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MULTIPLE EQUILIBRIA IN COMPLEX CHEMICAL REACTION
NETWORKS: SEMIOPEN MASS ACTION SYSTEMS∗
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Abstract. In two earlier articles, we provided sufficient conditions on (mass action) reaction
network structure for the preclusion of multiple positive steady states in the context of what chemical
engineers call the continuous flow stirred tank reactor. In such reactors, all species are deemed to be
present in the effluent stream, a fact which played a strong role in the proofs. When certain species
are deemed to be entrapped within the reactor, the questions that must be asked are more subtle,
and the mathematics becomes substantially more difficult. Here we extend results of the earlier
papers to semiopen reactors and show that very similar results obtain, provided that the network of
chemical reactions satisfies certain weak structural conditions; weak reversibility is sufficient but not
necessary.
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1. Introduction. In two earlier papers [1], [3], we developed means to deter-
mine whether a given (mass action) chemical reaction network has the capacity to
exhibit multiple positive steady states in the context of what chemical engineers call
the (isothermal) continuous flow stirred tank reactor (CFSTR). Some of those re-
sults are reviewed in [4] with special focus on biochemistry. When we say that a
network has the capacity to admit multiple positive steady states, we mean that
there are certain combinations of parameter values (e.g., kinetic rate constants, reac-
tant supply rates) such that, for the network, the corresponding isothermal CFSTR
mass action differential equations admit at least two distinct rest points at which all
species concentrations are positive. (Among mass action networks generally, this is
far less common than might be supposed.) In the absence of an overarching theory,
determination of a network’s capacity for multiple steady states is difficult, for one is
confronted with a large system of polynomial equations in the species concentrations,
in which many parameters appear.

Nevertheless, the aforementioned articles provide means to assert for quite broad
classes of reaction networks—including highly complex ones—that multiple positive
steady states are impossible, regardless of parameter values. The test provided in
the first article is largely computational, while the test provided in the second is
tied to subtle aspects of a reaction network’s structure as revealed in its species-
reaction graph. In fact, a theorem in [3] ensures that multiple positive steady states are
impossible for a particular network unless the species-reaction graph for the network
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1860 GHEORGHE CRACIUN AND MARTIN FEINBERG

meets very stringent conditions. (It is striking that certain classical mechanisms for
enzyme catalysis do indeed meet those conditions [4]. In this sense, biology finds ways
to circumvent strictures against bistable dynamics that biochemical switches might
require.)

In the classical chemical engineering picture of a CFSTR, only certain species
might be fed to the reactor (usually at fixed rates), but all species leave the reactor
at rates proportional to their concentrations within the reactor. That is, the molar
effluent rate (per unit reactor volume) of each species s is given by ξscs, where ξs is a
time-invariant positive number and cs is the molar concentration of species s within
the reactor. (In the classical picture, all the ξs are equal to a species-independent
constant, but, for reasons discussed in [1], we impose no such restriction in what
follows.)

The fact that all species are in the CFSTR effluent played a strong role in the
mathematics underlying results in [1] and [3]. In some instances, however, it is useful
to consider models in which only certain species are free to enter or exit the reactor,
while certain other species remain entrapped within it. In [4], for example, we con-
sidered instances in which small-molecule metabolites were free to enter or leave the
reactor vessel, while larger enzymes and enzyme-metabolite complexes were denied
passage either inward or outward.

At first glance it might appear that models of the classical CFSTR variety are
highly similar to semiopen models of the entrapped species type. Although these
models are indeed similar in a physical sense, there are distinctions between the two
that make them mathematically different in important ways. As we shall try to make
clear in section 3, certain stoichiometric considerations that arise naturally in the
entrapped-species case actually change the nature of the questions that one should
ask. When asking, for example, about the capacity for multiple steady states in the
entrapped-species case, one needs to ask whether there can exist two distinct steady
states that are stoichiometrically compatible.

Before proceeding further, we call to the reader’s attention reference [9], which
differs in its objectives from this article but which has points in common with it.

2. A question and an answer. A question arises, then, about the extent
to which results presented in [1] and [3] also give information about models of the
entrapped-species variety: If we know that, for a certain chemical reaction network,
there is no combination of parameter values that gives rise to multiple positive steady
states in the classical fully open CFSTR context, can we also assert that the same is
true in an entrapped-species context?

This question was addressed in [2], where a partial answer was provided. Without
invoking mass action kinetics, we showed that if a reaction network does not have the
capacity for multiple steady states in the classical CFSTR setting (with all species
permitted passage outward), then, for the same chemistry in the entrapped-species
setting, multiple positive steady states can arise only if all but perhaps one of the
steady states is degenerate (in a sense we shall make precise in section 3).

It is the purpose of this article to show that when, for a reaction network, results
in [1], [3], and [4] preclude multiple positive steady states in the classical CFSTR
context, then those same results preclude any degenerate positive steady state—and
therefore multiple positive steady states—in the entrapped species context, provided
that the kinetics is mass action and provided that the network of chemical reactions
satisfies certain weak structural conditions. Although it is beyond the scope of this
introduction to describe those conditions here, we can say that they will be satisfied
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when the underlying chemical reaction network is weakly reversible [5], [6], [7], [10]
and, in particular, when every reaction is reversible. (Weak reversibility is defined
formally in the next section, but for now it will suffice to say that a reaction network
is weakly reversible if every reaction arrow is in a directed cycle.)

In fact, we can go even further. Suppose that the chemistry in the reactor is given
by network (2.1), which represents one classical mechanism for the enzyme-promoted
combination of two substrates, S1 and S2, to form a product, P , and suppose also
that the kinetics is mass action. The first step indicates the reversible binding of S1
to an enzyme E to form ES1. The second step represents reversible binding of S2 to
ES1 to form ES1S2. Once both substrates are bound to the enzyme, they combine
to form P , which is then released from the enzyme. These last events are represented
by the third reaction step, which is deemed to be irreversible. (That is, the reverse
reaction is deemed to proceed at negligible rate.)

(2.1)
E + S1 � ES1,

ES1 + S2 � ES1S2 → P + E.

Results in [3] and [4] immediately give the information, via the species-reaction graph,
that network (2.1) does not have the capacity for multiple positive equilibria in the
classical CFSTR context—that is, when all species are permitted passage out of the
reactor.

Suppose, however, that we wish to consider a reactor in which the (mass action)
chemistry is again as in (2.1) but in which E,ES1, and ES1S2 are deemed to be en-
trapped within the reactor, while S1, S2, and P are permitted passage outward. Can
we once again assert—based on the same species-reaction graph—that multiple pos-
itive stoichiometrically compatible equilibria are impossible, regardless of parameter
values?

