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Abstract—High-fidelity wavelet transforms can facilitate visualization and analysis of large scientific data sets. However, it is important

that salient characteristics of the original features be preserved under the transformation. We present a set of filter design axioms in the

spatial domain which ensure that certain feature characteristics are preserved from scale to scale and that the resulting filters

correspond to wavelet transforms admitting in-place implementation. We demonstrate how the axioms can be used to design linear

feature-preserving filters that are optimal in the sense that they are closest in L2 to the ideal low pass filter. We are particularly

interested in linear wavelet transforms for large data sets generated by computational fluid dynamics simulations. Our effort is different

from classical filter design approaches which focus solely on performance in the frequency domain. Results are included that

demonstrate the feature-preservation characteristics of our filters.

Index Terms—Filter bank, wavelet design, lifting scheme, TVD schemes, feature preservation, flow fields.
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1 INTRODUCTION

LARGE-SCALE computational fluid dynamics simulations of
physical phenomena produce data of unprecedented

size (terabyte and petabyte range). Unfortunately, the
development of appropriate data management, analysis,
and visualization techniques has not kept pace with the
growth in size and complexity of such data sets. One
paradigm of large-scale visualization and analysis is to
browse regions containing significant features of the data
set while accessing only the data needed to reconstruct
these regions. The cornerstone of an approach of this type is
a representational scheme that facilitates ranked access to
macroscopic features in the data set [15], [19]. In this
approach, a feature detection algorithm is used to identify
and rank contextually significant features directly in the
compressed domain. Additionally, for very large data sets,
it may be desirable to perform the feature detection or
visualization using the compressed data. In either context, it
is essential that the wavelet transform preserve significant
features in the data set.

In [15], [19], the linear lifting scheme [22] was used for

compressing components of a vector field (the name linear

lifting refers to the capacity of this lifting scheme to

perfectly reconstruct linear data). The work reported here

grew out of our efforts to analyze the implementation of the

lifting scheme and design new transforms that preserved
features in discrete flow fields. Unfortunately, the rate-
distortion characteristics of many wavelet transforms did
not bode well for feature preservation [19]. However, it was
unclear as to how the wavelet transform distorted the data.
It is therefore useful to evaluate the effects of the wavelet
transform in terms of processes that alter certain character-
istics of the data.

In this paper, we define a framework for the analysis and
design of multiscale feature-centric filters through a varia-
tional characterization. Given the need for efficient com-
pression and processing, we consider only linear
transforms. Unlike most classical filter design approaches,
which focus on performance in the frequency domain, we
design the behavior of the filter in the spatial domain. A key
component of our framework is a set of axioms that can be
used to analyze and design filters. Some of the axioms
target specific features in computational fluid dynamics
(CFD) data sets. Others are designed to ensure that, when
used on features for which they were not specifically
designed, our filters will do no worse than most common
wavelet filters.

Data sets from CFD simulations often have regions of
nonsmooth data, as well as regions of high gradients. Our
methods are designed to preserve the integrity of those
regions so that the data can be analyzed and visualized at
lower resolutions. We are interested in filters that are part of
biorthogonal wavelet filter banks, which allow for efficient
progressive refinement to reveal more detail in areas of
interest. We focus on wavelet transforms for large data sets
generated by CFD simulations, but we suggest that the same
framework can be used for the design of other types of
optimal wavelet transforms. We have previously presented
some preliminary ideas regarding our wavelet design
strategy and illustrated its usefulness with a few simple
results [5].Additionally,we reported on theuse of our feature
preserving wavelets to denoise an ocean data set in [24].
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1.1 Motivation

We now present a simple one-dimensional example from
fluid dynamics, the shock tube, to provide motivation for
this effort. A shock tube can be idealized as a cylinder,
closed at both ends, with a diaphragm that separates two
regions of gas that have different pressures and may have
different densities. Initially, the gas is at rest in both regions.
The diaphragm is then ruptured instantaneously and an
unsteady motion ensues. In a typical situation, regions of
uniform and nonuniform flow emerge. Depending on the
initial conditions, these regions are separated by different
types of waves: shocks, across which discontinuous non-
isentropic changes occur in the flow variables; contact
discontinuities, across which the density changes discon-
tinuously while the pressure and fluid velocity remain
constant; and expansion regions in which the flow variables
change isentropically. A more complete description of this
problem can be found in most compressible fluid dynamics
textbooks (e.g., see [2]).

We now illustrate the effects of applying a selection of
wavelet transforms to the density field of a shock tube
solution at a given time. Fig. 1a shows the baseline solution
on a 256 point grid with the expansion, contact disconti-
nuity, and shock wave labeled. Fig. 1b, Fig. 1c, Fig. 1d,
Fig. 1e, Fig. 1f show the subsampled density field after
application of the selected wavelet transforms resulting in
128 data points (one level of wavelet transform), 64 data
points (two levels) and then 32 data points (three levels).
The results labeled TVD1 and TVD3 were generated using
two of the wavelets designed using the technique that is the
subject of this paper. Note that the application of any of the
standard wavelet transforms introduces Gibbs-like oscilla-
tory behavior in the originally monotone data. These
oscillations are problematic for many types of postproces-
sing when applied directly to the compressed data, e.g.,
contour plotting or feature detection.

