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Class field theory is the study of abelian extensions of number fields. We begin our study
of abelian extensions with an observation linking the Galois group of an extension with local
information at an unramified prime. Throughout this article, we use the notation OK to
denote the ring of integers of a number field K and κp to denote the residue field at a prime
p.

Let L/K be a finite Galois extension of number fields and let P be a prime of L which
is unramified over a prime p of K. Recall the following definitions. The subgroup ZP of
Gal(L/K) consisting of those elements which fix P is called the decomposition group of
P over K. There is a surjective homomorphism ZP → Gal(κP/κp) obtained by allowing
elements of ZP act on the residue field κP. The kernel of this homomorphism is denoted IP
and is called the inertia group of P over K. The inertia group is trivial if and only if P is
unramified over p, so in our case the map ZP → Gal(κP/κp) is an isomorphism.

Because κP and κp are both finite fields, the Galois group Gal(κP/κp), is cyclic, generated
by the Frobenius map x 7→ xq where q = |κp|. Thus we have shown that ZP is cyclic,
generated by the unique automorphism σP determined by the relation

σP(x) ≡ xq (mod P).

In general, there will be many primes lying over a given prime p of K, and the automor-
phism we obtain depends on which of these prime we choose. Specifically, let τ ∈ Gal(L/K).
Then by the definition of σP, we have for all x ∈ L that σPτ

−1x ≡ (τ−1x)q (mod P) and
therefore τσPτ

−1x ≡ xq (mod τP). Thus τσP τ
−1 satisfies the relationship that uniquely

determines στP and so
στP = τσPτ

−1.

Now suppose L/K is abelian. Then we may conclude that στP = σP. Because Gal(L/K)
acts transitively on the primes lying above p, this shows that the automorphism σP depends
only on the prime p in K, not on the choice of prime lying above it. Thus we set σp = σP.

In summary, for a finite abelian extension L/K and an unramified prime p, we obtain an
element of the Galois group Gal(L/K). Our hope is that if we do this for enough unramified
primes, we will be able to piece together the entire Galois group.

More formally, let d be the relative discriminant of L/K and let Id be the group of
fractional ideals in K which are coprime to d. Since a prime divides the relative discriminant
if and only if it is ramified, this is equivalent to taking the free abelian group generated by
the unramified primes in K. Now we obtain a homomorphism (·, L/K) : Id → Gal(L/K)
given by ∏

peii 7→
∏

σei
pi
.
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If this map, known as the Artin map, is surjective, and if we are able to determine
its kernel, then we will be able to determine the Galois group of L/K by piecing together
local information at the unramified primes. To get a feel for what to expect in the general
situation, let’s look at some examples.

Note that by the definition of the Artin map, an unramified prime p satisfies (p, L/K) = 1
if and only if the residue class degree of p in L/K is 1, which is true if and only if p splits
completely in L/K. Thus the primes in the kernel of the Artin map are exactly the primes
which split completely in L/K. We will often make use of this simple observation.

LetK = Q and let L be the quadratic field with discriminant d. Then Gal(L/Q) ≃ {±1},
so to determine if the Artin map is surjective, all we need to do is find a prime which does
not map to the identity. By the above observation, this means we need find a prime which
is inert, that is, any prime for which

(
d
p

)
= −1. Clearly such a prime exists, so the map is

surjective. We’ll ignore the kernel for now, since it isn’t terribly interesting at this stage.
For a more involved example, we look at cyclotomic fields.

Theorem 1. Let K = Q(ζm) where ζm is a primitive mth root of unity. The Artin map
induces an isomorphism

Im/P
+
m ≃ Gal(K/Q)

where
P+
m = {(a/b) ∈ Im : a ≡ b (mod m), a/b > 0}.

Proof. We recall a few basic facts about cyclotomic fields. The Galois group Gal(K/Q) ≃
(Z/mZ)×; in particular, [K : Q] = ϕ(m). The elements of Gal(K/Q) are the automorphisms
τk determined by ζ 7→ ζk where (k,m) = 1. If m is a prime power, then the discriminant
of K/Q is a power of the same prime. Therefore the prime factors of the discriminant of
K/Q are exactly the prime factors of m (justifying the use of Im for the domain of the Artin
map.)

Let p be an unramified prime (equivalently, p ∤ m) and let p be a prime of K lying above
p. Then the automorphism τp ∈ Gal(K/Q) satisfies

τ(x) ≡ xp (mod p).

This relation uniquely determines the automorphism σp defined above, so we find σp = τp.
To show that the Artin map is surjective, let k be an integer with (k,m) = 1. As-

sume without loss of generality that k is positive and factor k as pe11 · · · perr . Then τk =
(σp1)

e1 · · · (σpr)
er is in the image of the Artin map.

