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Polynomial Dynamical Systems, Reaction Networks, and Toric Di↵erential
Inclusions⇤

Gheorghe Craciun†

Abstract. Some of the most common mathematical models in biology, chemistry, physics, and engineering are

polynomial dynamical systems, i.e., systems of di↵erential equations with polynomial right-hand

sides. Inspired by notions and results that have been developed for the analysis of reaction networks

in biochemistry and chemical engineering, we show that any polynomial dynamical system on the

positive orthant Rn
>0 can be regarded as being generated by an oriented graph embedded in Rn

, called

a Euclidean embedded graph. This allows us to recast key conjectures about reaction network models

(such as the Global Attractor Conjecture, or the Persistence Conjecture) into more general versions

about some important classes of polynomial dynamical systems. Then, we introduce toric di↵erential
inclusions, which are piecewise constant autonomous dynamical systems with a remarkable geometric

structure. We show that if a Euclidean embedded graph G has some reversibility properties, then any

polynomial dynamical system generated by G can be embedded into a toric di↵erential inclusion. We

discuss how this embedding suggests an approach for the proof of the Global Attractor Conjecture

and Persistence Conjecture.
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1. Introduction. Many mathematical models in biology, chemistry, physics, and engi-
neering are given by polynomial dynamical systems or, more generally, power-law dynamical
systems [9, 10, 11, 12, 14, 15, 16, 17, 21, 22, 30, 31]. Almost always, these can be interpreted
as population dynamics models, where the variables of interest are positive.

Any autonomous polynomial dynamical system (i.e., system of di↵erential equations with
polynomial right-hand side) on the strictly positive orthant Rn

>0 can be represented as

(1)
dx

dt
=

mX

i=1

x
sivi,

where x = (x1, . . . , xn) 2 Rn

>0, s1, . . . , sm are some vectors in Zn

�0 called exponent vectors, xsi

denotes the monomial xsi11 x
si2
2 . . . x

sin
n , and v1, . . . , vm are vectors in Rn. A solution of (1) is a

function x : I ! Rn

>0 that satisfies (1), where I is an interval in R.
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Note that, since the coordinates x1, . . . , xn are positive, the monomials xsi are well-defined
even if the coordinates of the exponent vectors si are arbitrary real numbers (i.e., s1, . . . , sm
are not necessarily in Zn

�0). In that case we say that (1) is a power-law dynamical system.
The approaches and results discussed in this paper apply not only to polynomial dynamical
systems, but also to power-law dynamical systems. In this paper, whenever we say “polynomial
dynamical system,” we mean “polynomial or power law dynamical system.”

In many applications there are also some positive parameter values in these systems, which
may be di�cult to estimate accurately (such as reaction rate constants in biochemistry and
chemical engineering, or interaction rates in epidemiology and ecology). Then the dynamical
system of interest may have the form

(2)
dx

dt
=

mX

i=1

kix
sivi,

where k1, . . . , km are some positive constants. In this case, we may want to know if some
properties of the solutions of the system (2) may hold for all choices of positive parameters ki.

In other cases, the interaction network we need to model is part of a larger network that
contains variables or “external factors” that influence our system, but are not contained in
our system. In that case we cannot use an autonomous dynamical system as a model, but we
may be able to use a nonautonomous dynamical system of the form

(3)
dx

dt
=

mX

i=1

ki(t)x
sivi,

where the functions ki are positive and uniformly bounded, i.e., there exists some " > 0 such
that "  ki(t) 

1
"
for all t. We will refer to models of the form (3) as variable-k polynomial

dynamical systems.
In applications, there is great interest in understanding the global stability and persistence

properties of dynamical systems of the forms (2) and (3). For example, a natural question is
the following: for what systems (3) is it true that all solutions have a positive lower bound
for all t > 0 (i.e., no variable “goes extinct”), irrespective of the choices of uniformly bounded
external factors ki(t)?

In this paper we describe an approach for analyzing such problems, even in the presence of
unknown parameters (as in (2)) or external factors (as in (3)). In section 2 we show that any
polynomial dynamical system can be regarded as being generated by some “Euclidean embed-
ded graph” (also called “E-graph”). In section 3 we introduce the notion of “toric di↵erential
inclusion,” and we show that if an E-graph is reversible, then any (variable-k) polynomial
dynamical system generated by it can be embedded into a toric di↵erential inclusion. Then,
in section 4 we show that such an embedding still exists even if the reversibility restriction is
relaxed significantly. In section 5 we discuss how these embeddings may greatly simplify the
analysis of some properties of polynomial dynamical systems.

2. Euclidean embedded graphs. A Euclidean embedded graph (or E-graph) is a finite
oriented graph G = (V,E) whose vertices are labeled by distinct elements of Rn for some
n � 1. With an abuse of notation, we identify the set V with the set of vertex labels, i.e.,
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we assume that V ⇢ Rn. Moreover, we associate to each edge e = (s, t) 2 E its edge vector
v(e) = t � s. Also, we define its source vertex to be s(e) = s, and its target vertex to be
t(e) = t.

Given an Euclidean embedded graph G = (V,E), the polynomial dynamical systems gen-
erated by G are the dynamical systems on Rn

>0 given by

(4)
dx

dt
=

X

e2E

kex
s(e)

v(e)

for some positive constants ke. Note that if V ⇢ Zn

�0, then (4) is just mass-action kinetics for
a chemical reaction network represented by G, i.e, one where there is a reaction of the form
s(e) ! t(e) for each edge e 2 E. (Informally speaking, for mass-action systems the rate of
each reaction is proportional to the product of the concentrations of all its reactants, i.e., the
rate of the reaction s(e) ! t(e) is proportional to x

s(e); see [9, 16, 21, 30, 31] for more details.)
More generally, the variable-k polynomial dynamical systems generated by G are the (non-

autonomous) dynamical systems on Rn

>0 given by

(5)
dx

dt
=

X

e2E

ke(t)x
s(e)

v(e),

such that there exists some " > 0 for which we have "  ke(t) 
1
"
for all e 2 E and for all t.

Let us note that for any variable-k polynomial dynamical system (3) we can construct an E-
graph G that generates it, and G is not unique. Assuming that the ordered pairs (s1, v1), (s2, v2)
, . . . , (sm, vm) are distinct, the simplest way to construct such a G is to choose the set of vertices

V = {si | i = 1, . . . ,m} [ {si + vi | i = 1, . . . ,m},

and the set of edges
E = {(si, si + vi) | i = 1, . . . ,m}.

