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Abstract. The cell-division cycle and apoptosis are key cellular processes
deregulated during carcinogenesis. Recent work of Aguda and Algar suggests
a modular organization of regulatory molecular pathways linking the cellular
processes of division and apoptosis. We carry out a detailed mathematical
analysis of the Aguda-Algar model to unravel the dynamics implicit in the
model structure. In addition, we further explore model parameters that con-
trol the bifurcations corresponding to the aforementioned cellular state tran-
sitions. We show that this simple model predicts interesting behavior, such as
hysteretic oscillations and different conditions in which apoptosis is triggered.

1. Introduction. It is now widely accepted among cancer researchers that the
cell-division cycle and the cell-death program (called apoptosis) are key cellular
processes deregulated during carcinogenesis. Enhanced cell proliferation can be due
to increased cell cycling, inhibited apoptosis, or both. Recently, Aguda and Algar
[1] reviewed and analyzed the regulatory molecular pathways linking the initiation
of the cell cycle and apoptosis. These authors suggested a modular organization of
the complex networks and presented a corresponding kinetic model for the cellular
state transitions from quiescence (nondividing) to cell cycling, and eventually to
apoptosis as the strength of extracellular signaling increases. This kinetic model,
however, was not analyzed in detail in the original paper. Here, we extend the
mathematical analysis to show that this simple model predicts other interesting
behavior, such as hysteretic oscillations and different conditions in which apoptosis
is triggered.

The modular structure of the Aguda-Algar model is shown in Figure 1. The lines
that end with “!” indicate that one module inhibits the other, and the lines that
end with “→” indicate that one module activates the other. The modules involved
correspond to intracellular signaling, cell cycle, apoptosis, and a control node of
transcription factors that stimulate the expression of cell cycle and apoptosis genes.
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The key transcription factors are suggested to be the proteins E2F-1 and c-Myc.
The primary components of the cell-cycle module are the enzymes called cyclin-
dependent kinases, and the key players in the apoptosis module are the caspases.
An example of a signaling pathway that impinges on the activation of E2F-1 is the
Ras/MAPK pathway which is a cascade of activation involving protein kinases [5].
This signaling pathway has been shown in [5] to possess an ultrasensitive switch-like
behavior, as depicted in the topmost box of Figure 1.

Figure 1. Modular structure of the model.

Aguda and Algar [1] reviewed the literature that points to the proteins E2F-
1 and c-Myc as the key transcription factors in this control node. Figure 13 in
appendix B gives a summary of the important pathways implicating E2F-1 and c-
Myc, and offers details and justification of the modular structure shown in Figure 1
(Fig. 13 is Fig. 3 of [1]).

The interaction labeled “a” in Figure 1 represents the fact that activated cyclin-
dependent kinases (e.g., CDK2) needed for entry into the cell cycle would further
enhance the transcriptional activity of E2F-1 via phosphorylation of the retinoblas-
toma (Rb) protein. The interaction labeled “b” in Figure 1 represents the sug-
gested negative feedback between the Rb/E2F pathway and the Ras signaling path-
way ([6]). The interaction labeled “b’” involves the negative regulation of cyclin
A/CDK2 toward E2F-1 through the phosphorylation of the latter’s partner, the DP
proteins, which are required for binding DNA. Finally, the interaction labeled “c”
includes the cell-cycle-enhanced apoptosis via the indirect regulation of caspases
by cyclin-dependent kinases (e.g., activation of a caspase by a D-type cyclin, as
reported by Mendelsohn et al. [7]). More details and justification of these module-
module interactions are discussed in [1].

2. Description of the model. A kinetic implementation of the modular model
in Figure 1 is shown in Figure 2. The meaning of the notations used in Figure 2 is
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Figure 2. Mechanistic implementation of the model. The solid
arrows indicate input into or output from a node; dotted arrows
indicate influence of a node on a process, without loss of mass.

as follows:

Σ = signaling molecule
S2 = active signaling protein
G2 = control node of transcription factors
C2 = active cell cycle marker (for initiation of S−phase)
S2 = active apoptosis marker