Let (a/b) ∈ P+
m , where we again assume that a/b > 0. Then by the above, ((a/b), K/Q) =

τaτ
−1
b . Since, by definition, a ≡ b (mod m), we conclude that τaτ

−1
b = 1 and so P+

m ⊆
ker(·, K/Q).

We define a homomorphism ϕ : Im → (Z/mZ)× by ϕ(a/b) = ab−1 (mod m), where
we choose a/b to be the positive generator of this fractional ideal. This homomorphism is
clearly surjective and has kernel P+

m . So Im/P
+
m ≃ (Z/mZ)×. In particular, [Im : P+

m ] =
ϕ(m). Since P+

m ≤ ker(·, K/Q) ≤ Im and [Im : ker(·, K/Q)] = ϕ(m), we conclude that
ker(·, K/Q) = P+

m .

This result can easily be extended to extensions of Q which are subfields of cyclotomic
fields.
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Corollary 2. Let K = Q(ζm) where ζm is a primitive mth root of unity and let E be a
subfield of K. There is a group H with P+

m ≤ H ≤ Im such that the Artin map induces an
isomorphism

Im/H ≃ Gal(E/Q).

Proof. The Artin map factors as

Im Gal(K/Q)

Gal(E/Q)

(·K/Q)

(·E/Q)
π

where the vertical map is the quotient map. Thus the map (·, E/Q) surjects, and ker(·, E/Q)
contains ker(·, K/Q) = P+

m .

Readers familiar with the Kronecker-Weber theorem will know that this completely de-
termines the situation for general abelian extensions of Q. In any case, we have now shown
surjectivity and have a good description of the kernel of the Artin map for a large class of
abelian extensions of Q. In particular, we saw how in this class, the global Frobenius maps
obtained from unramified primes generate the entire Galois group of the extension.

We now state the main results of class field theory. Let K be a number field m be an
integral ideal in K. We define P+

m to be the subgroup of Im generated by principal ideals with
a generator α satisfying α ≡ 1 (mod m) and σ(α) > 0 for ever real embedding σ : K → R.
We observe that this agrees with the definition we gave earlier for P+

m when m = (m) with
m ∈ Z.

Theorem 3 (Artin Reciprocity). Let L/K be a finite abelian extension of number fields.
There exists an ideal f of K such that

1. A prime p in K ramifies if and only if p | f.

2. Let m be an ideal with f | m. Then there is a group H with P+
m ≤ H ≤ Im such that

the Artin map induces an isomorphism

Im/H ≃ Gal(L/K).

In fact, there is a minimal ideal satisfying these conditions, which we call the conductor
of the extension L/K. The conductor of a cyclotomic field Q(ζm) over Q is (m), and if E/Q
is a subextension of a cyclotomic field, the conductor is the smallest m such that E ⊆ Q(ζm).

Theorem 4 (Takagi existence theorem). Let K be a number field, let m be an ideal of K,
and let H be a group with Pm ≤ H ≤ Im. Then there is a unique abelian extension L/K
which is ramified only at primes dividing m such that the Artin map induces an isomorphism

Im/H ≃ Gal(L/K).
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For the case K = Q, the existence part of this theorem follows from Theorem 1 and
Corollary 2. Uniqueness is not difficult – by the definition of the Artin map, a prime ideal in
K splits completely in an extension L if and only if it is in the kernel of the Artin map. So
two extensions satisfying the conclusion of this theorem must split completely at the same
primes. Then the following analytic result (whose proof we omit) together with the following
corollary show that these extensions are in fact the same.

Theorem 5. Let K be a number field. Then the density of primes which split completely is
1/[K : Q].

Corollary 6. Let K and L be finite Galois extensions of Q. Let S be the set of primes which
split completely in L but not in K. Then S has density zero if and only if K ⊆ L.

Proof. If L is an extension ofK, then every prime which splits completely L splits completely
in K, so S = ∅. Conversely, suppose S has density zero. Let SK , SL, and SKL be the sets of
primes which split completely in K, L, and KL respectively. Then SKL = SK ∩ SL, so SKL

differs from SL by a set of density zero. Then by the previous theorem, [KL : Q] = [L : Q],
whence KL = L.

This result holds more generally for Galois extensions of arbitrary number fields, and,
together with Artin reciprocity, is the basis for the next major result of class field theory.

Theorem 7 (Completeness). Let K be a number field and let L1 and L2 be finite abelian
extensions with conductors f1 and f2 respectively. Let m = f1f2 and let H1 and H2 be the
subgroups of Im corresponding to L1 and L2. Then

H1 ⊆ H2 ⇐⇒ K2 ⊆ K1.

Together, Artin reciprocity, the Takagi existence theorem, and the completeness theorem
show that there is a one-to-one correspondence between abelian extensions of a number
field whose conductor divides a given ideal m and subgroups of Im/P

+
m . Furthermore, this

correspondence can be identified in a natural way with the usual Galois correspondence of
extensions. This is the main content of class field theory.

