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Abstract: In two earlier papers, means were provided to decide the capacity of complex chemical
reaction networks, taken with mass-action kinetics, to admit multiple equilibria in the context of
the isothermal homogeneous continuous flow stirred tank reactor (CFSTR). In such a reactor, all
species are deemed to be in the outflow, a fact which has an important bearing on the nature of
the governing equations. In contrast, one can imagine CFSTR-like models of the cell in which
certain large molecules (e.g. enzymes) remain entrapped within the cell, whereas smaller ones
(e.g. metabolites) are free to diffuse through the cell boundary. Although such models bear a
strong physical resemblance to the classical CFSTR picture, there are substantive differences in
the corresponding mathematics. Without a presumption of mass-action kinetics, this research is
intended to indicate a general way in which results about uniqueness of equilibria in the classical
CFSTR context extend to entrapped species models.

1 Introduction

In two earlier papers [1, 2] we developed means to determine
whether a given complex reaction network, taken with
mass-action kinetics, has the capacity to exhibit more than
one steady state. That is, our interest was in whether, for
the network, there exist parameter values such that the cor-
responding isothermal mass-action differential equations
admit at least two distinct rest points. (This is surprisingly
uncommon.) In the first paper, the theory led to a test that
lends itself to computational implementation, whereas in
the second paper, the capacity for multiple steady states
was tied more directly to subtle aspects of reaction
network structure, as revealed in the network’s species-
reaction graph. (At the end of this section we shall state a
theorem, which is a consequence of results in Craciun and
Feinberg [2] and that connects the species-reaction graph
to the capacity for multiple steady states.)

In both papers, it was understood that the reactions were
taking place in the context of what chemical engineers call a
continuous flow stirred tank reactor (CFSTR). In particular,
the reacting mixture was presumed to be an incompressible
liquid, filling a perfectly stirred vessel maintained at
constant temperature and volume. (We assume isothermal
incompressible mixtures throughout.) Moreover, it was sup-
posed that at least certain reactants were fed to the vessel at
constant rate and that all species were removed from the
vessel at rates proportional to their molar concentrations
within the vessel. (In the normal chemical engineering

context, mixture is withdrawn from the vessel at a constant
volumetric flow rate, which is identical to the volumetric
flow rate of the feed stream. The molar removal rate of a
particular species, therefore, is just the volumetric flow
rate of the outflow stream multiplied by the molar per unit
volume concentration of that species within the vessel.)

Our aim here is to extend results in the earlier papers to
settings that are only slightly different physically from the
classical CFSTR but that are substantively different math-
ematically. In particular, we want to consider variants of
the CFSTR in which only certain species are in the
outflow. We are motivated by consideration of CFSTR-
like models for the cell in which biochemical reactions
are driven by enzyme-catalysis. The presumption is that
the enzyme(s) remains within the cell, neither entering it
nor leaving it, while playing their catalytic role in the
cell’s interior repeatedly. In contrast, small metabolites
are free to cross the cell boundary, playing the role of
substrates and products of the various enzyme-catalysed
reactions. We presume, as in earlier work [1, 2], that the
mixture within the cell remains spatially homogeneous.
Of course, this model for the cell is only a metaphor, but,
given the complexities of most real biochemical networks,
it is a metaphor that at least serves to isolate sources of
dynamical behaviour that have their origins in the chemistry
itself. (Although we shall have in mind the image of the
CFSTR-like cell, the same mathematics serves to describe
intracellular biochemical modules [3, 4] in which certain
species are synthesised at constant rate, while certain
species are degraded at rates proportional to their concen-
trations. In such cases, constant-rate species synthesis
plays the role of transport to the cell, while species
degradation plays the role of transport from the cell.)

To understand the substantive technical differences
between the ‘entrapped enzyme’ picture and the situation
in which all species are free to leave the cell, it will be
useful to consider the very simplest (mass-action) model
of enzyme catalysis, depicted in (1). The substrate S binds
to an enzyme E to form an enzyme–substrate complex SE,
from which the product P is released, while the enzyme
returns to its original state. Suppose that these reactions
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occur within a spatially homogeneous cell immersed in a
time-invariant ambient medium and that, in the medium,
concentrations of the species are maintained at fixed
values cS

0, cE
0, cSE

0 and cP
0. We denote by cS, cE, cSE and cP

the concentrations of the species in the cell’s interior.

Sþ E� SE ! Pþ E ð1Þ

To begin, imagine that every species is free to diffuse
through the boundary of the cell and that the net molar
transfer rate of each species to the cell from the ambient
medium is proportional to the concentration difference of
that species across the boundary. Thus, for example, the
net molar transfer rate (per unit cell volume) of species S
to the cell from the ambient medium is aS(cS

0 2 cS),
where aS is a mass transfer coefficient for species
S. Taking into account the contributions of mass transfer
and chemical reactions, we write the differential equations
governing the species concentrations within the cell as in
(2), where kSþE!SE, kSE!SþE and kSE!PþE are the mass-
action rate constants for the corresponding reactions.
(Note that equations (2) become those of the classical
CFSTR if all the mass transfer coefficients are set to g/V,
where V is the volume of the reacting mixture and g the
volumetric flow rate of the outflow and feed streams.)

