(x)forany x e $'\ U G, forxe G; we define

i=0

ii(x) as the image of J(x) through the above identification. According to Lemma 2, b
verifies the required properties.
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Theorem 3. For most orientation preserving homeomorphisms of S*, the set of periodic
points is homeomorphic to the Cantor set.

Proof. According to Theorem 2, for most elements h € # the set P, is totally discon-
nected. It will be then sufficient to prove that P, is perfect for most h. Denote

F=theH :|x—y| 2L forsome xeP, andany yeP,\{x}}.

Let he #, be of period p. Let {x,,..., X,,} be a ---net of P,, and 5 > 0 a real number.

Denote
s\ O B(x, L
G = '\\U Xis |-
1=1 (t'; 2!1)

The set G is compact. Notice that the function h* = h=--- h (p times) cannot have fixed
points in G, because

™ 1
Bec UB(x;,—].
*Cj=1 (tJT Zﬂ)
Therefore mié-n |h?(x) — x| > 0.
Let & > 0 be such that d(g, h) <« implies

miﬁn g7 (x) — x| > 0.

Set x] = x;, xj = hix{"") for 1 £j<m, 1 <i<p. Denote
d=min{|xj—xjl:xj+xf, 1SL,k=Zp;1Zj,1<m).

Let d, (0, J) be such that
diam h(B(x}, d,)) < min {r}. ;} .

Denote by ¢l the positive number obtained by applying the previous Lemma to the
function h. point x;, and number 6 = d,, where 1 =jE=m

Now choose ¢ & (0, min {&} : 1 < j < m}) such that & < min {2, ;1-}. Apply Lemma 2 to
x, . the function / and this ¢, and denote by h, the resulting function. Then apply the same
Lemma to x; . the function h,, and ¢, and denote the resulting function by k,, and so on.
Finally, for x,,, b, . and ¢ we obtain the function h,,.

Thus, the function h = h, € #° satisfies

i) h(x) = h(x). for any xeS"\U{B(xj,0): 1 Sism1<jsp—1}
i) if yizj = B(x}, 3¢) then h(B(y[™", 2¢)) = B(y}. ¢)and h(B(z} ™!, &) c B(z}, ¢). for
anyl<js=m1=<iZp.

Let us notice that for any x € S* such that k(x) # h(x) there is a unique point xj with
x € B(x}, ,); we also have

h(B(x}, 8,)) = h(B(xi, é,)). diam h(B (x}. 6o)) < 1.
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Therefore d(h, k) < n. We shall prove now that
Bk, enF =0.
Let g e B(h, ¢). Then
g(B(y;™*. 24) = B(y, 2¢), g(B(zj™", 2¢)  B(Z, 2¢).
Therefore
9" (B(y]. 28) = B()J. 2¢), ¢"(B(z0,2¢) = B(z§,2¢) (1<j<m).

Hence there are some fived points 77 € B(y), 2¢). 0 eB(z],2¢) of g7, i.e. ¥].2 P,
On the other hand

d(g hy<d(g, k) +d(h, h) < & + min {r;, ;} <a,
so that min |g®(x) — x| > 0. Then
x=G

\ \z 1
P‘CSI\G‘: UB(x,.ﬁ).

=1

Let we F,. First, suppose that w % 7, 27 (1 =j < m). Then there is some j such that

w e B(x;, 3-). For this j we obtain

1 1
v — o = _— et
[w— 371 < |w— x| + |x, f}-‘lci—n+55<n.

Suppose now that w = 77 for some j. Then

Iw—27|1<10e< 1
n
Therefore g + #,. a _
We have proved that for any h € #, and 1 > 0 there is some h € # such that dih,h) <n
and

B(h.e)n &, =0.

This means that %, is nowhere dense in #. Therefore N\ U Z, is residual in 2, hence
most elements of #° have a perfect set of periodic points. "1
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