If we want to obtain a di↵erent E-graph that generates (3), we can, for example, write one of
the vectors vi as a positive linear combination of two di↵erent nonzero vectors, and use these
new vectors to obtain a graph with m+ 1 edges that also generates (3).

We will use E-graphs in order to try to identify the polynomial dynamical systems that
are known to have (or are conjectured to have) important dynamical properties, such as
persistence, permanence, and global stability. For this purpose, we first define some special
kinds of E-graphs (namely, reversible and weakly reversible E-graphs), and then we focus
our attention on polynomial dynamical systems that are generated by these special kinds of
graphs.

We say that an E-graph G = (V,E) is reversible if for any edge (s, t) in E the reverse edge
(t, s) also belongs to E. Also, we say that G is weakly reversible if any edge (s, t) is part of an
oriented cycle in G, or equivalently, any connected component of G is strongly connected (a
strongly connected directed graph is one where there exists a directed path between every pair
of vertices). For example, the graph in Figure 1(e) is reversible, and the graphs in Figure 1(c)
and (d) are weakly reversible. Of course, every reversible E-graph is also weakly reversible.
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We say that a polynomial dynamical system is reversible if there exists some reversible E-
graph that generates it, and we say that a polynomial dynamical system is weakly reversible if
there exists some weakly reversible E-graph that generates it. Analogously, we define variable-
k reversible and weakly reversible polynomial dynamical systems.

(a) (b) (c)

(d) (e)

Figure 1. Five examples of E-graphs in R2. For each graph, while we do assume that the points s1, . . . , sm 2
R2 are distinct, note that we do not assume that the line segments (i.e., arrows) representing the vectors sj �si
are disjoint. The graphs (d) and (e) are weakly reversible, and the graph (e) is actually reversible. Although
the graph (b) is not weakly reversible, it generates dynamical systems (4) which can also be represented by

a weakly reversible graph (e.g., the graph (c)), because the vector s4 � s1 is a positive linear combination of
the vectors s2 � s1 and s3 � s1, so the term corresponding to the edge (s1, s4) can be replaced by two terms,
one corresponding to the edge (s1, s2), and the other corresponding to the edge (s1, s3). On the other hand, the
dynamical systems generated by the graph (a) cannot be generated by a weakly reversible graph [3].

Example 1. Consider the dynamical system given by

dx1

dt
= �2k1(t)x

2
1 + 2k2(t)x2,(6)

dx2

dt
= k1(t)x

2
1 � k2(t)x2

for some functions ki(t) with "  ki(t) 
1
"
for all t.

This system can be written in vector form, as follows:

dx

dt
= k1(t)x

2
1

✓
�2

1

◆
+ k2(t)x2

✓
2

�1

◆
,(7)

where x =
�
x1
x2

�
. In turn, this can be written in the form (3), as follows:

dx

dt
= k1(t)x

s1

✓
�2

1

◆
+ k2(t)x

s2

✓
2

�1

◆
,(8)
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where s1 =
�2
0

�
and s2 =

�0
1

�
. Then, the simplest E-graph G that generates the dynamical

system (6) has two edges, one edge going from s1 to s
0

1 := s1+
�
�2
1

�
, and the other edge going

from s2 to s
0

2 := s2 +
� 2
�1

�
. But, note that we happen to have s

0

1 = s2 and s
0

2 = s1, so the
graph G actually has only two vertices, and is reversible. The graph G is shown in Figure
2(a). We will return to this kind of example in section 3, when we will see that the dynamics
of this system can be understood by embedding it into a special kind of di↵erential inclusion.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. (a) An E-graph that consists of a single reversible edge, and generates the polynomial dynamical
system (6). (b) The dynamics of this system in R2

>0 has one-dimensional a�ne invariant sets, and the direction
of the flow is well-defined outside an uncertainty region, which is a neighborhood of the curve x2

1 = x2, i.e.,
xs1 = xs2 . (c) If we consider the di↵eomorphism X = log x, then the curve xs1 = xs2 becomes the line
X · (s2 � s1) = 0, and the uncertainty region is mapped to the set of points at distance less than some � from
this line. (d)–(f) A similar (mirror image) example. (g)–(i) Here we look at what happens if we consider an
E-graph that contains two reversible edges. Note how the direction cones shown in (h) are exactly the polar
cones of the cones that form the (hyperplane-generated) polyhedral fan shown in (i). See also section 3 in [9]

for a related example.

2.1. Persistent, permanent, and globally stable polynomial dynamical systems. We say
that a variable-k polynomial dynamical system in Rn

>0 is persistent if, for any solution x(t)
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defined on an interval I that contains t = 0, there exists some "0 > 0 such that

xi(t) > "0 for all i 2 {1, . . . , n} and for all t 2 I \ [0,1).

In other words, the system is called persistent if, for any solution x(t) with positive initial
condition, there exists a positive lower bound for all the variables xi(t), and for all the future
times at which the solution is defined (we cannot say that there exists a positive lower bound
for all t > 0 for a technical reason: some solutions may blow up in finite time). Informally,
persistence means that “no variable goes extinct.”

To define the permanence property we first need to point out that polynomial dynamical
systems have some special invariant spaces. If a (variable-k) polynomial dynamical system
is given by (4) or (5), then its edge space S is the linear span of the set of edge vectors
{v(e) | e 2 E}. Then we define its a�ne invariant sets to be the sets of the form

(x0 + S) \ Rn

>0 for some x0 2 Rn

>0.

These are indeed invariant spaces for solutions of (4) or (5) on the domain Rn

>0, because all
the vectors that appear on the right-hand side of these equations are linear combinations of
v1, . . . , vm, so are contained in S.

We say that a (variable-k) polynomial dynamical system on Rn

>0 is permanent if, for each
a�ne invariant set Sx0 = (x0 + S)\Rn

>0, there exists a compact set Kx0 ⇢ Sx0 such that any
solution x(t) with x(0) 2 Sx0 can be extended for all t > 0, and there exists some t0 > 0 such
that x(t) 2 Kx0 for all t > t0. It follows that, for a permanent system, all solutions that start
in Sx0 can be extended for all t > 0, and, for large enough t, they are bounded above and
below by some positive constants (and these positive upper and lower bounds do not depend
on the initial condition, while for persistent systems the lower bound " may depend on the
initial condition). In particular, permanence implies persistence.