1.2 Related Work

It is well-known that wavelets can efficiently approximate
smooth data [6] and produce efficient compression schemes.
To suitably preserve edges in scalar image fields, several
linear and nonlinear or data-dependent schemes have been
proposed [16], [29]. In particular, Zhou [29] utilizes Essen-
tially Non-Oscillatory (ENO) reconstructions of the data so
that fewer high frequency coefficients are created.

It is alsowell-known that lifting implementations of linear
wavelets [22] allow for in-place computation and, in general,
reduction by half of the computation time for the wavelet
decomposition. In [23], it is shown that any biorthogonal
wavelet transform can be factored into lifting steps.

Techniques employed in the study of partial differential
equations (PDEs) have been extensively utilized to define
the multiscale behavior of feature detection algorithms for
images [20], [26]. Typically, the time variable in an
evolutionary PDE is taken to represent a scale parameter.
These techniques are used to enhance interregion bound-
aries and smooth intraregion variations. Our axiomatic filter
design resembles the work of Weickert et al. [26] as well as
that of Alvarez et al. [1]. Their domain of interest is limited
to images populated with strong discontinuities such as
edges. In our application, however, not all regions of strong

gradients correspond to discontinuities. In fact, features

with strong gradients, such as expansions and boundary

layers, should not be treated as discontinuities.
The visualization literature is also replete with applica-

tions of the wavelet transform for analyzing, representing,

and rendering volumetric data. Muraki was the first to

explore the use of wavelet transforms [18] for representing

and visualizing three-dimensional data sets. Westermann

[27] also describes the use of wavelets for three-dimensional

and time-varying data. These methods select the most

significant coefficients (ranked by magnitude) for partial

reconstruction of the data set.
Guo [9] and Machiraju et al. [14] describe methods that

seek scale coherent structures in three-dimensional volu-

metric data. These structures are identified using data in the

wavelet transform space. Only coefficients that contribute to

those salient features are retained, leading to more efficient

representations, as shown in [14]. Gross et al. [8] describe

rendering algorithms that can be realized in the wavelet
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Fig. 1. Subsampled density field for shock tube data set after the

application of several wavelet transforms. (a) Baseline solution.

(b) LeGall 5/3 wavelet [11]. (c) Cubic lifting wavelet [5]. (d) Daubechies

9/7 wavelet [3]. (e) TVD1 wavelet. (f) TVD3 wavelet.



domain. Finally, there have been efforts which exploit the
efficiency of wavelet coding schemes for compressed

storage and rendering [12].
There have been efforts to use the minimal representa-

tion error properties of wavelet subspaces to conduct
turbulence simulations and to extract coherent vortices

from a given flow field by means of wavelet thresholding

[7]. However, in this paper, we are examining the impact of
wavelet filters on the data generated, rather than the

simulation itself. It should be noted that, with few
exceptions, the above referenced efforts do not attempt to

preserve features in computational simulation data. The

unique characteristic of our wavelet design strategy is that it
creates wavelets that satisfy certain properties that we deem

essential for the preservation of features in this context.

1.3 Outline of the Paper

In this paper, we describe the procedures we have
developed to generate wavelets with the desired character-

istics. In Section 2, we describe the general linear filter. We

formalize our ideas regarding feature preservation in
Section 3, including an analysis that defines constraints to

be placed on the filter coefficients to ensure that new
extrema are not created. In Section 4, we describe the

biorthogonal wavelet transform and its implementation

using the lifting scheme. In Section 5, we present a set of
filter design axioms based on the results in the previous two

sections. Using these axioms, we present, in Section 6, the

design of feature preserving filters that are optimal in the
sense that they are closest in L2 to the ideal low pass filter.

Results are included in Section 7 to demonstrate the feature-
preservation characteristics of our filters. We conclude with

a discussion regarding the efficacy of our approach and

provide a road map for future work.

2 GENERAL LINEAR FILTER

We now consider a general linear filter and characterize

its behavior. We begin by defining a discrete, scalar
quantity sj;l on an equally spaced mesh xj;l ¼ l�xj for

l ¼ 0; . . . ; 2M with M being a positive integer. The
scalar field sj;l is at scale j. We seek a multiscale

approximation to sj;l on a second equally spaced mesh,

xj�1;l ¼ l�xj�1 for l ¼ 0; . . . ;M with �xj�1 ¼ 2�xj, that
preserves certain characteristics of the original scalar

field. We denote this approximation as sj�1;l.
A general linear filter has the form

sj�1;l ¼
Xþn

k¼�m

aksj;2lþk; ð1Þ

wherem and n are positive integers and the ak are constants
that are independent of the data. The ak are composite

coefficients that represent the combined effects of a wavelet

transform implemented as a filter. The discrete moment of
order q of the filter is given by

�q ¼
Xþn

k¼�m

kqak: ð2Þ

The frequency response or amplification factor of the

filter is given by

Gð�Þ ¼
Xþn

k¼�m

ake
ik�; ð3Þ

where the amplification factor represents the response for

the frequency � (here, i ¼
ffiffiffiffiffiffiffi
�1

p
). The magnitude of Gð�Þ

measures the amplitude of a unit Fourier coefficient upon

application of the filter and the phase of Gð�Þ measures the

phase shift that occurs upon application of the filter.