We give a brief application of class field theory. Recall that for a prime p, the equation
x2 + y2 = p has integer solutions according to whether or not the prime p is equivalent to
1 mod 4. In general, given an integer d, can we give a condition for which primes p there
is an integer solution to x2 + dy2 = p via a congruence modulo some integer? We do two
examples illustrative of the general case.

Proposition 8. Let p be a prime with p ∤ 20. The equation x2 + 5y2 = p has solutions if
and only if p ≡ 1 or p ≡ 9 (mod 20).

Proof. Let K = Q(
√
−5) and let L be the maximal unramified abelian extension of K, which

by class field theory we know is a quadratic extension of K (because the class number is 2.)
In fact, we can calculate K explicitly by looking at the following tower of fields.
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Q(i,
√
5)

Q(i) Q(
√
−5) Q(

√
5)

Q

By discriminant considerations, the extension Q(i,
√
5)/Q is ramified only at 2 and 5.

These are also the primes at which Q(
√
−5)/Q is ramified, both with ramification index 2.

Now 2 is inert in Q(
√
5) and therefore has residue class degree 2, so the ramification index

and residue class degree of 2 for Q(i,
√
5) are both at least 2, so they are both 2. Similarly,

5 splits completely in Q(i), so we find the ramification index of 5 for Q(i,
√
5) is 2. So

Q(i,
√
5)/Q(

√
−5) is unramified. Since it has the correct degree, we find L = Q(i,

√
5).

For a prime p ∤ 20, the equation x2 + 5y2 = p has an integer solution if and only if (p)
splits into two principal ideals (since a solution produces a principal ideal (x+ y

√
−5) with

norm p and vice versa.) The kernel of the Artin map (·, L/K) is the group of principal ideals
in K, so a prime p of K lying over p is principal if and only if (p, L/K) = 1, which is true
if and only if p splits completely in L. Now since L/Q is Galois, the condition that p splits
completely in K and the primes above p split completely in L is equivalent to the condition
that p splits completely in L. Thus we have reduced the problem to finding which primes of
Q split completely in L.

Note that i is a fourth root of unity, so Q(i) is a cyclotomic field. We also calculate
Q(

√
5) ⊆ Q(ζ5). (There are several ways to calculate this. We can do it explicitly, or by

noting that the primes that split in Q(ζ5) also split in Q(
√
5) and then using either Corollary

6 or the completeness theorem.) Taking composites, we see that L ⊆ Q(ζ20) and is in fact
the unique biquadratic subfield thereof, corresponding to the subgroup {1, 9} of (Z/20Z)×.
The result then follows from Corollary 2.

Proposition 9. There is no integer such that a set of congruences modulo that integer
characterizes which primes p have a solution to x2 + 23y2 = p.

Proof. As before, let K = Q(
√
−23) and let L be the maximal unramified abelian extension

of K, which this time should be a cubic extension. First we show that L/Q is Galois. Let
τ denote complex conjugation. Then τ(L) = L since τ(L) is also an unramified abelian
extension of K of the same degree as L. Then for any σ ∈ Gal(L/K), the map στ is an
element of AutQ(L) that does not fix K. Then #AutQ(L) = 2#Gal(L/K) = [L : Q] as
desired.

Therefore we have an exact sequence

1 → Gal(L/K) → Gal(L/Q) → Gal(K/Q) → 1.

Because Gal(L/K) is abelian, there is a well defined action of Gal(K/Q) on Gal(L/K) given
by conjugating an element of Gal(L/K) by a lift of an element of Gal(K/Q). Let τ denote
complex conjugation, which we may take to be the lift of the nontrivial element of Gal(K/Q).
Then if p is a prime of K and σp is the corresponding global Frobenius element, we find
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στp = τσpτ
−1. Now note that since in a quadratic field we have p(τp) = (Np) is principal,

this implies that Gal(K/Q) acts on Gal(L/K) by inversion, showing that Gal(L/Q) is the
non-abelian group S3.

On the other hand, suppose there is some integer m and some subset H ⊆ (Z/mZ)× such
that for all but finitely many primes p, the equation x2+23y2 = p has a solution if and only
if p ∈ H (mod m). By the same argument as before, p splits completely in L if and only if
p ∈ H (mod m). Consider the tower of fields

K(ζm)

K Q(ζm)

Q

Let p be a prime that splits completely in K(ζm). Then p splits completely in Q, so
p ≡ 1 (mod m). On the other hand, p also splits completely in K, so we find p ∈ H (mod
m). Therefore 1 ∈ H and so by Corollary 6, we find K ⊆ Q(ζm). So K/Q is abelian, a
contradiction.
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