We will use the same species symbols for their corresponding concentrations. Then,
according to either mass-action or Michaelis-Menten kinetics, we get the following
system of differential equations:

dΣ
dt

= ε0(ks − ksd1Σ − ksd2C2Σ), (1)

dS2

dt
= ε−2

(
k1ΣS1

KM1 + S1
− vm1S2

KMr1 + S2

)
, (2)

dG2

dt
= ε−3 (k2S2 + k2aC2 − km2G2 − km2aC2G2) , (3)

dC2

dt
= ε−1

(
k3G2C1

KM3 + C1
− vm3C2

KMr3 + C2

)
, (4)

dA2

dt
= ε2

(
k4G2A1

KM4 + A1
+

k4aC2A1

KM4 + A1
− vm4A2

KMr4 + A2

)
. (5)
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Except for the time-scaling factor ε, equations (1)–(5) are identical to those used
in [1]. The cyclic reactions shown in Figure 2—namely, those between the pairs of
species (S1, S2), (C1, C2), and (A1, A2)—imply that the total concentrations of each
pair of species is constant. Of course, the corresponding molecular species are, in
general, not constant inside the cell; however, the primary purpose of this simplifi-
cation is merely to create an ultrasensitive switch (see the two bottom boxes of Fig.
1) that can be modeled using the zeroth-order ultrasensitivity property of cyclic
enzyme reactions when the Michaelis constants are close to zero [4]. The individual
reaction steps in these cyclic reactions are assumed to possess the Michaelis-Menten
type of kinetics; that is, the reaction rate has the form vX/(KM + X), where X is
the substrate (reactant), v is the maximum reaction rate, and KM is the Michaelis
constant. The maximum rate v is itself proportional to the total enzyme con-
centration catalyzing the step; for example, for the conversion of S1 to S2, v is
proportional to Σ, since the latter is the catalyst for this step. In (1) and (3) the
interactions take place by mass-action law and degradation. For example, the term
km2aC2G2 in (3) is due to degradation promoted by C2, and the term km2G2 is due
to intrinsic degradation.

We include the various powers of ε to account for the fact that the various
processes have different time scales. For negative powers of ε, the smaller the value
of ε, the faster the process approaches equilibrium. For positive powers, small ε
means that the evolving variable (e.g. A2) changes very slowly. Thus, for example,
in the subsystem (2)-(4), the variables S2, G2, C2 are fast evolving, and G2 and S2

evolve faster than C2, as suggested by the parameter values in [1].
We fix S1 + S2 = 1, C1 + C2 = 1, A1 + A2 = 1. We take the parameter

reference values (PRVs) to be the following: ks = 0.002, ksd1 = 0.001, ksd2 = 0.05,
k1 = k3 = 10, vm1 = 1, KM1 = KMr1 = 0.02, k2 = 0.1, k2a = 0.01, km2 = 1,
km2a = 0.001, vm3 = 0.1, KM3 = 0.02, KMr3 = 0.02, k4 = 1, k4a = 1, vm4 = 1,
KM4 = 0.02, KMr4 = 0.1, ε = 0.1. For these PRVs, the time scale is such that one
cell cycle typically takes 50–100 time units.

Except for ε, all other parameters are of the same order of magnitude as those
chosen in [1]. Our aim is to show that the model is sufficient to account for the
following experimental observations (see [2, 3, 10]):

Assertion A. If the signal rate ks is small then the cell is quiescent; if ks is of
intermediate size then the cell is cycling; and if ks is large then the cell goes into
apoptosis.

We assume that there exists a threshold on the apoptosis marker beyond which
apoptosis occurs irreversibly; without loss of generality, we suppose that this thresh-
old is 1

2 . (The parameters were chosen so that the ultrasensitive switch occurs
around this value of A2).

Note that, for small ε, the variable G2 reaches equilibrium much faster than Σ,
S2, C2, and A2. Thus we may suppose that, in the time it takes the variable G2

to reach equilibrium, the change in the other variables is negligible. Therefore, we
may equate the right-hand side of (3) to zero and determine G2 as a function of S2

and C2. Similar fast-slow variable considerations apply to the remaining equations,
and they help us determine some rate parameters in our computations as we work
with the full dynamical system.

The computational results that will be described here for ε = 10−1 have been
validated also for smaller values of ε, such as ε = 10−2, ε = 10−3, and ε = 10−4.
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3. Hysteresis loop for signal/cycle interplay. We first consider only the dy-
namics of S2 and G2 which are the fastest variables in the system (1)–(4) for small
ε. Basically, the S2-G2 interaction represents the activation of transcription factors
that involves fast protein-protein interactions. The other variables (Σ, C2, and A2)
are all considered slow, because they are assumed to represent the dynamics of
much larger regulatory networks. We equate the right-hand side of (3) to zero, and
we solve for G2 as a function of S2 and C2. Then we equate the right-hand side
of (2) to zero and solve for S2 as a function of Σ. Note that although in general
this last equation has two solutions, only the one given by the Goldbeter-Koshland
function is biologically relevant (the other solution would lead to a negative value
for S1, see [4, 9]).