3 FEATURE PRESERVATION

In this context, feature preservation means that the

“location,” “strength,” and “shape” of features are un-

changed after the application of the general filter (1). Of

course, differences naturally occur due to the change in

resolution between xj and xj�1. Here, we formalize what we

mean by feature preservation and develop conditions that

the filter coefficients ak must satisfy in order to preserve

certain feature characteristics. See [17] for a detailed

analysis of filters in terms of spatial criteria.

3.1 Feature Position

The “location” of a feature is simply its position within the

domain. Clearly, it is undesirable to have a stationary

feature change position upon application of a filter. Like-

wise, a moving feature that is improperly translated is

equally undesirable. This problem is simple to remedy,

however. It is well-known that asymmetric filters, when

applied to data, produce “shifts” in the data. On the other

hand, if the filter is symmetric, no translation of the data

occurs. For some asymmetric filters, it is relatively

straightforward to determine what shift occurs and to

perform a translation of the entire data set upon application

of the filter. For others, this approach is not straightforward.

The simplest approach is to consider only symmetric filters.

The first condition for feature preservation we specify is

that the general linear filter in (1) is symmetric:

ak ¼ a�k for all k: ðF1Þ

An example of a filter that produces a shift in the data is the

Haar filter and, indeed, the coefficients of the Haar filter do

not satisfy ðF1Þ.

3.2 Feature Strength

The “strength” of a feature can be described in terms of the

changes in the data. For the strength to be preserved, the

linear filter should not accentuate or diminish local extrema.

This condition can be related to the frequency response (3)

of the filter. To be effective, the filter must eliminate high

frequency components of the data before sampling. There-

fore, we expect the amplification factor to be zero at �, i.e.,

G �ð Þ ¼ 0. Further, we specify the number of derivatives of

the amplification factor that we want to be zero at �. This

leads to the second constraint:

CRACIUN ET AL.: SPATIAL DOMAIN WAVELET DESIGN FOR FEATURE PRESERVATION IN COMPUTATIONAL DATA SETS 151



X
k

ð�1Þkkjak ¼ 0; for j ¼ 0; 1; . . . ; p� 1;

and some p � 1;

ðF2Þ

where p is the number of zeros of G �ð Þ at � ¼ �. To ensure
that a constant field is not modified by application of the
filter, we want the amplification factor at the lowest
frequency to be unity, i.e., G 0ð Þ ¼ 1. Using (3), we can
easily see that the amplification factor at � ¼ 0 is unity,
provided the coefficients satisfy the partition of unity.
Therefore, the third condition for feature preservation we
specify is that the coefficients of the general linear filter (1)
must partition unity:

X
k

ak ¼ 1: ðF3Þ

While the desired behavior at frequencies zero and � is
well understood, the behavior away from these extremes is
not. The approach we have taken is to assume that the sinc

filter is the optimal filter for the intermediate ranges (see
[21] for a detailed discussion of the ideal low pass filter).
Therefore, the fourth condition for feature preservation we
specify is:

ð. . . ; a�2; a�1; a0; a1; a2; . . .Þ minimizes the

L2 distance to the sinc filter:
ðF4Þ

3.3 Feature Shape

One approach for describing the “shape” of a feature is in
terms of regions of monotone variation in the data. In this
context, “shape” preservation implies that the application of
the linear filter should not introduce new extrema. This
condition is expressed in image processing [26] as the
“causality condition.” Note that the coarse representation of
the input data is obtained by applying the filter and then
subsampling.

We now appeal to a concept from computational fluid
dynamics to help define constraints on the ak values. In
modern CFD simulations, nonlinear techniques, typically
called “limiting,” are used with some success to achieve
higher-order temporal and spatial accuracy without spur-
ious oscillations. Harten [10] and Yee [28] have made
significant contributions to this field with their work on
Total Variation Diminishing (TVD) algorithms. In our
efforts, we focus purely on linear transforms to preserve
efficient invertibility.

In a TVD algorithm, the total variation of the solution
does not increase with time. In our context, we do not want
the total variation to increase as we change scales from j to
j� 1. This is formalized as

TV sj�1

� �
� TV sj

� �
; ð4Þ

where sj is the solution at the current scale, sj�1 is the
solution at the next coarser scale, and the total variation of
the solution is given by

TV sj
� �

¼
X
l

jsj;lþ1 � sj;lj; ð5Þ

where sj;lþ1 and sj;l are spatially consecutive values of the
solution at scale j. By limiting the total variation of the

solution to be less than or equal to the value in the original
data, spurious oscillations do not develop in the data.
Again, since we want to enforce the condition that the total
variation of the data does not increase as we proceed from
finer to coarser scales, we actually impose the TVD
constraint on the subsampled data sj�1. Thus, the causality
condition is enforced by ensuring that the linear transform
is TVD after the data is subsampled.