Also, we say that a polynomial dynamical system (2) has a globally attracting point within
the a�ne invariant set Sx0 if there exists a point x̄0 2 Sx0 such that any solution x(t) with
x(0) 2 Sx0 can be extended for all t > 0 and we have

lim
t!1

x(t) = x̄0.

Also, we say that a polynomial dynamical system (2) is vertex balanced if there exists an
E-graph G = (V,E) that generates our system as in (4), and there exists a point x̄ 2 Rn

>0 such
that for any vertex s 2 V we have

(9)
X

e=(s,s0)2E

kex̄
s =

X

e=(s0,s)2E

kex̄
s
0

.

In other words, if we think of the positive number kexs(e) as the rate of a flow along the edge
e (i.e., a flow from the vertex s(e) to the vertex t(e)), then condition (9) says that if x = x̄,
then at each vertex of the graph G, the sum of all the incoming flows equals the sum of all
outgoing flows.

The notion of “vertex balanced polynomial dynamical system” (or “vertex balanced power-
law dynamical system”) is a natural generalization of the notion of a “toric dynamical system,”
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which in turn was a reformulation of the notion of “complex balanced mass-action system,”
which was introduced by Horn and Jackson in their seminal work on models of reaction
networks with mass action kinetics [22]. For more details, see [8, 10, 16, 21, 31]. This notion
ultimately originates in the work of Boltzmann [5, 6]. For some recent connections between
polynomial dynamical systems, reaction networks, and the Boltzmann equation, see [12].

2.2. Open problems. We can now formulate the following conjectures, inspired by anal-
ogous conjectures that have been formulated for mass-action systems [9, 10, 22, 23], and are
widely regarded as the key open problems in this field.

Global attractor conjecture. Any vertex balanced polynomial dynamical system has a glob-
ally attracting point within any a�ne invariant set.

Extended persistence conjecture. Any variable-k weakly reversible polynomial dynamical
system is persistent.

Extended permanence conjecture. Any variable-k weakly reversible polynomial dynamical
system is permanent.

The global attractor conjecture is the oldest and best known of these conjectures, and has
resisted e↵orts for a proof for over four decades, but proofs of many special cases have been
obtained during this time, for example [1, 2, 9, 10, 25, 27, 28, 29]. The conjecture originates
from the 1972 breakthrough work by Horn and Jackson [22], and was formulated by Horn in
1974 [23].

Recently, Craciun, Nazarov, and Pantea [9] have proved the three-dimensional case of
this conjecture, and Pantea has generalized this result for the case where the dimension of
the linear invariant subspaces is at most three [25]. Using a di↵erent approach, Anderson has
proved the conjecture under the additional hypothesis that the graph G has a single connected
component [2], and this result has been generalized by Gopalkrishnan, Miller, and Shiu for the
case where the graph G is strongly endotactic [19]. A proof of the global attractor conjecture in
full generality (using as a main tool the embedding of weakly reversible polynomial dynamical
systems into toric di↵erential inclusions, which is the main topic of this paper) has been
proposed in [8].

Note that all three conjectures above relate to weakly reversible polynomial dynamical
systems. Indeed, it is known that if the vertex balance condition (9) is satisfied, then it
follows that the E-graph G must be weakly reversible [10, 16, 22]. Moreover, all of these
conjectures are strongly related to some version of the persistence property; in particular, it
is known that a proof of the Global Attractor Conjecture would follow if we could show that
vertex balanced polynomial dynamical systems are persistent [8, 9, 28, 29].

In the next section we introduce toric di↵erential inclusions, in order to facilitate the anal-
ysis of persistence properties of variable-k weakly reversible polynomial dynamical systems.
Indeed, we will see that the analysis of some properties of these nonautonomous systems can
be reduced to the analysis of toric di↵erential inclusions, which are not only autonomous (i.e.,
their right-hand sides are constant in t), but are also piecewise constant in x.

3. Toric di↵erential inclusions. Given an E-graph G = (V,E), let us write s ! s
0
2 G if

(s, s0) is an edge of G; also let us write s ⌦ s
0
2 G if both (s, s0) and (s0, s) are edges of G.
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Then, if G is reversible, the dynamical system (5) can be written as

(10)
dx

dt
=

X

s⌦s02G

⇣
ks!s0(t)x

s
� ks0!s(t)x

s
0
⌘
(s0 � s),

by grouping together pairs of terms given by an edge s ! s
0 and its reverse s

0
! s. In

particular, if G consists of a single reversible edge s ⌦ s
0, then we obtain

(11)
dx

dt
=

⇣
ks!s0(t)x

s
� ks0!s(t)x

s
0
⌘
(s0 � s).

Note that we can understand the dynamics of the system (11) if we think of it as a “tug-of-
war” between the forward and reverse terms, i.e., the positive and the negative monomials in
(11). Indeed, both the forward and the reverse terms are trying to “pull” the state x(t) of the
system along the same line (parallel to the vector s

0
� s), but in opposite directions. Recall

that " < ke(t) <
1
"
for all t. Then, the domain Rn

>0 can be partitioned into three regions: the

region where the inequality "x
s
>

1
"
x
s
0

holds (which implies ks!s0(t)xs > ks0!s(t)xs
0

), the

region where the inequality 1
"
x
s
> "x

s
0

holds (which implies ks!s0(t)xs > ks0!s(t)xs
0

), and an
uncertainty region where neither one of these two inequalities are satisfied, and either one of
the two terms ks!s0(t)xs and ks0!s(t)xs

0

may win the tug-of-war, or there can be a tie, due
to the fact that ks!s0(t) and ks0!s(t) may take any values between " and 1

"
.

We will now show that the system (11) can be embedded into a piecewise constant di↵er-
ential inclusion defined using a partition of Rn into three corresponding (but simpler) regions,
related to the ones above via a logarithmic transformation.

Indeed, let us define by ls0�s the line through the origin in Rn generated by the vector
s
0
� s, and by l

�

s0�s
⇢ ls0�s the ray starting from the origin in the direction s

0
� s, and by

l
+
s0�s

⇢ ls0�s the ray starting from the origin in the direction s� s
0. Also, let us denote by H

the hyperplane through the origin orthogonal to s
0
� s. For some � > 0 define the set-valued

function FH,� at X 2 Rn, as follows:

FH,�(X) =

8
><

>:

l
+
s0�s

if dist(X,H) > � and X · (s0 � s) > 0,

l
�

s0�s
if dist(X,H) > � and X · (s0 � s) < 0,

ls0�s if dist(X,H)  �.