In this case, network (2.1) is not weakly reversible because the reaction ES1S2 →
P is not in a directed cycle, but we will nevertheless argue that information given
about the fully open CFSTR in [1], [3], and [4] also applies to an entrapped species
reactor, provided that the kinetics is mass action and provided that the entrapped-
species projection of the original chemical reaction network is weakly reversible. By
the entrapped-species projection of a reaction network we mean the reaction network
formed by stripping away all species that are not entrapped, leaving behind only
the entrapped species. Thus, when E,ES1, and ES1S2 are entrapped, (2.2) is the
entrapped-species projection of network (2.1):

E � ES1

↖ ↗↙(2.2)

ES1S2

Although network (2.1) is not weakly reversible, its entrapped-species projection
(2.2) is weakly reversible, so we can assert that for the entrapped-species reactor mul-
tiple positive stoichiometrically compatible equilibria are again impossible, regardless
of parameter values.

A specific aim of this article, then, is to prove that when, for a particular (mass
action) network of chemical reactions, results in [1], [3], and [4] deny the capacity
for multiple positive equilibria in the fully open CFSTR context, then the capacity for
multiple (stoichiometrically compatible) positive equilibria will also be denied in an
entrapped-species context, provided that the entrapped-species projection of the original
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network is weakly reversible. Along the way, the capacity for a degenerate positive
steady state will be denied as well. (As we shall see, similar conclusions obtain
under even broader circumstances—whenever the entrapped-species projection of the
original network is what we call a normal network. Normal networks are defined in
section 7. All weakly reversible networks are normal.)

We note that chemists generally suppose that all chemical reactions are reversible,
at least to some extent. For chemical systems that are modeled with this stricture in
mind, we can assert that entrapped-species projected networks will inherit reversibility
(and weak reversibility) from the original network of chemical reactions. Thus, it is
only for models in which the putative network of chemical reactions does not conform
to the reversibility orthodoxy that results in [1], [3], and [4] might fail to extend to
the entrapped-species context.

3. Chemical reaction networks and mass action systems. In this sec-
tion we provide a framework for discussion of chemical reaction networks. Much
of this material is also available, with more motivation, in [5], [6], [7]. The sim-
ple reaction network (2.1), discussed in the preceding section, will provide a useful
vehicle for introducing some language. The species of the network are, of course,
S1, S2, E,ES1, ES2, ES1S2, and P . By the complexes of the network we mean the
entities that appear before and after the reaction arrows. Thus, the complexes of
network (2.1) are E + S1, ES1, ES1 + S2, ES1S2, and P + E. The reactions in
the network are regarded to be a specification of a “reacts to” relation (indicated by
“→”) in the set of complexes. After introduction of some notation, we posit a formal
definition of a chemical reaction network.

Notation. We denote by R the set of real numbers, by R+ the positive real
numbers, and by R+ the nonnegative real numbers.

So that we can speak, for example, of a “vector of species concentrations” or a
“vector of reaction rate constants,” we will want to associate a real vector space with
the set of species, with the set of reactions, and also with the set of complexes. At
the same time, it will prove awkward to number these various objects just so that we
can work in the familiar RN . With this in mind, we proceed as follows.

If I is a finite index set (for example, the set of species), we denote by R
I the

vector space of real-valued functions with domain I . By ωi we mean the element of
R

I that assigns 1 to i ∈ I and 0 to all other members of I . It is easy to see that
{ωi : i ∈ I } is a basis for RI , and each x ∈ R

I has a representation x =
∑

i∈I xiωi,

where xi is the value of x associated with i. In effect, then, RI is a real vector space

with a distinguished basis labeled by the elements of I . By R
I
+ (R

I
+ ) we mean the

set of all x ∈ R
I such that xi is positive (nonnegative) for all i ∈ I . If x is a member

of RS , the support of x is defined by supp(x) := {i ∈ I : xi �= 0}.
By the standard scalar product in R

I , we mean the scalar product that makes the
basis {ωi : i ∈ I } orthonormal. When we have in mind the standard scalar product
we will use “·”. Thus, for x and y in R

I we have x · y =
∑

i∈I xiyi.

Only in the special case of RS , where S is the set of species in a network, will we
choose to replace symbols for the canonical basis vectors {ωs : s ∈ S } with the names
of the species themselves. Thus, in the context of network (2.1) we would regard the
sum ES1 + S2 as a surrogate for ωES1 + ωS2 ∈ R

S . In this way, the complexes of a

reaction network can be identified with elements of R
S
+ .

Definition 3.1 (see [5], [7]). A chemical reaction network consists of three finite
sets:
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(i) a set S of species of the network;
(ii) a set C ⊂ R̄

S
+ of complexes of the network;

(iii) a set R ⊂ C × C of reactions, with the following properties:
(a) (y, y) /∈ R for any y ∈ C ;
(b) for each y ∈ C there exists y′ ∈ C such that (y, y′) ∈ R or such that

(y′, y) ∈ R.
When (y, y′) is a member of R we say that the complex y reacts to complex y′,

and we write y → y′ ∈ R or simply y → y′ to indicate that y reacts to y′. We say
that y and y′ are, respectively, the reactant complex and the product complex of the
reaction y → y′.

For use later, we also record the following definitions.
Definition 3.2. A reaction network {S ,C ,R} is reversible if, whenever y → y′

is a member of R, y′ → y is also a member of R. The reaction network is weakly
reversible if, whenever y → y′ is a member of R, either y′ → y is also a member of
R or there exists a finite sequence of complexes {y1, y2, . . . , yk} such that R contains
the reactions y′ → y1 → y2 → · · · → yk → y.

Definition 3.2 asserts that a reaction network is weakly reversible if every reaction
is contained within a directed reaction cycle. Clearly, every reversible network is also
weakly reversible.

Definition 3.3. For a reaction network {S ,C ,R}, the reaction vector corre-
sponding to reaction y → y′ ∈ R is y′ − y ∈ R

S . The stoichiometric subspace for the
network, generally denoted by S, is the span of its reaction vectors:

(3.1) S := span{y′ − y ∈ R
S : y → y′ ∈ R}.

Thus, for example, the reaction vector corresponding to E+S1 → ES1 in network
(2.1) is ES1−E−S1. Note that for species s ∈ S the s-component, y′s−ys, of reaction
vector y′ − y is the net number of molecules of s produced with each occurrence of
the reaction y → y′.

For a network {S ,C ,R} the occurrence of the reactions will generally lead to
a change in the population of the various species. Our interest will be in differential
equations that govern the mixture composition. We identify the mixture composition
with a vector c ∈ R̄

S
+ , where, for each s ∈ S , cs is the molar concentration of

species s. The occurrence rates of the various reactions generally depend upon the
instantaneous composition.

A mass action kinetics for a reaction network {S ,C ,R} amounts to a prescrip-
tion of a reaction-rate function for each reaction, one that relates occurrence rate to
composition in a classical way: Associated with each reaction y → y′ is a positive
rate constant ky→y′ such that the molar occurrence rate per unit volume of y → y′ is
given by ky→y′cy, where

(3.2) cy :=
∏
s∈S

cys
s .