Then (4) reduces to the equation
dC2

dt
= Ψ(C2, Σ). (6)

More details about the computation of Ψ are given in appendix A. Equations (1)
and (6) capture the dynamics of (1)–(4) restricted to the manifold obtained by
making the right-hand sides of (2) and (3) equal to zero, and they represent a good
approximation of the dynamics of (1)–(4) for small ε.

The S-shaped C2-nullcline in Figure 3 is the curve Ψ(C2, Σ) = 0; that is, for
each fixed Σ, we compute C2 by solving (2), (3), and (4) at equilibrium. The
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Figure 3. The projection of the trajectory on the (Σ, C2) plane at PRVs.

upper and lower branches of the S-shaped curve are stable, and the middle branch
is unstable. This suggests that if the nullcline of (1) intersects only the middle
branch, then as Σ increases to some critical value Σ2, there is an upward jump
(which can be interpreted as having crossed the checkpoint for cell-cycle entry);
and when the signal is decreased to some critical value Σ1, the cell returns to its
initial (post-mitotic) phase.
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Figure 4. Solutions of (1)–(5) as explicit functions of time at PRVs.

We shall now describe our computational results for the full system (1)-(5). Any
choice of initial values will become negligible after some time; for simplicity we take
initial values Σ = S2 = G2 = C2 = A2 = 0.

First, for the PRVs, we get the results in Figures 3 and 4. The curve spanned
by dots in Figure 3 is the projection of the solution on the (C2, Σ) plane. Figure
4 shows the periodic behavior of all the components of the solution of (1)–(5) after
some time (approx. 100 time units), so the effect of the choice of initial values
becomes negligible. Note that A2 < 1

2 , so the cell does not go into apoptosis.
The nullcline of (1) is determined by the equation

Σ =
ks

ksd1 + ksd2C2
. (7)

This Σ-nullcline varies with the parameters ks, ksd1, and ksd2. In particular, as
we vary the signal input rate ks (and keep all the other parameters fixed), the
Σ-nullcline changes, but the C2-nullcline does not.

If, roughly, ks < 0.00065, and all other parameters are at PRVs then the two
nullclines intersect below the lower knee of the S-shaped C2-nullcline, and the cell
is quiescent (see Fig. 5). In this case the cell “gets stuck” at the intersection of the
nullclines of Σ and C2 before reaching the lower knee of the S-shaped curve. This
is a quiescent cell, with A2 < 1

2 (no apoptosis).
If ks > 0.00251 then the two nullclines intersect above the higher knee of the S-

shaped C2-nullcline (see Figure 6). The variable C2 jumps up (i.e., the cell crosses
the checkpoint for cell cycle entry), but it does not complete the cycle: it “gets
stuck” at the intersection of the two nullclines. In this case A2 > 1

2 after about 350
time units, i.e., the the cell enters apoptosis.
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Figure 5. The case ks = 0.0002: (a) reduced phaseplane (b)
explicit functions of time.
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Figure 6. The case ks = 0.003: (a) reduced phaseplane, (b) ex-
plicit functions of time.

For ks = 0.00065 the two nullclines intersect just above the lower knee of the
C2-nullcline (see Fig. 7a), and for ks = 0.00251 they intersect just below the higher
knee (see Fig. 8a). In both cases the system exhibits periodic oscillations. As shown
in Figures 7b and 8b, for ks just above the quiescent limit, the system spends a lot
of time in the inactive state (i.e., C2 ≈ 0), and for ks just below the apoptotic limit
the system spends a lot of time in the active state (i.e., C2 ≈ 1).

As we can see in the bifurcation diagram in Figure 9, these oscillations are born
out of Hopf bifurcations. Away from the point B, each vertical line intersects the
near-rectangular thick curve at two points, the distance between them being the
amplitude of a stable periodic solution. Near B, the thick curve actually bulges
slightly leftward, so that each vertical line intersects it at four points. The distance
between the two nearest points is the amplitude of an unstable periodic solution,
and the distance between the two farther points is the amplitude of a stable periodic
solution.

As shown in Figure 3, these oscillations are hysteretic in the sense that they
involve periodic switching between the upper and lower branches of the C2-nullcline.
Strictly speaking, these oscillations cannot be interpreted as the CDK oscillations
in the cell cycle. However, it is interesting to note that the hysteretic oscillations,
as illustrated in Figure 3, which arise from our analysis of the Aguda-Algar model,
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Figure 7. The case where ks is near the quiescent limit: (a) re-
duced phaseplane (b) explicit functions of time.
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Figure 8. The case where ks is near the apoptotic limit: (a)
reduced phaseplane (b) explicit functions of time.

resemble the hysteretic oscillations of biological control systems which occur, for
example, in the yeast cell cycle (see [9] for a review). For our purposes, we consider
entry into the cell cycle when C2 is switched on.