_cS ¼ aSðcS
0 � cSÞ � kSþE!SE cScE þ kSE!SþE cSE

_cE ¼ aEðcE
0 � cEÞ � kSþE!SE cScE

þ ðkSE!SþE þ kSE!PþEÞcSE

_cSE ¼ aSEðcSE
0 � cSEÞ þ kSþE!SE cScE ð2Þ

� ðkSE!SþE þ kSE!PþEÞcSE

_cP ¼ aPðcP
0 � cPÞ þ kSE!PþE cSE

To ask whether, in the context described, network (1) has
the capacity for multiple positive equilibria is to ask
whether there are positive values for the rate constants,
mass transfer coefficients and ambient concentrations such
that the system of polynomial equations, obtained by
setting the time derivatives in (2) to zero, admit two or
more distinct positive solutions for cS, cE, cSE and cP. In
fact, theory from Craciun and Feinberg [1, 2] indicates
very quickly that (2) does not have the capacity for multiple
positive equilibria. (See the theorem statement at the end of
this section. The species-reaction graph has a single cycle,
and it is a 1-cycle.)

Now consider the ‘entrapped enzyme’ picture. That is,
suppose that the cell boundary is impermeable to species
E and ES. In this case, the governing differential equations
become those shown in (3). Note that the equations for
equilibria, obtained by setting the time derivatives to zero,
become redundant; in particular, the second and third
(equilibrium) equations are identical up to a change in
sign. Thus, there are essentially three equilibrium equations
to determine the four equilibrium concentrations, cS, cE, cSE

and cP. In contrast to the situation in (2), there are now an
uncountable number of positive equilibria, no matter what
positive values the parameters take.

_cS ¼ aSðcS
0 � cSÞ � kSþE!SE cScE þ kSE!SþE cSE

_cE ¼ �kSþE!SE cScE þ ðkSE!SþE þ kSE!PþEÞcSE

_cSE ¼ kSþE!SE cScE � ðkSE!SþE þ kSE!PþEÞcSE

_cP ¼ aPðc
0
P � cPÞ þ kSE!PþE cSE

ð3Þ

This, however, is to be expected on physical grounds.
Note that from (3), we have ċEþ ċSE ¼ 0 so, for all t,

cE(t)þ cSE(t) ¼ cE(0)þ cSE(0). That is, the total amount
of enzyme (either with or without S bound to it) remains
equal to its initial supply in the cell. Thus, two different
initial supplies of enzyme in the cell cannot possibly
result in the same equilibrium. The appropriate uniqueness
question, then, becomes this: For a given supply of enzyme
(i.e. for a given value of cE(0)þ cSE(0)), can there be more
than one positive equilibrium? In assessing network (1)’s
capacity for multiple positive equilibria in the entrapped
enzyme context, we would now ask: Are there positive
values of the mass transfer coefficients, the rate constants,
cS

0, cP
0, and a value of the total enzyme concentration such

that two or more distinct equilibria corresponding to this
enzyme supply are admitted by (3)?

It should be clear, then, that there is a difference in ques-
tions appropriate to the ‘entrapped enzyme’ picture and the
picture in which all species are permitted to diffuse through
the cell boundary (the ‘fully diffusive’ picture). Some care
is required in the passage from results about one situation
to assertions about the other.

Some of the most important results in Craciun and
Feinberg [1, 2] are of the kind that assert that certain
highly complex mass-action networks do not have the
capacity for multiple positive equilibria when all species
are permitted to cross the cell boundary. That is, no
matter what the parameter values are, the corresponding
differential equations (exemplified by (2)) cannot admit
more than one positive equilibrium. Note that these are
assertions about the reaction network that gives rise to the
corresponding equations, for when the kinetics is mass-
action the network itself determines the shape of the
equations up to parameter values.

We would like to assert that, with very slight modification
in their statements, these results also serve to preclude mul-
tiple positive equilibria for a wide variety of intricate enzy-
matic networks in the context of the ‘entrapped enzyme’
picture, provided that uniqueness of equilibria is construed
in the sense described earlier. That is, we consider unique-
ness of equilibria consistent with fixed supplies of
enzyme(s). Our aim in this article is to show that, under
the very same hypotheses, results in Craciun and Feinberg
[1, 2] do indeed carry over unchanged to preclude multiple
positive equilibria in the entrapped enzyme context, except
perhaps for multiple equilibria of a highly degenerate
nature. In this way, broad theory about highly complex reac-
tion networks becomes extensible to settings more suited for
cell biology. (The ideas underlying the extension are not
restricted to mass-action kinetics.)

For the benefit of readers unfamiliar with results in
Craciun and Feinberg [2], we conclude this section by pro-
viding a brief discussion of the kind of statements those
results permit one to make. (The sample theorem provided
here is, in fact, a special case of a more general version.)