Definition 3.4. A mass action system is a reaction network {S ,C ,R} taken
with a rate constant specification k ∈ R

R
+ . The positive number ky→y′ is the rate

constant assigned to reaction y → y′ ∈ R.
Once a mass action kinetics is associated with a reaction network, we can cal-

culate the net molar production rate (per unit volume) of each species due to the
simultaneous occurrence of the various reactions.
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Definition 3.5. For a mass action system {S ,C ,R, k}, the species-formation-

rate function r : R
S
+ → R

S is given by

(3.3) r(c) ≡
∑

y→y′∈R

ky→y′cy(y′ − y).

In particular, the species-formation-rate at composition c for species s ∈ S is
given by

(3.4) rs(c) ≡
∑

y→y′∈R

ky→y′cy(y′s − ys).

Thus, the overall net production rate of s is taken to be the sum of all the various
reaction rates, each multiplied by the net molecular gain of s associated with the
corresponding reaction.

Definition 3.6. The differential equation associated with a mass action system
{S ,C ,R, k} is

(3.5) ċ = r(c),

where the overdot indicates time-differentiation and r(·) is the corresponding species-
formation-rate function. An equilibrium of the mass action system is a composition

a ∈ R
S
+ such that r(a) = 0. A positive equilibrium is an equilibrium in R

S
+ .

With rate constants for network (2.1) as indicated in (3.6),

(3.6)

E + S1
k1

�
k2

ES1,

ES1 + S2
k3

�
k4

ES1S2
k5→ P + E,

the component form of the corresponding mass action differential equations is

ċS1 = k2cES1 − k1cS1cE ,

ċS2 = k4cES1S2 − k3cS2cES1,

ċE = k5cES1S2 + k2cES1 − k1cS1cE ,(3.7)

ċES1 = k4cES1S2 − k3cS2cES1 − k2cES1 + k1cS1cE ,

ċES1S2 = − (k5 + k4) cES1S2 + k3cS2cES1,

ċP = k5cES1S2.

Note that the species-formation-rate function of a mass action system takes values
in S, the stoichiometric subspace for the underlying reaction network. For reasons
rooted in mass-conservation conditions it is often (but, as we shall see, not always)
the case that the stoichiometric subspace is a proper linear subspace of RS . Because
ċ invariably points along S, it is not difficult to see that composition trajectories will
reside entirely within parallels of S. In particular, a trajectory passing through c0

will lie in the set (c0 + S) ∩ R
S
+ .

With this in mind we say that two compositions c and c′ are stoichiometrically
compatible if c′− c is a member of S. In fact, stoichiometric compatibility is an equiv-

alence relation that serves to partition R
S
+ into stoichiometric compatibility classes. In
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rough terms, one is interested in dynamics within stoichiometric compatibility classes.
Thus, when we consider the capacity of a network for multiple positive equilibria, we
shall always mean its capacity for more than one positive equilibrium within a stoi-
chiometric compatibility class. (Of course, if S = R

S , then this qualification becomes
moot.)

Definition 3.7. A reaction network {S ,C ,R} has the capacity to admit mul-
tiple positive equilibria if there exists k ∈ R

R
+ such that the mass action system

{S ,C ,R, k} admits (at least) two distinct positive equilibria that are stoichiometri-
cally compatible.

Remark 3.1. For a mass action system, we shall be interested in the derivative
of the species-formation-function evaluated at a positive equilibrium point. Because
our interest is in dynamics within stoichiometric compatibility classes, it is natural to
restrict the derivative, viewed as a linear transformation, to the stoichiometric sub-
space. In fact, if {S ,C ,R, k} is a mass action system and a ∈ R

S
+ is an equilibrium,

then the derivative dr(a) : S → S is given by [7]

(3.8) dr(a)σ ≡
∑

y→y′∈R

κy→y′(y ∗ σ)(y′ − y),

where

(3.9) κy→y′ := ky→y′ay = ky→y′
∏
s∈S

ays
s

and “∗” is a scalar product in R
Sdefined by

(3.10) u ∗ w :=
∑
s∈S

usws

as
.

Definition 3.8. For a mass action system {S ,C ,R, k}, an equilibrium a ∈ R
S
+

is degenerate if dr(a) is singular—that is, if there exists a nonzero σ ∈ S such that
dr(a)σ = 0.

4. Mass action models of open systems. In the example of the preceding
section it was supposed tacitly that the mixture under consideration was enclosed in
a well-mixed vessel impervious to the transport of any of the species either inward
or outward. Suppose, however, that the nonenzymatic species S1 and S2 are fed to
the vessel at constant rates (per unit vessel volume) of FS1 and FS2, while S1, S2,
and P are removed from the vessel at (per unit volume) rates proportional to their
concentrations within the vessel, with proportionality constants ξS1, ξS2, and ξP . In
this case, the governing differential equations would be

ċS1 = k2cES1 − k1cS1cE + FS1 − ξS1cS1,

ċS2 = k4cES1S2 − k3cS2cES1 + FS2 − ξS2cS2,

ċE = k5cES1S2 + k2cES1 − k1cS1cE ,(4.1)

ċES1 = k4cES1S2 − k3cS2cES1 − k2cES1 + k1cS1cE ,

ċES1S2 = − (k5 + k4) cES1S2 + k3cS2cES1,

ċP = k5cES1S2 − ξPcP .

These are not the differential equations corresponding to mass action system
(3.6), but they are the differential equations corresponding to the mass action system
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shown in (4.2). There, a “pseudoreaction” of the form s → 0 is appended to the
network of true reactions to indicate that species s is in the effluent stream, while
0 → s is appended to indicate that s is in the feed stream. (Here 0 denotes the “zero
complex,” identified with the zero vector of RS .) In examining connections between
reaction network structure and properties of the corresponding differential equations,
it is network (4.2), rather than (3.6), that is relevant to the study of (4.1):

E + S1
k1

�
k2

ES1, S1
ξS1

�
FS1

0
ξS2

�
FS2

S2(4.2)

ES1 + S2
k3

�
k4

ES1S2
k5→ P + E, ξP ↑

P.

More generally, in considering reaction network models of open systems, the
species set S will be partitioned into two subsets: M , called the mobile species,
and E , called the entrapped species. The mobile species are precisely those permitted
passage outward in the effluent stream, while the entrapped species are those denied
such passage. We denote by F ⊂ S the set of species deemed to be present in the
feed stream. (As in our example, it is typically the case that F is contained in M , and
we shall suppose that this is the case hereafter. Results similar to those reported here
will obtain even when F is not contained in M , but at the expense of a somewhat
more fussy development.)

An open system reaction network amounts, in effect, to specification of a network
{S ,Ct,Rt} of true chemical reactions taken together with specifications of the set
M of mobile species and the set F of species deemed present in the feed stream. The
resulting open system reaction network will be {S ,C ,R}, where C = Ct ∪M ∪ {0}
and R = Rt ∪ {m → 0 : m ∈ M } ∪ {0 → m : m ∈ F}. (For the special case in which
M and F are empty, we take C = Ct. It will be convenient to admit this extreme case
as an instance of an open system reaction network.) It is worth mentioning that when
we speak of the “true chemical reactions,” we simply mean those reactions deemed
to model chemical transformations, exclusive of pseudoreactions such as m → 0 or
0 → m added to model the effect of species addition and removal.