4. The role of other parameters. Consider the parameter k2a, related to the
input provided by the cell-cycle marker C2 to the control node G2. This parameter
measures the “depth” of the hysteretic loop of the C2-nullcline. If we increase
k2a from its reference value 0.01 to k2a = 0.012, we get a “deeper” C2-nullcline,
as we see by comparing the C2-nullclines from section 3 with the C2-nullcline in
Figure 10a. On the other hand, if we decrease k2a, then the “depth” of the S shape
decreases. In particular, if k2a = 0, then the C2-nullcline loses its S shape, so we
cannot get a hysteretic loop (see Fig. 11). In this case the solution, instead of being
periodic, converges to some fixed point at the intersection of the nullclines.

We shall now consider the case where k2a = 0.012. If we keep all the other
parameters at their reference values then, as seen in Figure 10a, the cycle begins its
upward jump, but does not come down to completion, since the intersection between
the two nullclines is now on the upper branch of the C2-nullcline. Therefore, the
cell goes into apoptosis (A2 > 1

2 ) after some time. However, if ks is decreased
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Figure 9. Bifurcation diagram of C2 (vertical axis) with respect
to ks (horizontal axis). The values of all other parameters are given
by the PRVs. The Hopf bifurcation at A is supercritical, and the
Hopf bifurcation at B is subcritical. The thin solid lines represent
stable steady states, and the thin dashed line represents unstable
steady states.
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Figure 10. k2a = 0.012: (a) for ks at its reference value; (b) for
ks = 0.001, smaller than its reference value.

(from the reference value ks = 0.002 to ks = 0.001), then the cell goes into cycling
(with A2 < 1

2 ) as shown in Figure 10b. The above considerations suggest that the
assertion A in section 2 is valid only for k2a restricted to some interval k′

2a < k2a <
k′′
2a, which includes the points 0.01 and 0.012.

If k2a becomes very large then the two nullclines will always intersect along the
stable upper branch of the S-shaped nullcline, and the trajectory will get stuck at
that stable fixed point. In this case we can only have quiescence or apoptosis (i.e.,
there can be no cycling for any values of ks and ksd2).

Finally, let us look at the interplay between the parameters ksd1, ksd2, and ks.
The three possible modes of the cell are summarized in the diagrams of Figure
12. These diagrams are based on the observation that the parameter values for
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Figure 11. The case k2a = 0: (a) reduced phaseplane (b) explicit
functions of time.
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Figure 12. The mode diagram: (a) ksd1 = 0.001 (b) ksd1 = 0.03.
The special points are the PRVs for ks and ksd2.

which the Σ-nullcline passes through the knees of the C2-nullcline are very good
approximations of the parameter values where the Hopf bifurcations occur. The
equation of the lower line in Figure 12a is determined by the condition that the
Σ-nullcline passes exactly through the lower knee of the S-shaped curve (i.e., the
lower knee of the C2-nullcline). Similarly, the equation of the higher line in Figure
12a is determined by the condition that the Σ-nullcline passes exactly through the
higher knee of the C2-nullcline. If ksd1 is very small (e.g., ksd1 = 0.001, its reference
value) then it is roughly the quotient ks/ksd2 that determines the mode (see Figure
12a). As we increase ksd1 both lines are raised, but the lower line is raised faster
than the higher line. Hence, the cycling region shifts upward and at the same time
decreases (see Figure 12b), and a new region appears between the two lines. For
example, if all parameters are set at their reference values, except for ksd1 = 0.03,
then the cell is quiescent as in Figure 5, instead of cycling as in Figures 8 and 9.

5. Conclusions. It has been shown experimentally (see [2, 3, 10]) that there is
an optimum range of transcriptional activities for E2F-1 and c-Myc for cells to
proliferate. If the intensity of growth factor signaling is too small, cells are quiescent
and do not cycle. However, if signals are too large then the apoptosis program is



MODULAR NETWORK COORDINATING CELL CYCLE AND APOPTOSIS 11

triggered; this can be interpreted as an important fail-safe mechanism to prevent
uncontrolled cell proliferation as it occurs in cancer.

A simple model developed in [1] established the above biological observation for
a certain range of parameters. In this paper, we carried out a full analysis of the
model for a wide range of parameters.