According to [4], if the filter coefficients ak have the
partition of unity property (F3), then a necessary and
sufficient condition for the filter with coefficients ak to have
the TVD property (4) for any input sj is that ak þ akþ1 � 0
for all k. Therefore, the fifth and final condition for feature
preservation we specify is that the general linear filter in (1)
must be total variation diminishing after subsampling:

ak þ akþ1 � 0 for all k: ðF5Þ

The TVD requirement is more important for fields that are
“nonsmooth.” In this context, a nonsmooth field is one in
which there are localized large gradients or discontinuities.

4 IMPLEMENTATION OF BIORTHOGONAL FILTER
BANK

The general filter bank corresponding to a biorthogonal
wavelet transform appears in Fig. 2. The first half of the
filter bank is called analysis and the second is called
synthesis. The filter h is the analysis low pass filter, the
filter g is the analysis band pass (or high pass) filter, ~hh is the
synthesis low pass filter, and ~gg is the synthesis band pass
filter. Although the size of data in LP is just half of the size
of data in the input, we want it to be an accurate
representation of the input data.

Also, we want the perfect reconstruction property: The filter
bank output exactly equals the input. The perfect recon-
struction property allows the user to look for large-scale
features of the data at a coarse scale and then efficiently
access finer and finer scales of the data to reveal more
details in the area of interest.

4.1 Perfect Reconstruction and Finite Energy
Transformation

The capacity of a filter with coefficients ak to be part of a
biorthogonal wavelet filter bank that has the perfect
reconstruction property is equivalent to the following
complementarity condition (see [23]):

if a�n is the first nonzero coefficient;

then the polynomials a�n þ a�nþ2z

þ a�nþ4z
2 þ . . . and a�nþ1 þ a�nþ3z

þ a�nþ5z
2 þ . . . have no common roots:

ðW1Þ
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Fig. 2. Biorthogonal wavelet filter bank. LP stands for low pass and BP

stands for band pass (or high pass). The sign # 2 denotes downsampling

and the sign " 2 denotes upsampling.



A second condition related to the biorthogonal wavelet
representation of our filter bank is that the scaling function (see
[21]) of the wavelet transform is a finite energy function. This
is guaranteed by a condition on the restricted transfer operator
T . The restricted transfer operator T is defined as follows: If
the length of the convolution product of the sequence of
coefficients ak with itself isN , then T is the ðN � 2Þ � ðN � 2Þ
matrix obtained from double shifts of this convolution
product (see [21]). Then, the second condition derived from
the biorthogonal wavelet representation is:

T has one eigenvalue � ¼ 1

and all others have j�j < 1:
ðW2Þ

4.2 The Lifting Scheme

The lifting scheme is a method of factoring wavelet filters
into basic building blocks, called lifting steps, which also
allows for spatial domain wavelet design. The implementa-
tion of the wavelet filter bank using lifting allows for an in-
place computation of the wavelet transform and leads to an
improvement in efficiency when compared to the standard
implementation, see [23]. Our primary motivation for
desiring an in-place implementation has to do with reduced
memory requirements for large data sets, in addition to
computational efficiency.

5 AXIOMS

Having defined feature preservation, we now regard
conditions (F1)-(F5) and (W1), (W2) as a list of axioms for
the design of optimal TVD (OTVD) filters. Axioms (F1)-(F5)
are related to the feature preservation properties of the
OTVD filters (see Section 3 for details). It should be noted
that the coefficients for the sinc filter do not satisfy the TVD
constraint (F5). Thus, our OTVD filter design strategy will
seek a compromise between our assumed ideal frequency
behavior and the feature preservation properties of TVD
filters. Finally, axioms (W1) and (W2) ensure that the
proposed filter is the low pass filter of a biorthogonal
wavelet transform which can be implemented as a series of
lifting steps and has a finite energy scaling function (see
Section 4 for details).

The following theorem shows that the spatial domain
axioms in the previous two sections are equivalent to a
comprehensive list of feature-preserving, approximation,
implementation, and optimality properties:

Theorem. The requirements (F1)-(F5), (W1), (W2) are necessary
and sufficient conditions for the following properties to hold:

1. (Existence of finite energy scaling function and
convergence of the cascade algorithm, see [21]) The
iteration �ðiþ1ÞðtÞ ¼

P
k 2ak�

ðiÞð2t� kÞ, where �ð0Þ is
a box function, converges in L2.

2. (Accuracy of approximation of order p) The error
estimate for a function fðtÞ of class Cp at scale �t ¼
2�j is of the form Cð�tÞpjf ðpÞðtÞj.

3. (Total variation diminishes from fine to coarse scale)
TV ðsj�1Þ � TV ðsjÞ.

4. (No moving features) There is zero phase shift from
fine to coarse scale.

5. (Lifting scheme implementation, see [23]) There exists
a complementary high-pass filter and the associated
wavelet transform admits in-place implementation
using lifting.

6. (Average gray level invariance) The average of the data
is unchanged when passing from fine to coarse scale.

7. (Preservation of low frequencies) The moment of order
0 is 1 and the moment of order 1 is 0 (see (2)).