Recall that ks!s0(t), ks0!s(t) 2 [", 1/"] for all t. We obtain the following result.

Lemma 3.1. The dynamical system (11) (which is given by an E-graph that consists of a
single reversible edge s ⌦ s

0) is embedded in the di↵erential inclusion

(12)
dx

dt
2 FH,�(log x),

where � = 2| log "|
||s0�s||

.

Proof. If dist(log x,H)  � there is nothing to be proved, because we already know that
the right-hand side of (11), i.e., the vector

⇣
ks!s0(t)x

s
� ks0!s(t)x

s
0
⌘
(s0 � s),
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belongs to ls0�s.
If dist(log x,H) > � and (log x) · (s0 � s) > 0, we need to show that the right-hand side of

(11) belongs to l
+
s0�s

, i.e., we need to show that

ks!s0(t)x
s
< ks0!s(t)x

s
0

.

For this, it is su�cient to show that 1
"
x
s
< "x

s
0

, which is equivalent to x
s
0
�s

> "
�2, and, by

taking logarithm on both sides of this inequality, it can also be written as

(13) (log x) · (s0 � s) > �2 log ".

On the other hand, dist(log x,H) is just the dot product between the vector log x and
the unit vector that is orthogonal to H and on the same side of H as log x. But, since
(log x) · (s0 � s) > 0, this unit vector is just s

0
�s

||s0�s||
. Then the inequality dist(log x,H) > �

implies

(14) (log x) ·
s
0
� s

||s0 � s||
> �.

Finally, given that � = 2| log "|
||s0�s||

and " 2 (0, 1), we can see that the inequalities (13) and (14)
are equivalent.

The case where dist(log x,H) > � and (log x) · (s0 � s) < 0 is analogous, so this concludes
the proof.

Therefore, if G consists of a single reversible edge and if dist(log x,H) > �, then the right-
hand side of the system (11) is a vector that is orthogonal to the hyperplane H and points in
the direction that goes from the point log x towards H (see Figure 2(a)–(f) for some examples
in R2). Next, we will use this observation in order to construct a generalization of Lemma 3.1
for all reversible E-graphs, by using the notion of polar cone.

Recall that a polyhedral cone C ⇢ Rn is the set of nonnegative linear combinations of a
finite set of vectors in Rn, or, equivalently, is a finite intersection of closed half-spaces in Rn

[26]. For simplicity, we will often say cone instead of polyhedral cone, because the only cones
we consider here are polyhedral cones.

Definition 3.1. Consider a cone C ⇢ Rn. The polar cone of C is denoted C
o and is given

by

(15) C
o = {y 2 Rn

| x · y  0 for all x 2 C}.

The polar cone is just the negative of the better known dual cone. Also, note that if the
cone C is full-dimensional (i.e., its linear span is Rn), then its polar cone Co is generated by the
outer normal vectors of the codimension-1 faces of C. For more information about polyhedral
cones and their polar (or dual) cones, see [18, 26, 32].

Let us now return to the graph G that consists of a single reversible edge s ⌦ s
0. Recall

that H denotes the hyperplane through the origin and orthogonal to s
0
� s. Denote by H+

the closed half-space of Rn that is bounded by H and contains the vector s0 � s, and denote
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by H� the closed half-space of Rn that is bounded by H and contains the vector s� s
0. Note

that the polar cone H
o
+ is equal to the ray l

+
s0�s

, and the polar cone H
o
� is equal to the ray

l
�

s0�s
. Then the set-valued function FH,� can be rewritten as

FH,�(X) =

8
><

>:

H
o
+ if dist(X,H) > � and X 2 H+,

H
o
� if dist(X,H) > � and X 2 H�,

H
o
+ +H

o
� if dist(X,H)  �,

where we define A+B = {a+ b | a 2 A and b 2 B}. Then we can write FH,�(X) only in terms
of the distance between X and the half-spaces H+ and H�, as follows:

FH,�(X) =

8
><

>:

H
o
+ if dist(X,H+)  � and dist(X,H�) > �,

H
o
� if dist(X,H�)  � and dist(X,H+) > �,

H
o
+ +H

o
� if dist(X,H+)  � and dist(X,H�)  �.

In order to be able to construct a generalization of Lemma 3.1 for the case where the
E-graph G contains several reversible edges, we want to regard the set of cones {H+, H�, H}

as a special case of a polyhedral fan, because if we have several reversible edges, then we have
to consider a cover of Rn given by several hyperplanes, the half-space they generate, and their
intersections (see Figure 2(g)–(i)). Recall the definition of a polyhedral fan [7, 18].

Definition 3.2. A finite set F of polyhedral cones in Rn is a polyhedral fan if the following
two conditions are satisfied:

(i) any face of a cone in F is also in F ,
(ii) the intersection of two cones in F is a face of both cones.

We say that a polyhedral fan F is complete if
S

C2F
C = Rn.

For example, given a finite set H of hyperplanes that contain the origin, consider the set
FH of all the possible intersections of closed half-spaces given by hyperplanes in H. Then FH

is a complete polyhedral fan. (Since we are only interested in complete polyhedral fans, from
now on we will refer to them simply as fans.) This particular case of “hyperplane-generated
fan” will be especially relevant for motivating our definition of toric di↵erential inclusions.

Indeed, we can now write FH,�(X) as

(16) FH,�(X) =
X

C2{H+,H�,H}

dist(X,C)�

C
o
,

i.e., FH,�(X) consists of all possible sums of elements of polar cones Co such that the cone C

belongs to the fan {H+, H�, H}, and the distance between X and C is at most �. In general
(see [26]), for any cones C1, C2 we have

C
o

1 + C
o

2 = (C1 \ C2)
o
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so it follows that we can rewrite (16) as

(17) FH,�(X) =

0

BB@
\

C2{H+,H�,H}

dist(X,C)�

C

1

CCA

o

.