If {S ,C ,R} is an open system reaction network, then the differential equation
corresponding to the open system mass action model {S ,C ,R, k} is

(4.3) ċ =
∑

y→y′∈Rt

ky→y′cy(y′ − y) +
∑
m∈F

k0→mm+
∑

m∈M

km→0cm(−m).

Remark 4.1 (degradation and synthesis models). The mass action description
of open systems described above can be adapted to model still other situations. For
example, we might imagine a closed system in which certain species participate in
the true chemistry but also decompose to inerts at rates proportional to their current
concentrations. The effect of the degradation could be modeled as if those species
were being removed from the reactor, with reactions such as m → 0 employed to
account for the degradation effect. Similarly, a reaction such as 0 → m could be used
to account for the constant-rate supply of species m by means of a synthesis otherwise
divorced from the chemistry under study.

Remark 4.2. Suppose that {S ,C ,R, k} is a mass action description of an open
system, with S = M � E . As before, we denote by S the stoichiometric subspace
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for the underlying reaction network (including pseudoreactions). If a ∈ R
S
+ is an

equilibrium, then, in this case, the derivative dr(a) : S → S is given by

(4.4) dr(a)σ ≡
∑

y→y′∈Rt

κy→y′(y ∗ σ)(y′ − y) +
∑

m∈M

κm→0(m ∗ σ)(−m),

where the κy→y′ and “∗” are as in Remark 3.1 and Rt refers to the set of true
reactions.

5. Entrapped-species versus fully open systems. In a mass action model
of an open system, the set of mobile species might coincide with the full set of species
(i.e., M = S ). In this case all species are in the effluent stream, and we say that the
model (and the underlying network) are fully open. Otherwise, we say that the model
(and the underlying network) are of the entrapped-species kind. If {S ,C ,R} is a fully
open reaction network, then the reaction set will contain as a subset {s → 0 : s ∈ S }.
From this it follows that the stoichiometric subspace coincides with R

S and that all
compositions are stoichiometrically compatible. In this respect, fully open models are
somewhat easier to study than semiopen models. In particular, for fully open models
questions about the existence of multiple equilibria reduce simply to questions about
the number of equilibria, unqualified by questions about whether those equilibria are
stoichiometrically compatible.

With more formal definitions now in place, it will be useful to revisit some ideas
described informally in the preceding sections: In [1] and [3] we examined, for fully
open mass action models, connections between the capacity for multiple positive equi-
libria and the structure of the network of true chemical reactions. Among other things,
those papers contain broad theorems asserting that, if the network of true chemical
reactions satisfies certain weak conditions, then multiple positive equilibria cannot
result from a corresponding fully open mass action model, regardless of parameter
values. In [2] we argued that a theorem that denies the capacity for multiple positive
equilibria in a particular fully open system will also deny the capacity for multiple pos-
itive equilibria in an entrapped-species context, but in a restricted sense: There can
be multiple stoichiometrically compatible positive equilibria in the entrapped-species
model only if all but perhaps one of those equilibria are degenerate in the sense of
Definition 3.8. In fact, results in [2] were not restricted to mass action kinetics.

Our aim now is to show that, when results in [1] and [3] preclude multiple positive
steady states in the fully open context, then, regardless of parameter values, those
same results preclude any degenerate positive equilibrium (and therefore multiple stoi-
chiometrically compatible positive equilibria) in the entrapped-species context, provided
that the kinetics is mass action and provided that the true reaction network satisfies, in
addition, very weak structural conditions. (It is sufficient that the entrapped-species
projection of the true chemical reaction network fall into a class of networks we call
normal. Every weakly reversible network is normal.)

All results in [1] and [3] were based on the idea of network injectivity. In sec-
tion 6, we define what we mean by an injective reaction network, and we discuss the
relationship between injectivity and the capacity for multiple positive equilibria. In
section 7 we define normal networks, and then in section 8 we state the main theorem
of this article.

Remark 5.1 (the “∗”-scalar product). The scalar product defined in (3.10) will
appear frequently in the remainder of this article. It depends, of course, on the choice
of a ∈ R

S
+ . When a certain construct—a linear transformation, for example—depends

upon that choice, we will attach a subscripted “∗” to the name of the construct as
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a reminder of the a-dependence. When we say that a certain property obtains “for
every choice of ∗-scalar product,” we mean for every choice of a ∈ R

S
+ .

We note that the scalar product in R
S given by (3.10) is of a special form,

motivated by the particular reaction network considerations that we have in mind.
It will be evident, however, that this special form is inconsequential to the proof of
several assertions made along the way, in which case “for every choice of ∗-scalar
product” can be taken in its more general sense.

6. Injective reaction networks. In [1] we defined the notion of an injective
reaction network, but only in consideration of fully open reactors. Here we generalize
that definition with an eye toward study of entrapped-species reactors, as follows.

Definition 6.1. Let {S ,C ,R} be a reaction network with stoichiometric sub-
space S. The network is injective if, for every choice of η ∈ R

R
+ and for every choice

of ∗-scalar product, the map T∗η : S → S defined by

(6.1) T∗ησ ≡
∑

y→y′∈R

ηy→y′(y ∗ σ)(y′ − y)

is nonsingular.
Remark 6.1 (injectivity for open system reaction networks). Let {S ,C ,R} be

an open system reaction network, let M be the set of mobile species, and let S be
the stoichiometric subspace for the network. In this case, the map T∗η : S → S in
Definition 6.1 takes the form

(6.2) T∗ησ ≡
∑

y→y′∈Rt

ηy→y′(y ∗ σ)(y′ − y) +
∑

m∈M

ηm→0(m ∗ σ)(−m).

Remark 6.2 (notation). Note that for an open system reaction network, the set
F of species deemed present in the feed stream plays no role in the determination of
injectivity. The presence or absence of injectivity is determined solely by the network
{S ,Ct,Rt} of true chemical reactions and the set M of mobile species. Because our
concerns will be largely with injectivity, we shall find it convenient hereafter to refer
to the “open system network {S ,Ct,Rt,M },” where {S ,Ct,Rt} is the network of
true chemical reactions and M is the set of mobile species. When we refer to the
“entrapped species network {S ,Ct,Rt,M },” we mean that M is smaller than S ;
the set of entrapped species E is then just S � M , possibly S itself. Against this
background, the fully open network with true chemistry {S ,Ct,Rt} is indicated by
{S ,Ct,Rt,S }.

Remark 6.3 (the path forward, in terms of injectivity). In [1] we showed that
if a fully open reaction network is injective, then for any choice of rate constants
the resulting fully open mass action model cannot admit multiple positive equilib-
ria. Nevertheless, it is not a simple matter to determine whether, for a complex
reaction network, injectivity obtains. In [1] and [3], however, we provided means to
determine—via computation or via inspection of the species-reaction graph—that a
particular fully open reaction network is injective. It is our objective here to examine
the extent to which those same methods extend to entrapped-species networks.