Let us consider the following enzymatic reaction
network, involving two enzymes, E1 and E2

S1þ E1�E1S1

S2þ E1S1�E1S1S2 ! P1þ E1 ð4Þ

S2þ E2�E2S2 ! 2S1þ E2

In the context of mass-action kinetics, and if we assume that
every species is free to diffuse through the boundary of the
cell, reaction network (4) does not have the capacity for
multiple positive equilibria. One way to check this is to
use a species-reactions graph criterion, as described in
Craciun and Feinberg [2]. The species reaction graph of
this reaction network is shown in Fig. 1.
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In general, the species-reaction graph of a reaction
network is a bipartite graph [5]. The nodes of the graph
are either species nodes or reaction nodes; the graph has
one node for each species and one node for each (revers-
ible or irreversible) reaction. The complexes of a reaction
network are the objects before and after the reaction
arrows. (For example, S1þ E1 and E1S1 are both com-
plexes.) Each edge of the graph connects a species node
and a reaction node if that species appears in a complex
of that reaction; moreover, we label each edge with that
complex. For example, there is an edge connecting the
species node S1 and the reaction node S1þ E1� E1S1
because the species S1 appears in the complex S1þ E1,
and we label this edge with the complex S1þ E1.

In order to be able to present the statement of a theorem
implying that the reaction network (4) does not have the
capacity for multiple positive equilibria, we need to define
some features of species-reaction graphs. Pairs of edges
that meet at a reaction node and have the same complex
label are called c-pairs (abbreviation for complex-pair).
For example, the two edges labelled S1þ E1 form a
c-pair. Note that cycles may appear in species-reaction
graphs. Cycles that contain an odd number of c-pairs are
called odd-cycles, and cycles that contain an even number
of c-pairs are called even-cycles. The stoichiometric coeffi-
cient of an edge is the coefficient of the species adjacent to
that edge in the complex label of the edge. Cycles for which
all edges have stoichiometric coefficient equal to one are
called 1-cycles. (Note that a 1-cycle will also be either an
even-cycle or an odd-cycle.) We say that two cycles split
a c-pair if each edge of the c-pair appears in at least one
of the cycles, and one of the cycles contains only one
edge of the c-pair (while the other cycle might contain the
other edge, or both). For example, the cycle that passes
through the species nodes E1, E1S1 and E1S1S2, and
the cycle that passes through the species nodes E1S1, S2,
E2S2, S1, split the c-pair labelled S1þ E1.

The following theorem follows from Craciun and
Feinberg [2]. It is understood that the ‘capacity for multiple
positive equilibria’ refers to the CFSTR equations, formu-
lated as in, corresponding to the case in which all species
are permitted passage through the reactor boundary.

Theorem 1: Consider a reaction network such that, in its
species-reaction graph, all cycles are odd-cycles or
1-cycles, and no two even-cycles split a c-pair. Then,
taken with mass-action kinetics, the reaction network does
not have the capacity for multiple positive equilibria
(regardless of values of the rate constants, mass transfer
coefficients or ambient concentrations).

It can be confirmed without much difficulty that all cycles
in Fig. 1 are odd-cycles or 1-cycles (or both). Moreover,
there are only two 1-cycles that are also even-cycles: the
one that passes through the species nodes E1, E1S1 and
E1S1S2, and the one that passes through the species
nodes E2 and E2S2. These two even-cycles do not split a
c-pair, as they do not have any nodes in common.
Therefore, according to Theorem 1, the reaction network,
taken with mass-action kinetics, does not have the capacity
for multiple positive equilibria (in the fully diffusive case).

Criteria such as Theorem 1 provide powerful and very
delicate necessary conditions that a network must satisfy
in order to have the capacity for multiple positive equilibria.
(At least one of its easily satisfied species-reaction graph
requirements must be violated.) Other such results are
described in Craciun and Feinberg [1, 2]. They rely on the
assumption that every species is free to diffuse through
the boundary of the cell. Our goal is to extend the applica-
bility of these methods to the case where some species are
entrapped within the cell.

Before proceeding, we note that readers of this article
might find useful a monograph by Érdi and Tóth [6],
which surveys other work connecting chemical dynamics
to reaction network structure, some of it having a graphical
character. For a discussion of connections between multiple
equilibria and oscillations, see also Tóth [7].