The characterizations (16) and (17) have the advantage that they can be easily carried over to
the more general case where G consists of several reversible edges. In that case we have several
tug-of-wars going on at the same time, but for each one of them we can specify the winning
direction (if any) at x by calculating the distance between X = log x and some hyperplane in
Rn. Depending on whether X falls outside an uncertainty region or not, each reversible edge
s ⌦ s

0 of G contributes one or two vectors to FH,�(X) (if one, then it is either s0 � s or s� s
0,

and if two, then they are ±(s0 � s)).
It follows that any system (10) can be embedded into a di↵erential inclusion on Rn

+ given
by a setH of hyperplanes in Rn and a number � > 0, as follows (see the proof of Proposition 3.2
for a precise way for choosing �). For each x 2 Rn

>0 we define FH,�(log x) to be the convex cone
generated by vectors orthogonal to the hyperplanes of H, in the direction that goes from the
point X = log x towards each hyperplane, and also the opposite direction if X is at distance
< � from some hyperplane. If X does not belong to any uncertainty region, then FH,�(log x)
is defined to be exactly the polar cone C

o of the (unique) cone C 2 FH that contains X. If
X does belong to some uncertainty regions, then we can still describe FH,�(log x) in terms of
polar cones, by including not just the polar of the cone of FH that contains X, but also the
polar of each cone of FH that is at distance  � from X.

Of course, not every fan is generated by a set of hyperplanes as above. Nevertheless, we
can generalize the construction described above to define a di↵erential inclusion given by a
general fan F in Rn, as follows.

Definition 3.3. Consider a polyhedral fan F in Rn, and a number � > 0. The toric di↵er-
ential inclusion generated by F and � is the di↵erential inclusion on Rn

>0 given by

(18)
dx

dt
2 FF ,�(log x),

where FF ,� is a set-valued function defined as

(19) FF ,�(X) =
X

C2F

dist(X,C)�

C
o
.

In other words, the toric di↵erential inclusion (18) is a piecewise constant di↵erential
inclusion, and its right-hand side FF ,�(log x) is the cone generated by the sum of all the
polar cones C

o such that C 2 F and dist(log x,C)  �. Note that for every x there is at
least one such C, because the fan F is complete. If C 2 F is a cone of dimension < n and
dist(log x,C)  �, then we say that x belongs to the uncertainty region of C.
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Like before, we can also rewrite FF ,� as

(20) FF ,�(X) =

0

BB@
\

C2F

dist(X,C)�

C

1

CCA

o

.

We can use Lemma 3.1 to prove that any reversible polynomial dynamical system can be
embedded into a toric di↵erential inclusion.

Proposition 3.2. Consider a variable-k reversible polynomial dynamical system (10). Then
this system can be embedded into a toric di↵erential inclusion.

Proof. Given a variable-k reversible polynomial dynamical system generated by the E-
graph G, we denote by H the set of hyperplanes that are orthogonal to the edge vectors of G,
i.e.,

H = {(s0 � s)?| s ⌦ s
0
2 G}.

Consider the fan FH generated by H and choose � as suggested by Lemma 3.1, i.e., � =
maxs⌦s02G

2| log "|
||s�s0||

, where "  ks!s0(t) 
1
"
for all s ! s

0
2 G and for all t.

Then, according to Lemma 3.1 and (16), the right-hand side of the dynamical system (10)
at x 2 Rn

+ belongs to the set X

C2Ĥ

dist(X,C)�

C
o
,

where X = log x and Ĥ =
S

H2H
{H+, H�, H}.

Note now that the set Ĥ is a subset of the fan FH, which implies that the right-hand side
of the dynamical system (10) at x 2 Rn

+ belongs to the set

X

C2FH

dist(X,C)�

C
o
,

i.e., the dynamical system (10) is embedded into the toric di↵erential inclusion generated by
FH and �.

On the other hand, we are most interested in weakly reversible polynomial dynamical
systems, since the conjectures we described in section 2 refer to this larger class of dynamical
systems. In the next section we address this problem, and we prove that variable-k weakly
reversible polynomial dynamical systems can be embedded into toric di↵erential inclusions.
This will imply that toric dynamical systems [10] can be embedded into toric di↵erential
inclusions, and is one of the main reasons for calling these di↵erential inclusions “toric.”

4. Embedding of variable-k weakly reversible polynomial dynamical systems into toric
di↵erential inclusions. As we discussed in the previous section, the simplest examples of toric
di↵erential inclusions are generated by polyhedral fans FH that are determined by a finite
set H of hyperplanes. We will refer to this class of toric di↵erential inclusions as hyperplane-
generated toric di↵erential inclusions.
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We have also seen in the previous section that any variable-k reversible polynomial dynam-
ical system in Rn

>0 can be embedded into a (hyperplane-generated) toric di↵erential inclusion.
Here we show that the same is true for all variable-k weakly reversible polynomial dynamical
systems.

Theorem 4.1. Consider a variable-k weakly reversible polynomial dynamical system (5).
Then this system can be embedded into a toric di↵erential inclusion.

Proof. Denote by G a weakly reversible E-graph that generates our system. Consider
first the case where G consists of a single oriented cycle. Then the graph G is given by
s1 ! s2 ! · · · ! sr ! s1, and the variable-k weakly reversible dynamical system it generates
has the form

(21)
dx

dt
=

rX

i=1

ki(t)x
si(si+1 � si),

where sr+1 = s1 and "  ki(t) 
1
"
for some " > 0.

Consider the set L of lines through the origin in the direction of vectors si � sj for all
i 6= j, and denote by H the set of all hyperplanes that are orthogonal to a line in L, i.e.,

H = {`
?
| ` 2 L}.

Denote by FH the polyhedral fan generated by the set of hyperplanes H, and, for � > 0,
denote by TH,� the corresponding hyperplane-generated toric di↵erential inclusion. We will
show that there exists �0 > 0 such that the single-cycle variable-k weakly reversible dynamical
system (21) is embedded in the toric di↵erential inclusion TH,�0 . (Note that when we refer
below to reversible edges si ⌦ sj , we do not assume that these edges belong to G; we only
mention them as a tool in our construction of TH,�0 .)

Choose �0 > 0 large enough such that the uncertainty regions given by the reversible edges
si ⌦ sj and " are contained within the uncertainty regions of the toric di↵erential inclusion
TH,�0 . For example, according to Lemma 3.1 (see also Proposition 3.2), we can choose

(22) �0 = max
i 6=j

2| log "|

||si � sj ||
.