8. (Optimality, see [21]) Between all filters with the
desired properties, the filter given by the coefficients ak
minimizes the L2 distance to the ideal low pass filter.

See [4] for a proof of this theorem.

6 FILTER DESIGN

We now use the framework developed in the previous

sections to design OTVD filters and filter banks.

6.1 Low Pass Filter Design

Given two positive numbers N and p, we can find the filter

coefficients of a symmetric TVD filter which is a partition of

unity, has at most N nonzero coefficients, has at least p

zeros at �, and is closest in L2 to the ideal low pass filter. We

use the following two-step procedure:
Step 1. Make linear substitutions of ai with some bi such

that the TVD condition on ai translates to the condition that

the new variables bi are the coefficients of a point in the

N-dimensional cube ½0; 1�N .
Step 2. Use a quadratic optimization algorithm to solve

for the new variables bi under the p linear restrictions given

by the existence of p zeros at �.

Examples. Here, we explain how we obtained the tables in

Fig. 3. Let us examine the optimal TVD filters with two

zeros at � that, for a given length N , are closest in L2 to

the ideal low pass filter. To compute them, we minimize

the square of the norm of the difference between our

filter and the ideal low pass filter, subject to the linear

identities and inequalities given by (F2), (F3), and (F5).

Note that we supposed the filter to be symmetric from

the very beginning, hence (F1) is also satisfied. We

replace the TVD inequalities with positivity require-

ments by using the following linear substitution:

an ¼ bn
an�1 ¼ bn�1 � bn
. . .
a0 ¼ b0 � b1 þ b2 � . . . ð�1Þnbn:

ð6Þ

Then, imposing the TVD inequalities (F5) on a0; . . . ; an is

equivalent to imposing the positivity conditions bk � 0

on b0; . . . ; bn. This allows us to reduce the problem to

minimizing a quadratic function subject to some linear

identities on the positive domain. Also, we have bk ¼
ak þ akþ1 (here, anþ1 ¼ 0). On the other hand, the total

variation of the convolution product between the filter

with coefficients . . . ; a2; a1; a0; a1; a2; . . . and the filter

. . . ; 0; 0; 0; 1; 1; 0; 0; 0; . . . (after subsampling) can be made

to equal exactly ak þ akþ1, by choosing the relative shift

between these two filters. Then, the TVD property of the

filter . . . ; a2; a1; a0; a1; a2; . . . implies that ak þ akþ1 � 1. In
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conclusion, we can restrict the domain further to an ðnþ
1Þ-dimensional cube since bk � 1 for all k.

In Fig. 3, we list the resulting aks just for k � 0 because,

for k < 0, they are determined by symmetry. If we look for

symmetric TVD filters with two zeros at � that are closest to

the ideal low pass filter, we obtain the filters in the first

table in Fig. 2. If we look for symmetric TVD filters with

four zeros at � that are also closest to the ideal low pass

filter, we obtain the filters in the second table in Fig. 3.
Note that the shortest OTVD filter that has two zeros at �

is the standard linear spline filter and the shortest OTVD

filter that has four zeros at � is the standard cubic spline

filter. In general, the shortest OTVD filter with 2k zeros at �

is the standard ð2k� 1Þ-spline filter. On the other hand, if

we allow enough nonzero filter coefficients, we obtain

OTVD filters that are closer to the ideal low pass filter than

the standard spline filters.
We denote

TVD1 ¼ 1

4
;
1

2
;
1

4

� �

the shortest nontrivial OTVD filter, obtained by imposing

two zeros at �. Also, we denote

TVD3 ¼ 1

112
;
�1

112
;
1

112
;
29

112
;
13

28
;
29

112
;
1

112
;
�1

112
;
1

112

� �

the shortest nontrivial OTVD filter that is not a spline filter,

obtained by imposing four zeros at �. In the next section, we

will compare results obtained using these OTVD filters and

their associated wavelet transforms with results obtained

using some well-known lifting wavelets.

6.2 High Pass Filter Design

We are now interested in finding short, symmetric, smooth

high pass filters associated with the OTVD low pass filters

that we designed.

The Quadrature Mirror Filter (QMF) property (see [23])
implies that the design of the analysis high pass filter g is
equivalent to the design of the synthesis low pass filter ~hh.
More exactly, if the synthesis low pass filter ~hh has
coefficients . . . ; a�1; a0; a1; a2; . . . and is symmetric, i.e.,
a�k ¼ ak for all k, then, according to the QMF property, g
has the same coefficients, up to a shift and an alternating
sign change.

An algorithm for finding coefficients ak such that the
filter g defined by ~hh is a high pass filter associated to a given
low pass filter h proceeds as follows:

The input of the algorithm consists of the coefficients of
the filter h and a positive integer l that is the desired
number of zeros at � of the filter ~hh.

The sth step of the algorithm is: Check if there exist filter
coefficients ak such that ak ¼ 0 for all k > s and such that all
the linear conditions given by the perfect reconstruction
property (expressed in terms of the polyphase matrix, see
[23]) and the linear constraints given by ~hh’s zeros at � are
satisfied.

The algorithm terminates when such a solution is found
for some s. The algorithm does terminate since the number
of degrees of freedom increases twice as fast as the number
of constraints.