2 Reaction networks and kinetic systems

We follow the general scheme in Craciun and Feinberg
[1, 2], and Feinberg [8, 9] for describing chemical reaction
networks and their kinetics. The real numbers are denoted
by R, the positive real numbers by Rþ and the non-negative
real numbers by Rþ. If I is a finite index set, we denote by
RI the vector space of all formal (real) linear combinations
of I. Thus, an element x [ RI has a representation of the
form

x ¼
X
i[I

xii

with xi [ R. The support of an element x [ RI (denoted
supp x) is the set of all i [ I such that xi = 0. By Rþ

I

[respectively Rþ
I ] we mean the set of x [ RI for which

xi . 0 [respectively xi � 0], for all i [ I. We give RI the
scalar product (and resulting norm topology) defined by

x:y :¼
X
i[I

xiyi

By the complexes in a reaction network, we mean the
formal linear combinations of the species that appear at
the heads and tails of the reaction arrows – for example,
Sþ E, SE and Pþ E in network (1). Thus, if S is the set
of species in a network (e.g. fS, E, SE, Pg in (1)), then the
complexes of the network are elements of Rþ

S . The reactions
of a network are then specified by a ‘reacts to’ relation in
the set of complexes. With this as background, we define
a reaction network as follows.

Definition 1: A reaction network is specified by a triplet
fS, C, Rg, where

(i) S is a finite set of species

(ii) C , RSþ is a finite set of complexes
(iii) R , C � C is a ‘reacts to’ relation in C such that

(a) (y, y) � R, 8y [ C
(b) for each y [ C, 9 y0 [ C such that (y, y0) [R or
(y0, y) [ R.

Fig. 1 The species-reaction graph for network (4)
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Elements of R are the reactions of the network. We write
the more suggestive y! y0 in place of (y, y0) if and only
if (y, y0) [ R.

A composition for a mixture with species set S is a
specification of a molar concentration cs for each s [ S.
Thus, we can identify a composition with an element
c [ Rþ

S . A kinetics for a reaction network fS, C, Rg
is an assignment to each reaction y! y0 [ R of a
non-negative-real-valued rate function Ky!y 0(.) with
domain RSþ. For each composition c [ Rþ

S , Ky!y 0(c) is
interpreted as the molar occurrence rate per unit volume
of reaction y! y0 when the mixture has composition c.
Hereafter, we suppose that rate functions are continuously
differentiable on Rþ

S . (Although it will not be important to
this article, it is natural to require that, for each y! y0 in
R, Ky!y 0(c) be strictly positive precisely when supp
y , supp c – that is, precisely when the composition c
contains at non-zero concentrations those species that
appear in the reactant complex y.) By a kinetic system,
which we indicate symbolically as fS, C, R, Kg, we mean
a reaction network taken together with a kinetics.

Example 1: A mass-action kinetics for a reaction network
fS, C, Rg is a kinetics having the following property: For
each y! y0 [ R, there is a positive rate constant ky!y 0

such that

Ky!y0 ðcÞ ; ky!y0

Y
s[S

cys
s ð5Þ

Note that a mass-action kinetics for a network fS, C, Rg
is specified completely by an assignment to each reaction of
a positive rate constant, so we can identify a particular
mass-action kinetics with an element k [ Rþ

R. With this
in mind, we shall sometimes refer to the mass-action
system fS, C, R, kg.

Definition 2: For a kinetic system fS, C, R, Kg the
species formation rate function r: RSþ! RS is defined by

rðcÞ ¼
X

y!y0[R

Ky!y0 ðcÞðy
0 � yÞ ð6Þ

The interpretation of r(.) is as follows: In a mixture of
composition c, rs(c) is the molar production rate per unit
volume of species s due to the occurrence of all chemical
reactions. To see this, note that

rsðcÞ ¼
X

y!y0[R

Ky!y0 ðcÞðy
0
s � ysÞ ð7Þ

and that y0s – ys is the net number of molecules of species s
produced with each occurrence of reaction y! y0. Thus,
the right side of (7) is the sum of all the per unit volume
reaction occurrence rates, each weighted by the net gain
in molecules of s with each occurrence of the corresponding
reaction.

Note that, for a kinetic system fS, C, R, Kg, the species
formation rate function takes values in the span of the set

fy0 � y [ RS : y! y0 [ Rg ð8Þ

Elements of the set (8) are the reaction vectors of the
network fS, C, Rg. The stoichiometric subspace for a
reaction network, which we denote by S, is the span of its
reaction vectors:

S :¼ spanfy0 � y [ RS : y! y0 [ Rg: ð9Þ

For a kinetic system fS, C, R, Kg, in the context of a
well-stirred mixture filling a constant-volume cell for
which there is no mass transfer to or from the cell, the
differential equations governing the species concentrations
reduce to

_c ¼ rðcÞ; ð10Þ

where r(.) is the species-formation rate function. Note that,
in this context, ċ invariably points along the stoichiometric
subspace for the underlying reaction network.

3 The entrapped species model

Now we consider the situation in which enzymes (and
enzyme-bound substances such as SE in Section 1) are
entrapped within the cell, while all other species (small
metabolites) are free to diffuse across the cell boundary.
To be somewhat more general, we suppose only that, for
the operative reaction network fS, C, Rg, the species set
S is partitioned into two subsets, E and M, called the
entrapped species and the mobile species, respectively.
For the application we have in mind, we envision E to be
the enzymatic species and M to be the small metabolites,
but this will not be important for mathematics. Rather, the
species subset E can be construed simply as the set of all
members of S denied passage through the cell boundary,
while M is the complement of E in S. For the simple
entrapped enzyme example described in Section 1, we
have E ¼ fE, SEg and M ¼ fS, Pg.