Let us first consider the case of a point x 2 Rn

>0 that does not belong to any uncertainty
region of TH,�0 . Then the point X = log x is not contained in any hyperplane in H, so there
must exist a cone C in FH such that C has dimension n and contains the point X in its
interior. We will show that the right-hand side of (21) is contained in the polar cone C

o.
Consider a vector w in the interior of C, and consider the orthogonal projections of the

vectors s1, s2, . . . , sr on the line `w that passes through the origin in the direction given by
w. Then no two such projections are the same, because w does not belong to any of the
hyperplanes in H. In other words, we have that si ·w 6= sj ·w whenever si 6= sj . We now use
these projections to give a second set of names to the vectors s1, s2, . . . , sr, say v1, v2, . . . , vr,
to record the order in which these projections appear along the line `w. More precisely, we
choose the names v1, v2, . . . , vr in the order (from largest to smallest) of the values of vl ·w, so,
for example, v1 equals the si that has the largest value of si ·w, v2 equals the si that has the
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second-largest value of si · w, and so on. Note also that, since the signs of the dot products
(vl+1 � vl) · w cannot change as w is allowed to vary in the interior of C, it follows that the
new names v1, v2, . . . , vr do not depend on the particular choice of vector w in the interior of
C. In other words, the dot products (vl+1 � vl) · w are all negative numbers, for all w in the
interior of C. Therefore, the vectors v2 � v1, v3 � v2, . . . , vr � vr�1 belong to C

o.
So, in order to show that the right-hand side of (21) is included in C

o, it is enough to show
that it can be written as a positive linear combination of the vectors v2 � v1, v3 � v2, . . . , vr �

vr�1.
If si1 = v1, si2 = v2, . . . , sir = vr, then note that (i1, i2, . . . , ir) is a permutation of

(1, 2, . . . , r). If we denote the inverse permutation by (j1, j2, . . . , jr), it follows that s1 = vj1 ,
s2 = vj2 , and so on. Then we have s2 � s1 = vj2 � vj1 . If j2 > j1, we write

s2 � s1 =
j2�1X

l=j1

(vl+1 � vl),

and if j2 < j1, we write

s2 � s1 = �

j1�1X

l=j2

(vl+1 � vl).

We do the same for s3 � s2, s4 � s3, and so on. This way, we write each di↵erence si+1 � si

from the right-hand side of (21) in terms of the vectors ±(vl+1 � vl), with l = 1, 2, . . . , r � 1.
Therefore, we can regroup terms to obtain

(23)
dx

dt
=

r�1X

l=1

�l(vl+1 � vl),

where �l is a sum of several terms of the form ki x
vi , with various signs.

Note now that the positive terms inside �l correspond to edges of the form vm ! vn with
m  l < n, and negative terms inside �l correspond to edges of the form vm ! vn with
n  l < m. This means that the positive terms inside �l are a sum of terms of the form
ki(t)xvi with i  l, and the negative terms inside �l are a sum of terms of the form ki(t)xvi

with i > l. In particular, since G is a cycle, it follows that �l contains at least one positive
term, and at least one negative term. Recall that X = log x is in the interior of C. Then
the dot products of the form (vl+1 � vl) · X must be negative for all l, which implies that
x
vl > x

vl+1 for all l. Moreover, since x does not belong to any uncertainty region, and due to
our choice of �0 (see (22) and Lemma 3.1), this inequality remains the same even if we include
the terms kl(t) and kl+1(t), and we obtain kl(t)xvl > kl+1(t)xvl+1 . Therefore, we have

k1(t)x
v1 > k2(t)x

v2 > · · · > kr(t)x
vr .

Also, note that the number of positive terms inside �l is the same as the number of
negative terms inside �l, because the graph G is a cycle. Therefore, the sum of the positive
terms inside �l dominates the sum of the negative terms inside �l, for each l. In conclusion,
the right-hand side of (23) (and, therefore, the right-hand side of (21)) is a positive linear
combination of the vectors vl+1 � vl, for 1  l  r � 1, so it belongs to C

o.
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Consider now the case where x does belong to one or more uncertainty regions of the toric
di↵erential inclusion TH,�0 . Recall that the cone of TH,�0 at x is FH,�0(X) (see Definition 3.3).
Then, by using (19) and the calculations in the proof of Lemma 3.1, we conclude that the set
FH,�0(X) is a cone generated by two types of vectors: vectors of the “first type,” which are of
the form ±(si� sj) such that si ⌦ sj is a reversible edge and x is in the uncertainty region of
the hyperplane orthogonal to si � sj , and vectors of the “second type,” which are of the form
sl � sm such that sl ⌦ sm is a reversible edge and x is not in the uncertainty region of the
hyperplane orthogonal to sl � sm, and moreover, (sl � sm) ·X < 0. Note that, without loss of
generality we can assume that not all vectors are of the first type; otherwise, we immediately
obtain that the right-hand side of (21) belongs to FH,�0(X).

Consider now a vector w in the interior of the polar cone of the cone FH,�0(X); then w

satisfies (si � sj) · w = 0 for vectors of first type, and (sl � sm) · w < 0 for vectors of second
type. We also consider the orthogonal projections of the vectors s1, s2, . . . , sr on the line `w

that passes through the origin in the direction given by w. Unlike the previous case, in this
case some projections will coincide; more precisely, if si and sj are like in the first type above,
then their projections will coincide because si · w = sj · w.

Nevertheless, we can still give a second set of names to the vectors s1, s2, . . . , sr, say
v1, v2, . . . , vr, to record the order in which these projections appear along the line `w, with
the caveat that we will have one or more cases where the projections coincide. Our ordering
is chosen such that

(24) (vl+1 � vl) · w  0.

Note that if we allow w to vary within the interior of the polar cone of the cone FH,�0(X), the
inequality (24) will still hold. This implies that whenever the projections on `w of vl and vl+1

are distinct, the vector vl+1 � vl belongs to the cone FH,�0(X); moreover, if their projections
coincide, then both vectors ±(vl+1 � vl) belong to FH,�0(X).

Now we proceed exactly like in the previous case. We can still regroup terms like in
formula (23), and, in order to conclude that the right-hand side of (23) belongs to FH,�0(X),
we only have to check that �l > 0 for values of l where projections of vl and vl+1 are distinct.
But, in the same way as before, such �l have an equal number of positive and negative terms
of the form kix

vi , and, also as before, the positive terms are larger than the negative terms.