6.3 Lifting Decomposition

Once we have decided on an associated analysis high pass
filter g for a given OTVD analysis low pass filter h, we can
use the factoring algorithm from [23] to determine a lifting
scheme decomposition corresponding to that particular
choice of pair of filters (h; g). We will again have to make a
choice between many possible lifting scheme decomposi-
tions. Our filters being symmetric, we can choose a
symmetric decomposition (see [23, Section 7.7]).

7 RESULTS

In this section, we present results obtained using two of the
OTVD wavelets we designed and compare them against
results obtained using traditional lifting wavelets. Our goal
is to demonstrate how the axiomatic approach for designing
feature-preserving wavelets translates into improvements
in feature detection and feature-based visualization. In
particular, we show the superior efficacy of our OTVD
wavelets at preserving salient features in computational
data sets in comparison to wavelets whose designs do not
adhere to the proposed spatial domain axioms.

We focus on application of the TVD1 and TVD3 wavelets
described in the previous section and compare their results
to those obtained from the application of the LeGall 5/3
wavelet [11] (which is also known as the Daubechies (2, 2)
wavelet [6] and the linear lifting wavelet [22]), the cubic
lifting wavelet [5], and the Daubechies 9/7 wavelet [3]. As
noted in [25], the LeGall 5/3 and the Daubechies 9/7
wavelets were the only wavelets selected for inclusion in
the JPEG2000 standard. Therefore, they are good represen-
tatives from among the many existing wavelets since they
are more likely to be employed than other wavelets.

All the data sets used in this section are from fluid
dynamics applications. These data sets were either analy-
tically generated or numerically simulated and they vary in
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Fig. 3. (a) OTVD filters with two zeros at �; longer filters are closer to the

ideal low pass filter. (b) OTVD filters with four zeros at �; again, longer

filters are closer to the ideal low pass filter.



terms of dimensionality and complexity. The basic steps
involved in processing these computational data sets are as
follows: First, the data sets are transformed to the desired
level using the aforementioned wavelets. Then, the trans-
formed data sets are either visualized directly, using an
appropriate feature-based approach, or processed by a
feature detection algorithm whose binary outputs are
visualized using isosurfaces.

In order to handle higher dimensional data sets, we
extended the one-dimensional implementation in a repeti-
tive fashion. Since the transforms are separable, our
implementation applies the one-dimensional transform to
all the rows of a dimension before processing the next
dimension. To ensure the perfect reconstruction property,
we implemented a simple scheme for signal extension on
the boundaries. For details on various signal extension
schemes, see [21]. We chose smooth-padding of order 0. This
scheme assumes that data outside their original support can
be recovered by a constant extrapolation. Other schemes,
such as zero-padding or periodic-padding, have the
disadvantage of artificially creating discontinuities at the
boundaries.

7.1 Shock Tube Data Set

We start with the one-dimensional shock tube data set
discussed in Section 1. Visualizing this data set involves
plotting the subsampled density distribution at a given
time, which produces a series of sharp transitions that
correspond to, from right to left, a shock, a contact
discontinuity, and an expansion region, as shown in
Fig. 1a. As can be seen in Fig. 1b, Fig. 1c, Fig. 1d, Fig. 1e,
and Fig. 1f, spurious oscillations are produced by each of

the transforms with the exception of the OTVD wavelets
—TVD1 and TVD3. Obvious oscillations occur at the shock
and contact discontinuity in Fig. 1b, Fig. 1c, and Fig. 1d. In
two cases, Fig. 1b and Fig. 1c, slight overshoots also occur
near the leading edge (left side) of the expansion. Although
the density field itself is continuous at this point, the
derivative of the density field is discontinuous. The
Daubechies 9/7 wavelet produces the best results of the
non-OTVD wavelets.

The dissipative nature of the OTVD wavelets is evident
from some smearing (blurring) of the sharp transitions
through the introduction of points in the interior of the
discontinuities. However, it is evident from Fig. 1e and
Fig. 1f that the dissipation from the OTVD wavelets is not
too severe, even at level three of the transform. TVD1
appears to perform slightly better than TVD3 with margin-
ally less blurring at the shock and contact discontinuity.

The dissipation present in the OTVD wavelets is
necessary to force them to have the TVD property. This
dissipation tends to smooth local extrema in the data set.
The result is that minima increase and maxima decrease.
For the non-OTVD wavelets, there is actually an antidissi-
pative effect that tends to produce oscillations, such as those
shown in Fig. 1b, Fig. 1c, and Fig. 1d.

7.2 Stationary Oblique Shock Data Set

We now consider a two-dimensional data set containing a
stationary oblique shock. Analytically, the oblique shock is
a discontinuity across which the pressure, density, and
velocity magnitude and direction change in a prescribed
manner. The oblique shock separates two regions of
uniform values. A more detailed description of this flow
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Fig. 4. OTVD versus non-OTVD wavelet filters: level one transform on the oblique shock velocity direction field. (a) Baseline solution. (b) LeGall 5/3

wavelet [11]. (c) Cubic lifting wavelet [5]. (d) Daubechies 9/7 wavelet [3]. (e) TVD1 wavelet. (f) TVD3 wavelet.



field can be found in [2]. We have included this case to
show how the OTVD wavelets can also preserve the
relationships between field variables better than non-OTVD
wavelets. Preserving these relationships is essential for both
feature detection and feature-based visualization because
these algorithms may operate on combinations of several
field variables within the data set.