Hereafter, when we speak of an entrapped species model,
it will be understood that there is a specified partition of the
species set S into two subsets E and M. We denote by GE
and GM the linear subspaces of RS consisting of vectors
having supports in E andM, respectively. That is,

GE :¼ fx [ RS : i � E ) xi ¼ 0g and

GM :¼ fx [ RS : i �M ) xi ¼ 0g:

Note that RS ¼ GE � GM. We denote by PE: RS! GE
and PM: RS! GM the projections onto GE and GM,
respectively.

Consider an entrapped species model that derives from a
chemistry specified by the kinetic system fS, C,R, Kg, with
S ¼ E t M. Formulation of the corresponding entrapped
species differential equations (analogous to (3)) requires
specification of certain additional parameters apart from
the kinetics – in particular, a mass transfer coefficient
am . 0 and an ambient molar concentration c0

m � 0 for
each species m [M. In effect, then, specification of an
entrapped species model amounts to specification of a
kinetic system fS, C, R, Kg, a partition of S into E and
M, and specification of two elements a [ Rþ

M and
c0 [ Rþ

M.
Taking into account both chemical reactions and diffu-

sive fluxes across the cell boundary, the entrapped species
model differential equations governing the concentrations
within the cell become

_c ¼ gðcÞ ð11Þ

where g(.): Rþ
S
! RS is defined by

gðcÞ :¼ rðcÞ þ
X

m[M

amðc
0
m � cmÞm

¼
X

y!y0[R

Ky!y0 ðcÞðy
0 � yÞ þ

X
m[M

amðc
0
m � cmÞm ð12Þ
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Note that g(.) takes values in the linear subspace

�S :¼ spanðfy0 � y [ RS : y! y0 [ Rg<MÞ

¼ S þ GM ð13Þ

For the entrapped species model, then, _c is no longer con-
strained to lie in the stoichiometric subspace for the under-
lying reaction network (as in the closed cell situation).
Rather, _c is constrained to lie in the somewhat larger
linear subspace �S. Still, �S will typically remain a proper
subspace of RS, for the reaction vectors will normally
reflect certain intracellular conservation conditions among
the entrapped (enzymatic) species – conditions that remain
operative despite the transport of the mobile species (metab-
olites) across the cell boundary.

Example 2: Consider the simple entrapped enzyme example
discussed in Section 1. For network (1), the reaction vectors
are

fES� E� S; Eþ S� ES; Pþ E� ESg

Moreover, E ¼ fE, ESg and M ¼ fS, Pg. Thus

�S :¼ spanfES� E� S; Eþ S� ES;

Pþ E� ES; S; Pg , RS

Although dim RS ¼ 4, it is not difficult to see that dim
�S ¼ 3, so �S is a proper linear subspace of RS. In fact, it is
apparent that Eþ ES [ RS is orthogonal to �S. This ortho-
gonality, taken together with the fact that _c takes values
in �S, imply that _cEþ _cES ¼ 0, which in turn reflects the
constancy of cEþ cES along solutions of (11).

Because _c invariably points along �S, it is not difficult to
see that a composition c0 can evolve from a composition c
only if c0 2 c is contained in �S. From (13), it follows
that this condition is satisfied precisely when
PE(c

0 2 c) [ PE(S), the latter being the projection of the
stoichiometric subspace into GE. This is to say that the com-
position change reflected in c0 2 c must, for the entrapped
species, derive only from the occurrence of chemical
reactions. These considerations motivate the following
definition.

Definition 3: Consider an entrapped species model in which
the underlying reaction network is fS, C, Rg, with
S ¼ E tM, and let �S be as in (13). Two compositions
c and c0 in Rþ

S are entrapped species compatible (denoted
c ’ c0) if c0 2 c lies in �S. The equivalence relation ’
serves to partition Rþ

S into entrapped species compatibility
classes. (These are parallels of �S, restricted to Rþ

S .).

Compositions along a solution of (11) that begins within
a particular entrapped species compatibility class lie
entirely within the same compatibility class. Indeed, each
such compatibility class is the union of composition trajec-
tories, and one can associate a flow, deriving from (11), with
each class. Each of the various compatibility classes will
usually have one or more equilibria of its own. Thus, ques-
tions about the existence of multiple equilibria should prop-
erly be construed as questions about the existence of more
than one equilibrium within a compatibility class.