Finally, if the weakly reversible graph G is not a single oriented cycle, then we write
it as a union of cyclic graphs, G =

S
g

i=1 Gi, and we can argue as above for each such Gi.
We obtain that the variable-k weakly reversible dynamical systems given by the cycle Gi are
embedded in toric di↵erential inclusions generated by some set of hyperplanes Hi. Note now
that the right-hand side of a variable-k weakly reversible dynamical system given by G can be
decomposed into a sum of terms, such that each term is of the form given by the right-hand
side of a variable-k weakly reversible dynamical system determined by Gi. (We may have to
use smaller "i values for the terms in the decomposition, because the same edge of G may
belong to several graphs Gi.) Note also that if we define the set of hyperplanes

H =
g[

i=1

Hi,



16 GHEORGHE CRACIUN

then for any i and �, the toric di↵erential inclusion given by the fan FHi and � is embedded
in the toric di↵erential inclusion given by the fan FH and �, because every cone Ci 2 FHi can
be written as a union of cones from FH, and whenever C ⇢ C̃ it follows that Co

� C̃
o. Then

we conclude that any variable-k mass-action system given by G can be embedded into a toric
di↵erential inclusion generated by the set of hyperplanes H.

5. Applications and conclusions. In this paper we have introduced toric di↵erential in-
clusions, and we have shown that any polynomial dynamical system on the positive orthant
is generated by an E-graph (which is not unique). Moreover, if this E-graph can be chosen
to be weakly reversible, then the polynomial dynamical system can be embedded into a toric
di↵erential inclusion. Most importantly, toric di↵erential inclusions have a rich geometric
structure that can be used in the construction of invariant regions needed for the proof of
important conjectures in this field [8, 9].

The idea of thinking about polynomial dynamical systems as being generated by E-graphs
was inspired by the way reaction networks generate polynomial dynamical systems under
the assumption of mass-action kinetics. Indeed, the set of polynomial dynamical systems
generated by E-graphs G = (V,E) that satisfy V ⇢ Zn

�0 is exactly the same as the set of all
mass-action dynamical systems [3, 4].

Note also that while the formulations of the conjectures in section 2.2 are more general
than the usual formulations for mass-action systems (which restrict the exponent vectors to
be nonnegative), there is a simple way to show that these two versions are actually equivalent,
by “time-rescaling” via multiplication by a scalar field of the form x

(M ·1), where 1 is a vector
with all 1 components. This multiplication can be chosen such that it shifts the E-graph into
the nonnegative orthant, while preserving all trajectory curves [8].

On the other hand, our results on embedding weakly reversible polynomial dynamical
systems into toric di↵erential inclusions suggests other kinds of generalizations of the Persis-
tence Conjecture and of the Permanence Conjecture, as follows. Note that, in the proof of
Lemma 3.1, in order to be able to obtain that embedding into a di↵erential inclusion, it is not
really necessary to know that the values of ks!s0(t), ks0!s(t) are contained in an interval of
the form [", 1

"
]; exactly the same calculations will work if we just know that

(25) "0 
ks!s0(t)

ks0!s(t)


1

"0

for some "0 > 0. Similarly, in Proposition 3.2, we don’t need to assume that all the time-
dependent parameter values ks!s0(t) are bounded away from zero and infinity; we just need
to assume that for any reversible reaction the ratio of the corresponding parameter values is
bounded away from zero and infinity, as in (25).

Even in Theorem 4.1, in the case of a weakly reversible E-graph G, it is enough to assume
that we have

(26) "0 
ks!s0(t)

ks̃!s̃0(t)


1

"0

for any edges s ! s and s̃ ! s̃
0 that are in the same connected component of G.

These observations suggest that, for example, if we could take advantage of the embedding
into toric di↵erential inclusions and prove this stronger version of the Persistence Conjecture,
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we would obtain the following interesting conclusion for the dynamics of chemical and bio-
chemical reaction networks: if several (weakly reversible) reaction networks or pathways are
coupled together, then the resulting dynamics will still be persistent even if the external fac-
tors that influence each pathway are widely di↵erent in size. For example, if we have two
weakly reversible biochemical pathways, and the reaction rate parameters in one pathway are
modulated by temperature, while in the other pathway they are modulated by a signaling
protein whose concentration is unrelated to temperature, then by coupling together these two
pathways we should still maintain the persistence property.

Also, generally speaking, the embedding of weakly reversible mass-action systems into
toric di↵erential inclusions provides a more rigorous interpretation for the standard “hand-
waving” intuition behind the Persistence and Permanence Conjectures. Namely, for mass-
action systems it is quite reasonable to think that if every reaction is part of a cycle (i.e., if
the reaction network is weakly reversible), then the chemical reactions should not be able to
drive any concentration to zero, because if a reaction consumes a species, then soon a chain of
reactions that follow it will work to replenish that species. This intuition is a bit too vague to
be turned into a proof, but, as we can see in Figure 2(h), we now have a more concrete way to
think about it: if we focus on some region where the right-hand side of the toric di↵erential
inclusion is constant, then this constant cone of directions seems to point “toward the middle”
of the positive quadrant, i.e., away from the boundary, and also away from infinity.

In particular, given an embedding of a two-variable polynomial dynamical system into
a toric di↵erential inclusion, we can immediately obtain families of invariant regions for this
dynamical system in R2

>0, as illustrated in Figure 3. Such an embedding allows us to construct
“zero-separating curves” (as shown in Figure 3(c)) which prevent positive trajectories from
approaching the origin. As shown in [9], when constructed for variable-k polynomial dynam-
ical systems, these curves are the key tool for a proof of the persistence of vertex-balanced
dynamical systems in R3

>0. Similarly, given any positive initial point, we can use the embed-
ding to construct a compact invariant region that contains that point (as shown in Figure
3(d)).

Therefore, the embeddings of some polynomial dynamical systems into toric di↵erential
inclusions allow us to give very short proofs of the main results in [9] (i.e., a proof of the
Persistence Conjecture in R2

>0, and of the Global Attractor Conjecture in R3
>0) and also to

generalize the Persistence Conjecture result in R2
>0 as we described above; see [8] for more

details. More importantly, similar geometric constructions of invariant regions based on toric
di↵erential inclusions can also be done in higher dimensions [8].