In order to illustrate the relationship-preserving char-
acteristic of OTVD wavelets, we computed the direction
field given by the scalar angle arctanðv=uÞ, where u and v

are the horizontal and vertical components of velocity,
respectively. The original velocity direction field is shown
in Fig. 4a. This direction field contains a sharp transition
across its width that corresponds to the oblique shock. In
this case, a colormap for values ranging from -0.1 to 0.7 was
applied to the plot. Plots of the velocity direction field after a
level one transform using the LeGall 5/3, the cubic lifting
wavelet, the Daubechies 9/7, the TVD1 wavelet, and the
TVD3wavelet are shown inFig. 4b, Fig. 4c, Fig. 4d, Fig. 4e, and
Fig. 4f, respectively. While the LeGall 5/3, the cubic lifting,
and the Daubechies 9/7 results exhibit spurious oscillations
near the shock, the TVD1 and the TVD3 results exhibit
nonoscillatory transitions across the shock. The figure shows
how non-OTVD wavelets can distort the relationship
between the velocity components of a computational data
set. Aswith the shocktubedata, theDaubechies 9/7produces
the best results of the non-OTVD wavelets.

7.3 Supersonic Channel Flow Data Set

We now present results to illustrate the application of our
OTVD wavelets to a three-dimensional supersonic channel
flow data set. The purpose of using this data set is to

illustrate the superior efficacy of OTVD wavelets over non-
OTVD wavelets with regard to feature detection. In
particular, we are interested in detecting nonsmooth
features, such as shocks, in the transformed domain.

The data set considered here is the inviscid, steady
supersonic flow in a three-dimensional rectangular cross-
section channel. The rectilinear, equally-spaced computa-
tional grid has dimensions 512� 64� 64. Fig. 5a shows the
flow field solution. The flow enters at the lower left at three
times the local acoustic speed (a Mach number of three). It is
inclined five degrees upward and to the right with respect
to the channel axis. Shock waves form to turn the flow
parallel to the walls of the channel on the right and top
faces. Expansion fans (not shown) form to turn the flow
parallel to the faces on the left and bottom. The shocks and
expansions reflect off the walls throughout the length of the
channel and interact in complex fashions.

The surfaces shown in the figure are steady shock waves
detected using the algorithm of Lovely and Haimes [13]. The
shockdetectionalgorithmidentifiespointswhere thevelocity
normal to the local isosurface of pressure changes from
greater than the local acoustic speed to less than the local
acoustic speed and pressure increases in the direction of the
flow. The shock surfaces are colored by the local pressure,
using a colormap for values ranging from 0 to 60 pounds per
square inch. The “holes” in the shock surfaces occur where
the various waves interact—either shock/shock interactions
or shock/expansion interactions. In either case, these regions
are important because they signify complex flowregionswith
potentially large gradients.

It should be noted that the shock detection technique
employed here indicates the presence of shock waves
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Fig. 5. Supersonic channel flow—level one transform with 256� 32� 32 grid: shock surfaces colored by local pressure. (a) Baseline solution.

(b) LeGall 5/3 wavelet [11]. (c) Cubic lifting wavelet [5]. (d) Daubechies 9/7 wavelet [3]. TVD1 wavelet. (f) TVD3 wavelet.



without regard to the shock strength as measured using the
pressure, etc. That is, all regions satisfying the shock
detection criteria are identified as shock waves, however
weak the wave may be. Therefore, we have applied a
thresholding technique to eliminate “weaker” features.

When we apply the first level of the wavelet transform to
the data, the resulting subsampled data is represented on a
256� 32� 32 grid. Fig. 5b, Fig. 5c, Fig. 5d, Fig. 5e, and Fig. 5f
show the results of applying one level of transform using
the LeGall 5/3, cubic lifting, Daubechies 9/7, TVD1, and
TVD3 wavelets, respectively. The wavelets are applied to
the conserved variables, i.e., density, three components of
momentum, and total energy. Then, the shock detection
algorithm is applied to the transformed, subsampled data.

Application of the non-OTVD wavelets disrupted the
relationships between the various flow field variables, as
evidenced by the fact that the several of the “holes” in the
shock surfaces were eliminated. In particular, results
obtained from the LeGall 5/3 and cubic lifting wavelets,
Fig. 5b and Fig. 5c, respectively, show continuous detected
shock waves throughout the aft portion of the channel,
which is in contrast to the discontinuous shock waves
present in the baseline data shown in Fig. 5a. The reddish-
orange color indicates a low pressure region due to
expansion of the flow. As in the other two examples, the
Daubechies 9/7 wavelet did the best job of the non-OTVD
wavelets in preserving the features in the domain.
Although the basic flow structure is maintained, a false
shock wave is detected in the same region. Both OTVD
wavelets performed reasonably well for this case. The
basic flow structures are preserved considering the
inevitable loss in resolution that occurs since the shock

detection is performed on subsampled data. However,
there is a portion of a false shock wave that appears as a
reddish-orange surface in both OTVD images.