An equilibrium of a vector field is often said to be degen-
erate if the derivative of the vector field at that equilibrium
is singular. Without some qualification, every positive
equilibrium of (11) would typically be degenerate for the
following reason: an equilibrium composition, say c�,
within a particular compatibility class will typically lie on
a manifold of equilibria, each nearby point of which

corresponds to an equilibrium within a different (nearby)
compatibility class. Thus, dg(c�), the derivative of g at c�,
will be singular, for it will have in its kernel a vector
tangent to the equilibrium manifold at c�. For the situation
at hand, then, a more appropriate notion of degeneracy
would require that the singularity correspond to directions
along the compatibility class containing c�, not transverse
to it. With this in mind we posit the following definition:

Definition 4: For an entrapped species model, an equili-
brium c� [ Rþ

S of (11) is non-degenerate if (ker dg(c�)) >
�S ¼ f0g; otherwise, c� is degenerate. We say that the
model admits multiple non-degenerate equilibria if there
are at least two distinct non-degenerate equilibria, say c�

and c�� [ Rþ
S , such that c�� 2 c� [ �S. (The last requirement

ensures that c� and c�� are entrapped species compatible.)

4 The fully diffusive model

Here, we consider a chemistry described by the kinetic
system fS, C, R, Kg, but now we imagine that all species
are permitted passage through the cell boundary. For an
ambient-medium composition �c0 [ Rþ

S and a specification
of mass transfer coefficients �a [ Rþ

S , the fully diffusive
model differential equations, analogous to (2), take the form

_c ¼ hðcÞ ð14Þ

where

hðcÞ :¼
X

y!y0[R

Ky!y0 ðcÞðy
0 � yÞ þ

X
s[S

�asð�c
0
s � csÞs ð15Þ

In contrast to the situation for the entrapped species model,
the range of h(.) will not usually be contained in a proper
linear subspace of RS. In this case, there will often be just
one equilibrium in all of Rþ

S , and, when there are more
than one positive equilibrium, these will typically be few
in number. This is different from the entrapped species
model, for which manifolds of equilibria typically pass
through the different entrapped species compatibility
classes transversely.

5 A relationship between the entrapped species
model and the fully diffusive model

Our aim in this section is to prove a theorem that will extend
results in Craciun and Feinberg [1, 2] to entrapped species
models.

Theorem 2: Suppose that, for a kinetic system fS, C,R, Kg,
there are no values of c̄ 0 [ Rþ

S and �a [ Rþ
S such that the

fully diffusive differential equations (14) and (15) admit
multiple positive equilibria. Then, for any specified
partition S ¼ E tM, there are no values a [ Rþ

M and
c0 [ Rþ

M such that the entrapped species differential
equations (11) and (12) admit multiple non-degenerate
(positive) equilibria in the sense of Definition 4.

Proof: Suppose, on the contrary, that for a [ Rþ
M and

c0 [ Rþ
M (11) and (12) admit multiple non-degenerate equi-

libria. That is, suppose that there are c�, c�� [ Rþ
S such that

c�� � c� [ �S; ð16Þ

gðc�Þ ¼ 0; gðc��Þ ¼ 0; ð17Þ

ðker dgðc�ÞÞ> �S ¼ f0g; and ðker dgðc��ÞÞ> �S ¼ f0g:

ð18Þ
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Let c�E be the projection of c� into GE. Because
supp(c� 2 c�E) is contained in M and because GM is con-
tained in �S, it follows that c� 2 c�E is contained in �S. Now,
we define ~h(.,.): Rþ

S
� R! RS by

~hðc; uÞ :¼ gðcÞ þ u
X
e[E

ðc�e � ceÞe

¼
X

y!y0[R

Ky!y0 ðcÞðy
0 � yÞ

þ
X

m[M

amðc
0
m � cmÞmþ u

X
e[E

ðc�e � ceÞe

Our aim will be to show that there is a u† . 0 and distinct ~c�

and ~c�� such that ~h(~c�, u†) ¼ 0 and ~h(~c��, u†) ¼ 0. This will
contradict the hypothesis that the fully diffusive model does
not have the capacity for multiple equilibria. (In particular,
the distinct positive equilibria ~c� and ~c�� will correspond to
the fully-diffusive-model parameter values ām ¼ am,
�cm
0 ¼ cm

0 for all m [M and �ce
0 ¼ c�e, āe ¼ u†, for all e [ E).

To show the contradiction, we first let V be a (relatively)
open neighbourhood of 0 in �S such that c� þ g and c�� þ g lie
in Rþ

S for all g [ V. Then, we let ~h�: V � R! �S be
defined as follows: for all g [ V and all u [ R

~h
�
ðg; uÞ ¼ gðc� þ gÞ þ u

X
e[E

ðc�e � ðc
�
e þ geÞÞe

That ~h(.,.) does indeed take values in �S can be seen in the
following way: Note that the sum following u is the same
as PM(g) 2 g. Recall that PM(.) takes values in GM,
which in turn is contained in �S. As each g takes values in
�S, so then does PM(g) 2 g. Finally, recall that g(.) takes
values in �S.

By supposition

~h
�
ð0; 0Þ ¼ gðc�Þ ¼ 0

Moreover, dg~h
� (0, 0)s ¼ dg(c�)s, 8s [ �S. From this and

(18), it follows that dg~h
� (0, 0) is non-singular. From the

implicit function theorem, then, there is a u� . 0 such
that, for all u in the interval (2u�, u�), there exists a
g�(u) satisfying (19), where ~c�(u) ¼ c� þ g�(u).