In more specific terms, if {S ,Ct,Rt,S } is a fully open network that is known
to be injective, and if M ⊂ S is a specification of the mobile species, we want
to know when it can be said that the entrapped-species network {S ,Ct,Rt,M } is
also injective. If {S ,Ct,Rt,M } is injective, it follows directly from Remark 3.1,
Definition 3.8, and Definition 6.1 that no mass action system deriving from it can
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give rise to a degenerate positive equilibrium. In light of the discussion at the close of
section 5, it also follows that the entrapped species network {S ,Ct,Rt,M } does not
have the capacity for multiple positive equilibria.

Remark 6.4. There is another path, different from the one described in the pre-
ceding remark, that connects injectivity in the sense of Definition 6.1 to the preclusion
of multiple positive stoichiometrically compatible equilibria. For a reaction network
{S ,C ,R} with stoichiometric subspace S, it can be shown that the network is not
injective if and only if there are k ∈ R

S
+ and distinct c∗, c∗∗ ∈ R

S
+ , with c∗ − c∗∗ ∈ S,

such that

(6.3)
∑

y→y′∈R

ky→y′(c∗)y(y′ − y) =
∑

y→y′∈R

ky→y′(c∗∗)y(y′ − y).

That is, noninjectivity in the sense of Definition 6.1 is equivalent to the existence
of positive rate constants such that there are two distinct stoichiometrically com-
patible positive compositions at which the species-formation-rate function takes the
same value. Clearly, then, if the network is injective in the sense of Definition 6.1,
then for no assignment of rate constants can there exist two distinct stoichiometrically
compatible positive equilibria—that is, two distinct stoichiometrically compatible pos-
itive compositions at which the species-formation-rate function takes the value zero.
Although this connection between Definition 6.1 and the preclusion of equilibrium
multiplicity is compelling, our preference is to proceed through the logical route de-
scribed in the preceding remark, for then the capacity for a degenerate equilibrium
is also precluded. Moreover, the connection of Definition 6.1 to the preclusion of a
degenerate equilibrium is direct.

7. Normal reaction networks. Here we say what it means for a reaction net-
work to be normal.1 Normality is closely related to injectivity.

Definition 7.1. Let {S ,C ,R} be a reaction network with stoichiometric sub-
space S. The network is normal if, for each ∗-scalar product in R

S , there exists
η ∈ R

R such that the linear transformation T∗η : S → S defined by

(7.1) T∗ησ ≡
∑

y→y′∈R

ηy→y′(y ∗ σ)(y′ − y)

is nonsingular.
It is apparent that a network can be injective only if it is normal. The following

proposition describes a wide class of normal networks.
Proposition 7.2. Every weakly reversible network is normal.
Proof. Let {S ,C ,R} be a weakly reversible reaction network with stoichiometric

subspace S, and let “∗” denote a fixed but arbitrary scalar product in R
S . Choose

η ∈ R
S
+ to satisfy the condition

(7.2)
∑

y→y′∈R

ηy→y′(ωy′ − ωy) = 0.

(Recall that {ωy}y∈C is the standard basis for RC .) That such an η exists for a weakly
reversible network is proved in [5]. With η chosen this way, we want to show that the
map T∗η defined by (7.1) is nonsingular.

1In a recently published article [8], Gnacadja also uses the term “normal network,” but his usage
is different from ours.
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In fact, we can show that T∗η is ∗-negative-definite—i.e., that σ ∗T∗ησ < 0 for all
nonzero σ ∈ S:

σ ∗ T∗ησ =
∑

y→y′∈R

ηy→y′(y ∗ σ)(y′ ∗ σ − y ∗ σ)(7.3)

≤ 1

2

∑
y→y′∈R

ηy→y′((y′ ∗ σ)2 − (y ∗ σ)2)(7.4)

=
1

2

⎡
⎣ ∑
y→y′∈R

ηy→y′(ωy′ − ωy)

⎤
⎦ ·
⎡
⎣∑
ỹ∈C

(ỹ ∗ σ)2ωỹ

⎤
⎦(7.5)

= 0.(7.6)

In (7.5), “·” indicates the standard scalar product in R
C . Note that equality holds

in (7.4) if and only if (y′ − y) ∗ σ = 0 for all y → y′ ∈ R—that is, if and only if σ
is orthogonal to S relative to the ∗-scalar product. Because σ is presumed to be a
member of S, this can be the case only if σ = 0.

To complete the proof we note that if T∗ησ̄ = 0, in which case σ̄ ∗ T∗ησ̄ = 0, we
must have σ̄ = 0. Thus, T∗η is nonsingular.

The simple network A → B suffices to demonstrate that a network can be normal
without being weakly reversible.

8. The main theorem and its consequences. In this section we state the
main theorem of this article, and we review its consequences. The theorem describes
circumstances under which injectivity of a fully open network {S ,Ct,Rt,S } implies
injectivity of an entrapped-species network {S ,Ct,Rt,M } sharing the same true
chemistry. (To see that an entrapped-species network does not always inherit injec-
tivity from the fully open network, it is enough to consider the simple true chemistry
A → B. The corresponding fully open network containing reactions {A → B, A →
0, B → 0} is injective. On the other hand, if B is entrapped, the entrapped species
network containing the reactions {A → B,A → 0} is not injective.)

Here, then, we consider the entrapped-species network {S ,Ct,Rt,M }. The set
E of entrapped species is S �M . We denote by ΓM and ΓE the sets of vectors in R

S

having supports in M and E , respectively. Note that R
S = ΓM ⊕ ΓE . We denote

by M : RS→ ΓM and E: RS→ ΓE the obvious projections.
We come now to the entrapped-species projection of the true network of chemical

reactions. This was described informally, with an example, in section 2. Recall that
the entrapped-species projection of the true network is obtained by stripping away
all of the species in M , leaving behind only the species of E . Although the resulting
network contains no species of M , we shall nevertheless find it convenient to continue
viewing its species set as S .

Definition 8.1. For an entrapped-species reaction network {S ,Ct,Rt,M }, the
entrapped-species projection of the true chemical reaction network {S ,Ct,Rt} is the
reaction network {S ,CE ,RE} with complex and reaction sets defined as follows:

CE := {ỹ ∈ ΓE : ∃ y ∈ Ct with ỹ = Ey},(8.1)

RE := {(ỹ, ỹ′) ∈ CE × CE : ∃ y → y′ ∈ Rt with ỹ = Ey, ỹ′ = Ey′, ỹ �= ỹ′}.(8.2)

We write ỹ → ỹ′ (or Ey → Ey′) to indicate the reaction whereby complex ỹ reacts to
complex ỹ′.

We are now in a position to state the central theorem of this article, as follows.
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Theorem 8.2. Suppose that {S ,Ct,Rt,M } is an entrapped-species network
and that the fully open network {S ,Ct,Rt,S } is injective. If the entrapped-species
projection of {S ,Ct,Rt} is a normal reaction network, then {S ,Ct,Rt,M } is also
injective. In particular, {S ,Ct,Rt,M } is injective if the entrapped-species projection
of {S ,Ct,Rt} is weakly reversible.