We have shown that the positive feedback loop (shown as “a” in Fig. 1, and
represented by the parameter k2a in equation (3)) is required for an S-shaped C2-
nullcline. This nullcline geometry is essential for a switch-like behavior between the
various cellular states, particularly from quiescence to cell cycling and/or apoptosis.
The biochemical basis of the loop “a” is well established (see [1]); the transcrip-
tional activities of the factors E2F-1 and c-Myc (represented by G2 in the model)
are increased by CDK2 (represented by C2 in the model) via inhibition of the
retinoblastoma protein (Rb) which inhibits the G2 factors. Our analysis suggests
that the parameters involved in this positive feedback loop are the key parameters
for controlling the cellular state transitions. Our simulations on the effect of signal
strengths are consistent with experimental reports on the induction of apoptosis
(see [1]).

The cross-shaped phase diagram in Figure 12b is an interesting result. The
diagram shows that the series of cellular state transitions depends on the magnitude
of the negative feedback loop between C2 and the signal Σ (as measured by the value
of ksd2). For example, if the signal rate ks is increased while keeping ksd2 = 0.05,
then the system goes from quiescence to cycling, and eventually to apoptosis. But
for ksd2 below 0.02, say ksd2 = 0.01, the same increase in ks will not give rise to
an intermediate cell-cycling state. The region denoted by “q-a” in Figure 12b is a
region where the cell could either be quiescent or apoptotic depending on the cell’s
history. If the cell is previously quiescent and the signal increases to the “q-a”
region, then the cell remains quiescent; however, a further increase in the signal
will send the cell directly into apoptosis (without going through the intermediary
cell cycle phase). Thus, we predict that:

Assertion B. If the negative feedback loop between the cell cycle and signaling
pathways that impinge on the E2F-1/c-Myc node is very weak (namely, ksd2 is
small) then for large enough signal degradation rate (ksd1), the cell will bypass the
cycling phase, as it goes (with increasing signal input rate ks) from quiescent phase
to apoptosis.

As we have mentioned in section 3, the periodic oscillations generated by the
model may not correspond to experimentally observed CDK oscillations, but they
resemble the oscillations of biological control systems which occur, for example, in
the yeast cell cycle (see [9]). Using a different model, consisting also of five ODEs,
Obeyesekere et al. [8] exhibited a bifurcation diagram similar to Figure 7, but for
different variables; that model does not include apoptosis.

It would be interesting to extend our model to a more realistic network that
includes key components of the cell-cycle module, such as Rb, cyclin E/CDK2,
Cdc25A and p27Kip1 (see [1]); such an extension might enable one to test our
assertion B experimentally. It would also be interesting to include in the model
details of the apoptosis module that incorporate a positive feedback loop between
executioner caspases and cytochrome c release, which was also reviewed in [1]. Such
a model would involve a larger system of ODEs.
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Appendix A. Here are the details of computing the expression of Ψ(C2, Σ) in
equation (6). First, by equating the right-hand side of equation (3) to zero, we get

G2 =
k2S2 + k2aC2

km2 + km2aC2
. (8)

Next, by equating the right-hand side of equation (2) to zero and solving for S2,
we get

S2 = (−k1Σ + k1ΣKMr1 + vm1KM1 + vm1 ± (k2
1Σ2 + 2k2

1Σ2KMr1

−2k1Σvm1KM1 − 2k1Σvm1 + k2
1Σ2K2

Mr1 + 2vm1KM1k1ΣKMr1

−2vm1k1ΣKMr1 + v2
m1K

2
M1 + 2v2

m1KM1 + v2
m1)

1
2 )/(2vm1 − 2k1Σ).

As we mentioned in section 3, of the two solutions for S2, only the one with the
minus sign is biologically relevant (and corresponds to the Goldbeter-Koshland
function). We substitute this expression of S2 into equation (8) and then substitute
the resulting expression for G2 into equation (4). We get

Ψ(C2, Σ) = ε−1(k3(k2(−k1Σ + k1ΣKMr1 + vm1KM1 + vm1 − (k2
1Σ2

+2k2
1Σ2KMr1 − 2k1Σvm1KM1 − 2k1Σvm1 + k2

1Σ2K2
Mr1

+2vm1KM1k1ΣKMr1 − 2vm1k1ΣKMr1 + v2
m1K

2
M1 + 2v2

m1KM1

+v2
m1)

1
2 )/(2vm1 − 2k1Σ) + k2aC2)(1 − C2))/((KM3 + 1

−C2)(km2 + km2aC2)) − (vm3C2)/(KMr3 + C2).

Appendix B. Figure 13 presents a summary of the important pathways relevant
to our model and offers some details and justification of the modular structure
shown in Figure 1. Figure 13 is a reproduces Figure 3 of [1], where a more detailed
discussion of these pathways is given.
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