0 ¼ ~h
�
ðg�ðuÞ; uÞ ¼ gðc� þ g�ðuÞÞ þ u

X
e[E

ðc�e � ðc
�
e þ g�e ÞÞe

¼ ~hð~c�ðuÞ; uÞ ð19Þ

Now, let ~h��: V � R! �S be defined as follows: for all
g [ V and all u [ R

~h
��
ðg; uÞ ¼ gðc�� þ gÞ þ u

X
e[E

ðc�e � ðc
��
e þ geÞÞe

In this case, to see that ~h��(.,.) does indeed take values in �S
is slightly more complicated. Note that

X
e[E

ðc�e � ðc
��
e þ geÞÞe ¼

X
e[E

ðc�e � c��e Þe�
X
e[E

gee ð20Þ

As before, the second sum on the right of (20) is a member of
�S. On the other hand, the first term on the right is identical to
(c� 2 c��) 2 PM(c� 2 c��). By supposition c� 2 c�� is a
member of �S. Moreover, PM(.) take values in GM, which
is contained in �S. All of this, taken with the fact that g(.)
takes values in �S, implies that ~h��(.,.) takes values in �S.

Then we can argue, just as we argued for ~h�(.,.), that there
is a u�� . 0 such that, for all u in the interval (2u��, u��),

there exists a g��(u) satisfying

0 ¼ ~h
��
ðg��ðuÞ; uÞ

¼ gðc�� þ g��ðuÞÞ þ u
X
e[E

ðc�e � ðc
��
e þ g��e ðuÞÞÞe

¼ ~hð~c��ðuÞ; uÞ ð21Þ

where ~c��(u) ¼ c�� þ g��(u)
By choosing u† [ (0, u�) > (0, u��) we obtain the

desired result. A

6 Pathological example

Note that, when its hypothesis is satisfied, Theorem 2 does
not entirely preclude multiple positive equilibria for the
entrapped species differential equations; rather, it denies
the possibility of two distinct non-degenerate positive equi-
libria. Our purpose here is to show that an entrapped species
model (in fact, a mass-action model) can admit multiple
degenerate positive equilibria even when the corresponding
fully diffusive model cannot admit multiple positive equili-
bria of any kind. On the other hand, the example is hardly
robust. Extremely slight perturbations of the example
cause pathologies exhibited by it to vanish.

Consider the reaction network shown in (22).

B A!C

Bþ C!2A

D�E

ð22Þ

We take the kinetics to be mass-action with every rate con-
stant set to 1. With some effort it can be shown that, for this
kinetic system, the fully diffusive model gives rise to pre-
cisely one positive equilibrium for all positive choices of
�cA

0 , . . ., �cE
0 and āA, . . ., āE.

Now, for the same kinetic system, consider an entrapped
species model with E ¼ fA, B, Cg and M ¼ fD, Eg. The
corresponding entrapped species model differential
equations become those shown in (23). Moreover, it

_cA ¼ �2cA þ 2cBcC

_cB ¼ cA � cBcC

_cC ¼ cA � cBcC

_cD ¼ cE � cD þ aDðc
0
D � cDÞ

_cE ¼ cD � cE þ aEðc
0
E � cEÞ ð23Þ

Moreover, it is not hard to see that the equilibria of (23)
consist of all compositions satisfying (24)–(26).

cA ¼ cBcC ð24Þ

cD ¼ c
eq
D :¼

aEc0
E þ aDc0

D þ aEaDc0
D

aE þ aD þ aDaE

ð25Þ

cE ¼ c
eq
E :¼

aEc0
E þ aDc0

D þ aEaDc0
E

aE þ aD þ aDaE

ð26Þ

Our interest is in deciding whether there can be more than
one positive equilibrium in the same entrapped species
compatibility class. In this case, it is not hard to see that

�S ¼ spanfB� A;C� A;D;Eg

and that two compositions c and c0 are entrapped species
compatible if and only if cAþ cBþ cC ¼ c0Aþ c0Bþ c0C.

In particular, we can study the equilibria residing in the
entrapped species compatibilty class of compositions
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characterised by the condition

cA þ cB þ cC ¼ 1 ð27Þ

From (24) to (27), it follows that there are an infinite
number of equilibrium compositions within this compatibil-
ity class: these trace out a curve, parameterised by
cB [ [0, 1], and given by

cA ¼
cBð1� cBÞ

1þ cB

; cC ¼
1� cB

1þ cB

; cD ¼ c
eq
D ;

cE ¼ c
eq
E ð28Þ

It can be confirmed, however, that all such equilibria are
degenerate. In fact, if c� is a point along the curve given
by (28), then any choice of a (non-zero) vector tangent to
the curve at c� is a member of ker (dg(c�))) > �S.