Proof of the theorem will begin in the next section. Here we survey the theorem’s
consequences.

It should be kept in mind that in [1], [3], [4] we presented easily applied means
to determine whether fully open reaction networks are injective. (Tests are applied
to the network of true chemical reactions.) For an entrapped-species network sharing
the same chemistry, it will often happen that the entrapped-species projection of the
true chemical reaction network is weakly reversible—in particular, if the true network
is itself weakly reversible. In such instances, the theorem tells us immediately that the
entrapped species network inherits injectivity from its fully open counterpart. Then,
as we have argued in section 5 and Remark 6.3, a mass action system derived from the
entrapped-species network cannot admit a degenerate positive equilibrium, nor can
it admit multiple positive stoichiometrically compatible equilibria. This we record as
the following corollary of the theorem.

Corollary 8.3. For an entrapped-species network satisfying the conditions of
Theorem 8.2, no choice of rate constants can result in a mass action system that
admits a degenerate positive equilibrium or two distinct positive equilibria that are
stoichiometrically compatible.

9. A useful proposition. Here we begin our proof of Theorem 8.2. In consid-
eration of injectivity and normality, both for fully open networks and for entrapped
species networks, we shall have occasion to calculate determinants of maps such as
those shown in (4.4), (6.1), and (7.1). With this in mind, we shall find it useful to have
on record a proposition that describes such calculations in terms that are sufficiently
abstract that it can be employed in a variety of situations.

We suppose that S is the set of species, that “∗” is a scalar product in R
S ,

and that U is a linear subspace in R
S of dimension p. Moreover, we suppose that

detU[· , · , . . . , ·] is a determinant function on U . That is, detU is a skew-symmetric
p-linear real-valued function on U × U × · · · × U (p times). We presume that detU
is normalized such that for some ∗-orthonormal basis for U , say {u1, , u2 , . . . , up},
detU[u1, , u2 , . . . , up] = 1. If L : U → U is a linear transformation, then by det L we
mean the number detU[Lu1, Lu2 . . . , Lup].

Finally, let R# denote a set of reactions, the number of reactions being at least p.
When we write C(R#, p), we mean the set of all combinations of (distinct) reactions
in R# taken p at a time. If χ is a member of C(R#, p), we indicate the p reactions of
χ by symbols {χ(1), χ(2), . . . , χ(p)}. Moreover, we indicate the reactant and product
complexes of reaction χ(i) by yχ(i) and y′χ(i), respectively. Thus, χ(i) and yχ(i) → y′χ(i)
are alternative symbols for the same reaction. In particular, an alternative display of
χ takes the form

{yχ(1) → y′χ(1), yχ(2) → y′χ(2), . . . , yχ(p) → y′χ(p)}.

The numbering of reactions imparts an artificial order to members of χ, but that
order will have no significance in anything that follows.

Proposition 9.1. Let {vy→y′}y→y′∈R# and {uy→y′}y→y′∈R# be members of U,
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let {αy→y′}y→y′∈R# be real numbers, and let L : U → U be defined by

(9.1) Lx :=
∑

y→y′∈R#

αy→y′(vy→y′ ∗ x)uy→y′ .

Then

(9.2) detL =
∑

χ∈C(R#, p)

(
p∏

i=1

αχ(i)

)
detU [vχ(1), . . . , vχ(p)] detU[uχ(1), . . . , uχ(p)].

Proof. Apart from some minor variations, the proof is similar to the proof of
Theorem 3.2 in [1].

10. Injectivity, normality, and critical subnetworks. Let {S ,C ,R} be
a reaction network with stoichiometric subspace S, and suppose that R

S is given
a ∗-scalar product. As before, for each η ∈ R

R, we take the linear transformation
T∗η : S → S to be defined by

(10.1) T∗ησ ≡
∑

y→y′∈R

ηy→y′(y ∗ σ)(y′ − y).

Let π∗ :RS→ S be the projection onto S along S⊥∗
, where it is understood that ⊥∗

indicates orthogonality relative to the ∗-scalar product. With this in mind, we can
rewrite (10.1) as

(10.2) T∗ησ ≡
∑

y→y′∈R

ηy→y′(π∗y ∗ σ)(y′ − y).

With s denoting the dimension of S and with detS [· , · , . . . , ·] denoting a deter-
minant function on S chosen as in section 9, it follows from Proposition 9.1 that

detT∗η(10.3)

=
∑

χ∈C(R, s)

(
s∏

i=1

ηχ(i)

)
detS [π∗yχ(1), . . . , π∗yχ(s)] detS [y′χ(1) − yχ(1), . . . , y

′
χ(s) − yχ(s)].

From this it is clear that for T∗η to be nonsingular for at least some choice of
η ∈ R

R it is necessary that for at least one combination of s reactions—that is, for at
least one χ ∈ C(R, s)—it must be the case that

(10.4) detS [π∗yχ(1), . . . , π∗yχ(s)] detS [y′χ(1) − yχ(1), . . . , y
′
χ(s) − yχ(s)] �= 0,

which is to say that the sets

(10.5) {π∗yχ(1), . . . , π∗yχ(s)} and {y′χ(1) − yχ(1), . . . , y
′
χ(s) − yχ(s)}

are both independent (and are both bases for S).
It should be understood that, in the preceding discussion, a fixed but arbitrary

choice of the ∗-scalar product was made, and that choice in turn determined the
projection π∗. In particular, the set {π∗yχ(1), . . . , π∗yχ(s)} might be independent
of one choice of ∗-scalar product but dependent on another. Recall that a reaction
network {S ,C ,R} is normal if for each choice of ∗-scalar product there exists η ∈
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R
R, depending perhaps on “∗,” such that T∗η is nonsingular. Thus, the network is

normal only if for each choice of “∗” there is a reaction combination χ ∈ C(R, s),
depending perhaps on “∗,” such that (10.4) holds. (It is easy to see that the network
will, in fact, be normal if this condition is satisfied.)

Note that each χ ∈ C(R, s) can be associated in an obvious way with a subnet-
work of {S ,C ,R} having s reactions. Hereafter, we let

(10.6) D∗(χ) := detS [π∗yχ(1), . . . , π∗yχ(s)] detS [y′χ(1) − yχ(1), . . . , y
′
χ(s) − yχ(s)].

Again, the subscript “∗” is intended to serve as reminder that the value of D∗(χ)
depends on the choice of ∗-scalar product in R

S .
Definition 10.1. Let {S ,C ,R} be a reaction network with an s-dimensional

stoichiometric subspace. Relative to a choice of ∗-scalar product in R
S , we say that

χ ∈ C(R, s) is a ∗-critical subnetwork of {S ,C ,R} if D∗(χ) �= 0; the subnetwork
is positive (resp., negative) if D∗(χ) is positive (negative).