Outside the setting considered here, global convergence results for mass-action systems
have been recently used to study reaction-di↵usion equations via the method of lines [24],
have been adapted for analyzing some versions of discrete Boltzmann equations [12], and an
entropy method has been used to study a large class of reaction-di↵usion systems that arise
from vertex-balanced networks [13]. Interestingly, reversibility and weak reversibility play a
role in these works as well.
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(a) (b)

(c) (d)

Figure 3. (a) A general polyhedral fan in R2 gives rise to a toric di↵erential inclusion in R2
>0, whose

piecewise constant domains are sketched in (b). We are not showing explicitly the direction cones in (b),
but they are just the polar cones of the cones in (a). Some neighborhoods of the curves shown in (b) delimit
the uncertainty regions of this toric di↵erential inclusion. To visualize these neighborhoods in (b), we should
imagine that each curve in (b) has some nonzero thickness that represents its uncertainty region, and the right-
hand side of the toric di↵erential inclusion within that uncertainty region is a half-plane (each such half-plane is
the polar cone of a ray in (a)). In (c) we see how we can use the slopes of the boundary lines of these half-planes
to build a polygonal line that crosses each curve along line segments of specified slope; when such a line segment
crosses a curve in (c), it must be orthogonal to the corresponding ray in (a). In (d) we see that we can follow
the imposed slopes to build compact invariant regions, which allow us to prove that a polynomial dynamical
system embedded in a two-dimensional toric di↵erential inclusion is persistent and actually also permanent.
This idea can lead to a much shorter proof of the main results in [9].
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molekülen, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, 95 (1887), pp.

153–164.

[6] L. Boltzmann, Gastheorie, J. A. Barth, Leipzig, 1896.

[7] D. Cox, J. Little, and H. Schenck, Toric Varieties, Grad. Stud. Math. 124, AMS, Providence, RI,

2011.

[8] G. Craciun, Toric Di↵erential Inclusions and a Proof of the Global Attractor Conjecture, preprint,

https://arxiv.org/abs/1501.02860, 2016.

[9] G. Craciun, F. Nazarov, and C. Pantea, Persistence and permanence of mass-action and power-law
dynamical systems, SIAM J. Appl. Math., 73 (2013), pp. 305–329, https://doi.org/10.1137/100812355.

[10] G. Craciun, A. Dickenstein, A. Shiu, and B. Sturmfels, Toric dynamical systems, J. Symbolic

Comput., 44 (2009), pp. 1551–1565.

[11] G. Craciun, Y. Tang, and M. Feinberg, Understanding bistability in complex enzyme-driven reaction
networks, Proc. Natl. Acad. Sci., 103 (2006), pp. 8697–8702.

[12] G. Craciun and M.B. Tran, A Reaction Network Approach to the Convergence to Equilibrium of
Quantum Boltzmann Equations for Bose Gases, preprint, https://arxiv.org/abs/1608.05438, 2017.

[13] L. Desvillettes, K. Fellner, and B.Q. Tang, Trend to equilibrium for reaction-di↵usion systems
arising from complex balanced chemical reaction networks, SIAM J. Math. Anal., 49 (2017), pp.

2666–2709, https://doi.org/10.1137/16M1073935.

[14] P. Donnell and M. Banaji, Local and global stability of equilibria for a class of chemical reaction
networks, SIAM J. Appl. Dyn. Syst., 12 (2013), pp. 899–920, https://doi.org/10.1137/120898486.

[15] M. Feinberg, Complex balancing in general kinetic systems, Arch. Rational Mech. Anal., 49 (1972), pp.

187–194.

[16] M. Feinberg, Lectures on Chemical Reaction Networks, written version of lectures given at the Mathe-

matical Research Center, University of Wisconsin, Madison, WI, 1979, available at http://www.crnt.

osu.edu/LecturesOnReactionNetworks.

[17] M. Feinberg, Chemical reaction networks structure and the stability of complex isothermal reactors – I.

The deficiency zero and deficiency one theorems, Chem. Eng. Sci., 42 (1987), pp. 2229–2268.

[18] W. Fulton, Introduction to Toric Varieties, Princeton University Press, Princeton, NJ, 1993.

[19] M. Gopalkrishnan, E. Miller, and A. Shiu, A geometric approach to the global attractor conjecture,
SIAM J. Appl. Dyn. Syst., 13 (2014), pp. 758–797, https://doi.org/10.1137/130928170.

[20] E. Gross, M. Johnston, and N. Meshkat, Discussing the proof of the global attrac-
tor conjecture, SIAM News, July 2016, available at https://sinews.siam.org/Details-Page/

discussing-the-proof-of-the-global-attractor-conjecture-1.

[21] J. Gunawardena, Chemical reaction network theory for in-silico biologists, lecture notes available online

at http://vcp.med.harvard.edu/papers.html, 2003.

[22] F. Horn and R. Jackson, General mass action kinetics, Arch. Rational Mech. Anal., 47 (1972), pp.

81–116.

[23] F. Horn, The dynamics of open reaction systems, in Mathematical Aspects of Chemical and Biochemical

Problems and Quantum Chemistry (Proc. SIAM-AMS Sympos. Appl. Math., New York), SIAM-AMS

Proceedings 8, AMS, Providence, RI, 1974, pp. 125–137.

[24] F. Mohamed, C. Pantea, and A. Tudorascu, Chemical reaction-di↵usion networks: Convergence of
the method of lines, J. Math. Chem., 56 (2018), pp. 30–68.

[25] C. Pantea, On the persistence and global stability of mass-action systems, SIAM J. Math. Anal., 44

(2012), pp. 1636–1673, https://doi.org/10.1137/110840509.

[26] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.

[27] A. Shiu and B. Sturmfels, Siphons in chemical reaction networks, Bull. Math. Biol., 72 (2010), pp.

1448–1463.

[28] D. Siegel and D. MacLean, Global stability of complex balanced mechanisms, J. Math. Chem., 27

(2004), pp. 89–110.



20 GHEORGHE CRACIUN

[29] E.D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proof-
reading model of T-cell receptor signal transduction, IEEE Trans. Automat. Control, 46 (2001), pp.

1028–1047.

[30] M.A. Savageau and E.O. Voit, Recasting nonlinear di↵erential equations as S-systems: A canonical
nonlinear form, Math. Biosci., 87 (1987), pp. 83–115.

[31] P.Y. Yu and G. Craciun, Mathematical analysis of chemical reaction systems, Isr. J. Chem., 58 (2018),

pp. 733–741.

[32] G. Ziegler, Lectures on Polytopes, Springer Verlag, New York, 1995.