When we apply a second level of the wavelet transform
to the data, the resulting subsampled data is represented on
a 128� 16� 16 grid. Fig. 6a again shows the baseline
solution. Fig. 6b, Fig. 6c, Fig. 6d, Fig. 6e, and Fig. 6f show the
results of applying two levels of transform using the same
set of wavelets. In contrast to the level one transform shown
in Fig. 5, the shock structure is significantly degraded after
application of two levels of the LeGall 5/3 and cubic lifting
wavelets. The degradation in the shock structure occurs due
to the induced oscillations in the flow field variables which
destroy the relationships between the flow variables.

In Fig. 6b, Fig. 6c, rib-like gaps along the shock surface
just after the midsection of the channel are visible. Results
obtained using the Daubechies 9/7 wavelet, shown in
Fig. 6d, are again improved with respect to the other non-
OTVD wavelets. However, even these results show a
somewhat degraded representation of the shock surface in
the downstream half of the channel. On the other hand,
results from the TVD1 wavelet are very promising, see
Fig. 6e. The fact that the relationships between the flow
variables are preserved using the OTVD wavelet demon-
strates the superiority of this OTVD wavelet over the non-
OTVD wavelets for nonsmooth data sets. In comparing the
OTVD wavelets, the TVD1 results show a somewhat better
reconstruction of the shock surface than do the TVD3
results, see Fig. 6f.

The running times for the five wavelets mentioned above
are proportional to the number of lifting steps in the
decomposition of each wavelet. For example, LeGall 5/3,
cubic lifting, and TVD1 admit decompositions with just two
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Fig. 6. Supersonic channel flow—level two transform with 128� 16� 16 grid: shock surfaces colored by local pressure. (a) Baseline solution.

(b) LeGall 5/3 wavelet [11]. (c) Cubic lifting wavelet [5]. (d) Daubechies 9/7 wavelet [3]. (e) TVD1 wavelet. (f) TVD3 wavelet.



lifting steps and have running times similar to each other,
while Daubechies 9/7 and TVD3 admit decompositions with
four lifting steps and have running times that are about two
times longer. Again, we stress that our interest in lifting
implementations is attributable to the reduced memory
requirements associated with the in-place computations.

7.4 Other Applications

One of the primary applications of wavelet transforms has
been data compression. A natural question then is “How
good are the OTVD wavelets for compressing data?” We
have previously shown that these wavelets are not superior
to the LeGall 5/3 (which is the same as the Daubechies ð2; 2Þ
and linear lifting) wavelet for compressing data [4].
However, rate-distortion plots shown in [4] illustrate that
the OTVD wavelets do not fare much worse than the
Daubechies family of wavelet filters. The rate-distortion
plot shows how the behavior of error varies with the
percentage of retained coefficients (a loose definition of
rate) where the error is measured as the difference between
the original and reconstructed function (with a truncated set
of coefficients). In essence, we have shown that wavelet
filters with good coding capabilities may not be optimal for
the analysis of large data sets. This aspect should be
included for consideration when data repositories for
computational data are designed.

Additionally, although developed for application to
nonsmooth data, the OTVD wavelets described above have
been employed to denoise smooth computational data sets.
In [24], an OTVD wavelet, TVD1, was applied to a Pacific
Ocean data set to filter the detected vortices. Results
showed that, although the TVD1 wavelet actually elimi-
nated more features than the LeGall 5/3 wavelet, the
features that were eliminated were weaker, in terms of an
average measure of swirl for the feature, than those that
were filtered using the non-OTVD wavelet. In this case, the
OTVD wavelet did a better job of preserving significant
features in the data than did a non-OTVD wavelet.

8 CONCLUSIONS

In this paper, we define a spatial domain framework for the
design and analysis of wavelet transforms. Included in this
framework are a set of axioms that can be used to design
multiscale filter banks that preserve certain characteristics
of the data—namely, the position, strength, and shape of
features. We illustrate the use of this framework in the
design of the of OTVD wavelets, targeted to computational
fluid dynamics data sets.

The results included here demonstrate that the OTVD
wavelet transforms designed using these axioms have
consistently better feature preservation properties than
standard wavelets, such as the LeGall 5/3 and the
Daubechies 9/7. Through several examples of varying
complexity, we demonstrated the efficacy of the OTVD
wavelets at preserving features in the context of feature-
based visualization and feature detection. Since the OTVD
wavelets were designed specifically for data sets that
contain nonsmooth data, they perform better than tradi-
tional filters in regions where the data is not smooth. In

regions where the data is relatively smooth, these differ-

ences are less apparent.
We further suggest that the framework proposed here

can also be used to design other types of optimal wavelet

transforms. In future work, we plan to utilize these

technique to develop vector-valued wavelets with feature

preserving qualities. Additionally, to fully exploit the utility

of these wavelets, it will be necessary to develop their

counterparts for curvilinear grids that do not have equally

spaced points.
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