In language we now have available, we can summarize some of the preceding
discussion in the following proposition.

Proposition 10.2. A reaction network is normal if and only if for each choice
of ∗-scalar product there exists at least one ∗-critical subnetwork. In particular, a
weakly reversible network will have at least one ∗-critical subnetwork for each choice
of ∗-scalar product.

The following proposition connects injectivity of a reaction network to the exis-
tence and properties of its ∗-critical subnetworks.

Proposition 10.3. A reaction network is injective if and only if, for each choice
of ∗-scalar product, both of the following conditions are satisfied: (i) there exists at
least one ∗-critical subnetwork, and (ii) all ∗-critical subnetworks are of the same
sign. In particular, a normal reaction network can fail to be injective only if, for
some ∗-scalar product, there is a positive and a negative ∗-critical subnetwork.

Proof. For reaction network {S ,C ,R} having an s-dimensional stoichiometric
subspace, consider a fixed but arbitrary choice of ∗-scalar product in R

S . Injectivity
then is equivalent to the requirement that, for each η ∈ R

R
+ , we have detT∗η �= 0.

Combining (10.3) and (10.6), we can write

(10.7) detT∗η =
∑

χ∈C(R, s)

(
s∏

i=1

ηχ(i)

)
D∗(χ).

If both conditions of the proposition statement are satisfied, it is clear that the
sum on the right will be nonzero (and will have the common sign of the critical
subnetworks). In this case the network is injective.

If, on the other hand, condition (i) is not satisfied, then the sum must be zero,
and we will, in fact, have det T∗η = 0 for all η ∈ R

R
+ . Suppose, then, that condition (i)

is satisfied but condition (ii) is not. Then there are critical subnetworks χ+ and χ−

such that D∗(χ+) > 0 and D∗(χ−) < 0. Now choose η+ ∈ R
R
+ as follows: η+y→y′ := θ

for all y → y′ ∈ χ+ and η+y→y′ := 1 for all y → y′ /∈ χ+. In this case, detT∗η+ becomes

an s-order polynomial in θ, with leading coefficient D∗(χ+) > 0. Thus, by choosing θ
sufficiently large, we can ensure that detT∗η+ is positive, and we suppose that θ has
been chosen in this way. In a very similar manner (by replacing χ+ with χ−), we can
construct η− ∈ R

R
+ to ensure that detT∗η− is negative. Then, along a line segment

in R
R
+ connecting η+ to η−, there will exist η0 such that detT∗η0 = 0, in which case

the network is not injective.
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In the next section we connect the normality of an entrapped-species network
to the normality of the entrapped-species projection of its true chemical reaction
network. Then we will be in a position to complete the proof of Theorem 8.2.

11. An entrapped-species network is normal if its true chemistry entrap-
ped-species projection is normal. Throughout this section, we consider an en-
trapped species network {S ,Ct,Rt,M }, and we denote by {S ,CE ,RE } the entrapped-
species projection of the true network, {S ,Ct,Rt}. Moreover, we suppose that
{S ,CE ,RE} is normal. Our aim is to show that the original entrapped species
network is also normal. We denote by S the stoichiometric subspace of the entrapped-
species network, and by SE the stoichiometric subspace of the entrapped-species pro-
jection. Recall that ΓM and ΓE are the sets of vectors in R

S having supports in,
respectively, M and E . Thus, RS = ΓM ⊕ ΓE . Recall also that M : RS→ ΓM and
E: RS→ ΓE are the corresponding projections.

Lemma 11.1. S = SE ⊕ ΓM . In particular, dimS = dimSE +#(M ).
Proof. We first note that S = span{y′ − y ∈ R

S : y → y′ ∈ Rt} + ΓM . On the
other hand, for each y → y′ ∈ Rt we have y′ − y = E(y′ − y) + M(y′ − y), from
which it follows that S = span{E(y′ − y) ∈ R

S : y → y′ ∈ Rt} ⊕ ΓM . But SE =
span{E(y′ − y) ∈ R

S : y → y′ ∈ Rt}.
Remark 11.1. From Lemma 11.1 it follows that, when R

S is given a scalar product
“∗” as in (3.10),

(11.1) S⊥∗
= S⊥∗

E ∩ Γ⊥∗
M = S⊥∗

E ∩ ΓE .

Now consider a vector x ∈ ΓE . Viewed as a member of the vector space ΓE (with
scalar product inherited from R

S ), x has a certain projection onto SE along S⊥∗
E ∩ΓE .

Viewed as a member of RS, x has a certain projection onto S along S⊥∗
. Lemma 11.1

and (11.1) ensure that those two projections are identical.
Lemma 11.2. Let “∗” be a scalar product in R

S given by (3.10), and let π∗ :RS→
S be the projection onto S along S⊥∗

. Then, for each x ∈ R
S , Eπ∗x = π∗Ex.

Proof. First we note that S⊥∗
is contained in ΓE . In fact, let v be a member of

S⊥∗
, and let m be a member of M . Because m is also a member of S, we must have

m ∗ v = 0. Then, from (3.10), it follows that vm = 0. (That S⊥∗
is contained in ΓE

also follows from (11.1).)
Now let x be a member of RS . It has a representation as the sum of a vector σ ∈ S

and a vector ν ∈ S⊥∗
. In fact, by virtue of Lemma 11.1, we can write σ = σE + σM ,

with σE ∈ SE . Note that σE and σM are both members of S. Thus, we have

(11.2) x = σE + σM + ν,

whereupon

(11.3) π∗x = σE + σM and Ex = σE + ν.

From this it follows that Eπ∗x = π∗Ex = σE .
Proposition 11.3. An entrapped species network {S ,Ct,Rt,M } is normal if

the entrapped species projection of {S ,Ct,Rt} is normal.
Proof. We suppose that {S ,CE ,RE}, the entrapped species projection of {S ,Ct,

Rt}, is normal. As usual, S is the stoichiometric subspace for the entrapped species
network, and s = dim S. We denote by p the number of species in M , and by s̄
the dimension of SE ⊂ ΓE , the stoichiometric subspace of {S ,CE ,RE}. Thus, from
Lemma 11.1, s = s̄+ p.
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Now let “∗” be a scalar product in R
S as in (3.10). Because {S ,CE ,RE } is

normal there exists for it a ∗-critical subnetwork. In particular, there are reactions
{Eyi → Ey′i}i=1,...,s̄ ⊂ RE (with {yi → y′i}i=1,...,s̄ ⊂ Rt) such that the sets

{π∗Ey1, π∗Ey2, . . . , π∗Eys̄} and {Ey′1 − Ey1, Ey′2 − Ey2, . . . , Ey′s̄ − Eys̄}

are both independent. Here π∗ indicates the projection of ΓE onto SE along S⊥∗
E ∩ΓE .