The example itself is highly degenerate, for its capacity
for multiple positive equilibria disappears completely
when the reactions A! B and A! C are made very
slightly reversible: in particular, consider network (29)
and suppose again that the kinetics is mass-action with
rate constants for reactions in the original network (22)
set to 1 and with rate constants for the added reactions
B! A and C! A both set to a very small number 1.

B�A�C

Bþ C!2A

D�E

ð29Þ

In this case, the entrapped species model differential
equations (corresponding to E ¼ fA, B, Cg and M ¼ fD,
Eg) become those shown in (30). It is not difficult to verify
that, in contrast to the situation for 1 ¼ 0, the

_cA ¼ �2cA þ 2cBcC þ 1ðcB þ cCÞ

_cB ¼ cA � cBcC � 1cB

_cC ¼ cA � cBcC � 1cC

_cD ¼ cE � cD þ aDðc
0
D � cDÞ

_cE ¼ cD � cE þ aEðc
0
E � cEÞ

ð30Þ

entrapped species compatibility class corresponding to
cAþ cBþ cC ¼ 1 now contains precisely one positive equi-
librium c�, no matter how small the rate constant 1 . 0
might be. In fact, the equilibrium composition c� is given by

c�A ¼ ðc
�
BÞ þ 1c�B; c�B ¼

�ð2þ 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ 1Þ2 þ 4

p
2

;

c�C ¼ c�B; c�D ¼ c
eq
D ; c�E ¼ c

eq
E

where cD
eq and cE

eq are as in (25) and (26). We took the rate
constants for the added reactions B! A and C! A to be
equal only to indicate the pathology of the original
example in a simple way. In fact, uniqueness of positive
equilibria (in the sense of Section 3) for the entrapped
species model obtains no matter what rate constants are
assigned to the various reactions in network (29).

It is perhaps useful to summarise just how the example
behaves: for network (22), taken with all mass-action rate
constants set to 1, the fully diffusive model admits precisely
one positive equilibrium for all values of the mass transfer
coefficients and the ambient species concentrations. On the
other hand, an entrapped species model (with E ¼ fA, B, Cg
andM ¼ fD, Eg) for the same kinetic system admits multiple
positive equilibria (in fact, an infinite number) within the
same entrapped species compatibility class. Nevertheless,

these are all degenerate, and the behaviour is not robust: the
capacity for multiple positive equilibria is destroyed by tiny
perturbations of the underlying kinetic system.

Remark 1: That the elements of E andM appear in separate
reactions is not consequential to the example, for other
similar examples can be constructed in which elements of
the two sets interact. The example used here was chosen
for its simplicity, in particular so that its equilibria could
be calculated easily. The structural origin of the pathology
inherent in the example is discussed in Appendix IV of
Feinberg [9]. (For mass-action kinetics, such pathologies
do not arise when, for example, all reactions are reversible,
however small some of the reverse rate constants might be.)

7 Concluding remarks

As we indicated in the Introduction, our interest is in extend-
ing results for fully diffusive models [1, 2] to entrapped
species models. Theorem 2 does this to the extent that
when the fully diffusive model for a given kinetic system
does not have the capacity for multiple positive equilibria,
then neither does any entrapped species model derived
from the same kinetic system, except perhaps for degenerate
multiple positive equilibria. (That is, if there are multiple
positive equilibria, all but at most one are degenerate.)

It should be noted that Theorem 2 is written for arbitrary
kinetic systems, not necessarily mass-action systems. The
theorem as it stands is, for the most part, adequate for
our purposes. We wish to point out, however, that for
mass-action systems Theorem 2 lends itself to sharpening.
In particular, it can be shown without much difficulty that
for a reaction network that is injective (in the sense of
Craciun and Feinberg [1]) the only possible way that
multiple positive steady states might be exhibited is if all
are degenerate. (That is, in contrast to the slightly weaker
conclusion given by Theorem 2, not even one can be non-
degenerate.) It should be kept in mind that Section 6
provides an example of a (structurally unstable) mass-
action system for which an entrapped species model
admits multiple (degenerate) steady states even when the
fully diffusive model admits only a unique steady state.
Nevertheless, it is possible to prove statements, restricted
to certain broad classes of mass-action systems, that are
sharper than Theorem 2 to the extent that the denial of
multiple positive equilibria in the entrapped species model
is total, unqualified by issues of degeneracy. We expect
this to be the subject of a separate article.
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7 Tóth, J.: ‘Multistationarity is neither necessary nor sufficient for
oscillations’, J. Math. Chem., 1999, 25, pp. 393–397

8 Feinberg, M.: ‘Lectures on Chemical Reaction Networks’, 1979,
available at http//www.che.eng.ohio-state.edu/~feinberg/Lectures
OnReactionNetworks

9 Feinberg, M.: ‘Chemical reaction network structure and the
stability of complex isothermal reactors – I. The deficiency zero
and deficiency one theorems’, Chem. Eng. Sci., 1987, 42,
pp. 2229–2268

IEE Proc.-Syst. Biol., Vol. 153, No. 4, July 2006186