If {m1,m2, . . . ,mp} are the elements of M , it is clear that the sets

{π∗Ey1, . . . , π∗Eys̄,m1, . . . ,mp} and {Ey′1 − Ey1, . . . , Ey′s̄ − Eys̄,m1, . . . ,mp}

are both independent and are both bases for S. (Here we view π∗ as the projection
of RS onto S along S⊥∗

; see Remark 11.1.) Thus, with detS [· , · , . . . , ·] denoting a
determinant function on S chosen as in section 9, we have

detS [π∗Ey1, . . . , π∗Eys̄,m1, . . . ,mp] = detS [Eπ∗y1, . . . , Eπ∗ys̄,m1, . . . ,mp]

= detS [π∗y1, . . . , π∗ys̄,m1, . . . ,mp](11.4)

�= 0

and

detS [Ey′1 − Ey1, . . . , Ey′s̄ − Eys̄,m1, . . . ,mp] = detS [y
′
1 − y1, . . . , y

′
s̄ − ys̄,m1, . . . ,mp]

�= 0.(11.5)

From this it follows that the reactions {yi → y′i}i=1,...,s̄ ⊂ Rt taken together with
reactions {m1 → 0, . . . ,mp → 0} constitute a ∗-critical subnetwork of the entrapped-
species network {S ,Ct,Rt,M }, whereupon by Proposition 10.2 the entrapped-species
network is normal.

12. Completion of the proof of Theorem 8.2. Proof of Theorem 8.2 will be
almost complete once we have available the following proposition.

Proposition 12.1. Suppose that {S ,Ct,Rt,M } is a normal entrapped-species
network that is not injective. Then the fully open network {S ,Ct,Rt,S } is not
injective.

Proof. We let R̃ denote the reaction set Rt ∪ (M → 0), where M → 0 := {m →
0 : m ∈ M }. Note that R̃ is the set of all reactions for the entrapped-species network,
apart from “feed reactions” of the form 0 → m, which play no role in considerations of
normality or injectivity (Remarks 6.1 and 6.2). Similarly, we let R# := R̃ ∪ (E → 0),
where E → 0 := {e → 0 : e ∈ E }. Then R# is just the set of all reactions in the fully
open network, apart from feed reactions. We denote the stoichiometric subspace for
the entrapped-species network by S (= span {y′ − y : y → y′ ∈ R̃}), and we denote
by s its dimension.

Because the entrapped-species network is normal but not injective, there is a ∗-
scalar product relative to which there is a positive ∗-critical subnetwork χ+ ∈ C(R̃, s)

and a negative ∗-critical subnetwork χ− ∈ C(R̃, s). That is, D∗(χ+) > 0 and
D∗(χ−) < 0, where D∗(·) is given by (10.6). We denote by a the particular vector of
R

S
+ with respect to which the ∗-scalar product is defined via (3.10).

Our aim is to show that the fully open network is not injective. With “∗” denoting
the same scalar product as indicated immediately above, we will argue that there is
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some η0 ∈ R
R#

+ such that there is a nonzero σ ∈ R
S satisfying the equation∑

y→y′∈R#

η0y→y′(y ∗ σ)(y′ − y) =
∑

y→y′∈R̃

η0y→y′(y ∗ σ)(y′ − y)(12.1)

+
∑

e→0∈E→0

η0e→0(e ∗ σ)(−e)

= 0.

In fact, hereafter we make the particular choice η0e→0 = ae for all e ∈ E , in
which case it follows from (3.10) that the second term on the right-hand side of (12.1)
reduces to −Eσ, the projection of −σ onto ΓE .

With the η0e→0 chosen in this way, we want to show that it is possible to choose
{η0y→y′}y→y′∈R̃, all positive, in such a way as to ensure the existence of nonzero σ ∈ S

satisfying (12.1). (Note the special focus on σ in S, the stoichiometric subspace for the

entrapped-species network.) With this in mind, we consider only η ∈ R
R#

+ satisfying
the requirement that, for each e ∈ E , ηe→0 = η0e→0 = ae. For each such η we define
the map T̄∗η : S → S by

T̄∗η σ :=
∑

y→y′∈R̃

ηy→y′(y ∗ σ)(y′ − y)− Eσ(12.2)

=
∑

y→y′∈R̃

ηy→y′(y ∗ σ)(y′ − y) +
∑

e→0∈ E→0

η0e→0(e ∗ σ)(−e)(12.3)

=
∑

y→y′∈R̃

ηy→y′(π∗y ∗ σ)(y′ − y) +
∑

e→0∈E→0

η0e→0(π∗e ∗ σ)(−π∗e).(12.4)

Here, as before, π∗:RS→ S is the projection onto S along S⊥∗
. (To see that T̄∗η does

indeed take values in S, note that the first term in (12.2) clearly takes values in S.
Note also that σ = Eσ+Mσ. Because Mσ is a member of S, it follows that if σ is a
member of S, so is Eσ. In particular, for σ ∈ S, we have Eσ = π∗Eσ, which, in part,
gives rise to the last term in (12.4).)

We seek to establish that, for some choice of η, the map T̄∗η : S → S becomes
singular. For this purpose, we will calculate det T̄∗η with the help of Proposition 9.1,
whereby we make these identifications: First, we take U = S and p = s. Then, for
y → y′ ∈ R# = R̃ ∪ (E → 0) we choose vy→y′ and uy→y′ as follows: For y → y′ ∈ R̃
we take vy→y′ = π∗y and uy→y′ = y′ − y. For e → 0 ∈ E → 0 we take ve→0 = π∗e
and ue→0 = −π∗e. It remains understood that, for each e ∈ E , ηe→0 is taken to be
η0e→0 = ae. With detS [· , · , . . . , ·] denoting a determinant function on S chosen as in
section 9, it follows from Proposition 9.1 that

det T̄∗η =
∑

χ∈C(R̃, s)

(
s∏

i=1

ηχ(i)

)
D∗(χ)

+
∑

χ∈C(R#, s)�C(R̃, s)

(
s∏

i=1

ηχ(i)

)
detS [vχ(1), . . . , vχ(s)] detS[uχ(1), . . . , uχ(s)],(12.5)

where again D∗(·) is given by (10.6).

Hereafter, the proof resembles that of Proposition 10.3: Choose η+ ∈ R
R#

+ as

follows: η+y→y′ := θ for all y → y′ ∈ χ+; η+y→y′ := 1 for all y → y′ ∈ R̃ � χ+; and
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η+e→0 := η0e→0 = ae for all e → 0 ∈ E → 0. Then, det T̄∗η+ becomes an s-order
polynomial in θ, with leading coefficient D∗(χ+) > 0. By choosing θ sufficiently large,
we can ensure that det T̄∗η+ is positive. Similarly, by exploiting the existence of χ−,
we can construct η− ∈ R

R#

+ to ensure that det T̄∗η− is negative. Then, along the line

segment in R
R#

+ connecting η+ to η− there will exist η0 such that det T̄∗η0 = 0, in
which case the network is not injective. In fact, with η0 chosen in this way, there is
a nonzero σ ∈ S that satisfies (12.1).

Theorem 8.2 is then a consequence of Propositions 11.3 and 12.1 taken togeth-
er.
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