
Chapter 6

Testing the Stochastic Flow Rule1

6.1 Introduction

In chapters 3 and 4 it was shown that the spot model simulation could reproduce

many features of granular drainage to a high degree of accuracy. However, a key

drawback is that it appears difficult to generalize to other forms of granular flow.

While the concept of a local relaxation appears general, the concept of a diffusing

free volume appears to be very specific to granular drainage, where one can make an

easy identification with particles exiting, and free volume being injected. In other

situations, such as a shear cell, or plate dragging, the motion of free volume appears

a lot less clear.

It also seems difficult to generalize the specific random walk process that was used.

While the approximately-gaussian velocity profiles in granular drainage, or the error

function profiles seen in shear zone experiments [45] seem to warrant explanation by

a diffusing object, other types of granular flows show different functional forms which

are less associated with diffusion. In Couette cell experiments, velocity profiles have

been shown to be exponential, while on inclined planes the velocity profiles show

a polynomial dependence, and it appears more difficult to explain these quantities

in terms of a diffusing object. Even in granular drainage, the results of the previ-

1This chapter is based on reference [66], The Stochastic Flow Rule: A Multi-Scale Model for
Granular Plasticity, published in Modelling and Simulation in Materials Science and Engineering,
2007. See http://www.iop.org/journals/msmse/ for more details.
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ous two chapters suggest that the spot model random walk process may be a large

oversimplification.

One of the attractions of the spot model for granular drainage is its motiva-

tion from mainly geometrical reasoning. However, it seems that a general model for

granular flow must ultimately be grounded in mechanical concepts. Formulating a

mechanical model for dense granular flow has an extremely long history, dating back

to Coulomb, who proposed the “Ideal Coulomb Material”: an idealized infinitesimal

element of material that would fail under certain stress conditions. Using this micro-

scopic picture, Mohr-Coulomb plasticity theory was developed [94, 118]. This theory

has become widely-accepted, but cannot be considered at a complete theory of gran-

ular materials, since it fails to provide an accurate prediction of many granular flows,

and it is also numerically ill-posed, sometimes leading to shocks – this is discussed in

more detail in the following section.

While physical ideas should play a role in a general theory, the results of the

previous sections suggest that particle discreteness plays an integral role in gran-

ular flow. Perhaps Mohr-Coulomb plasticity’s largest failure is that it assumes a

continuum throughout. Based on these ideas, Kamrin and Bazant formulated the

Stochastic Flow Rule (SFR) [65], attempting to rectify traditional plasticity theories

by accounting for the particle discreteness. The SFR provides a physical basis for

the spot model simulations considered in previous chapters, and predicts several of

the free parameters that were originally calibrated in chapter 3. In addition, it also

correctly predicts the exponential flow profile seen in the annular Couette cell, and

at the time of writing, we are not aware of any other model, continuum or discrete,

which can describe both of these cases, even qualitatively.

In this chapter, the continuum predictions of the SFR are tested. In section 6.4

the velocity profiles for a wide silo and an annular Couette cell are computed, and in

section 6.5 these are directly compared with DEM simulations in these two geometries.
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6.2 Continuum theories for two dimensional stress

Coulomb proposed the “Ideal Coulomb Element” as a representation of two dimen-

sional infinitesimal element of a dry cohesionless granular material. The element is

subject to a shear stress τ and a normal stress σ. The material is rigid (perfectly

plastic) until failure occurs when

|τ/σ| > µ, (6.1)

where µ is an internal friction coefficient which is a constant for the material. It is

also convenient to define a friction angle φ = tan−1 µ.

From this microscopic picture of an element, we would like to form a continuum

model, by using momentum balance. However, to get a closed system of equations,

additional assumptions are needed. An obvious problem stems from equation 6.1

being an inequality, corresponding to the fact granular materials have a memory, and

may have internal state variables that were set by their method of preparation.

To make progress, we consider the Critical State Theory of soils [118]. In this

theory, the stresses in a soil during flow converge on a “critical state line” in which

the pressure and the deviatoric stress tensor D0 = D− I(trD)/3 are linearly related.

This Drucker-Prager yield criterion is similar to the three dimensional analog of the

Mohr-Coulomb yield function. Thus, if we wish to compute stresses in a flowing

environment, we assume the Mohr-Coulomb incipient yield hypothesis, that |τ/σ| = µ

everywhere.

Let us focus entirely on 2D geometries (plane strain) complete with a 2D stress

tensor T defined in the plane of the flow. By requiring the yield criterion to be met

at all points, the limit-state assumption implies the following constraint: 1√
2
|T0| =

sinφ
(

1
2
trT

)
, where T0 is the deviatoric stress tensor and |A| =

√
A : A. A simple

way to uphold this constraint is to rewrite the stress field in terms of two stress

parameters (the Sokolovskii variables [127]): the average pressure p, and the “stress-

angle” ψ denoting the angle from the horizontal to the major principal stress. The
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components of the 2D stress tensor are then

Txx = −p(1 + sinφ cos 2ψ) (6.2)

Tyy = −p(1− sinφ cos 2ψ), (6.3)

Txy = Tyx = −p sinφ sin 2ψ (6.4)

from which it can be seen that p = − trT/2 and tan 2ψ = 2T12/(T11 − T22). The

convection-free 2D momentum balance law ∇ · T + Fbody = 0 then reduces to the

two variable system of hyperbolic PDEs

F x
body = (1 + sinφ cos 2ψ)px − 2p sinφ sin 2ψ ψx

+ sinφ sin 2ψ py + 2p sinφ cos 2ψ ψy (6.5)

F y
body = sinφ sin 2ψ px + 2p sinφ cos 2ψ ψx

+(1− sinφ cos 2ψ)py + 2p sinφ sin 2ψ ψy. (6.6)

The directions along which the yield criterion is met, the slip-lines, form at the angles

ψ ± ε from the horizontal where ε = π/4− φ/2.

To compute a velocity field, we need to specify a flow rule, which relates the

deformation rate tensor D to the stress tensor, specifying how the material will flow

during failure. A common assumption here is coaxiality which assumes that the

eigenvectors of T and D are aligned. This assumption comes from a belief that the

material is isotropic (even at the local scale), and thus if the material is pushed on a

certain set of axes, the response will also be aligned with those axes. In this situation,

it says that when a material element fails, it fails equally along both slip lines at the

same time.

Unfortunately, the resulting system of equations for T is extremely difficult to

solve. In many situations, and even in some simple geometries, the equations predict

shocks [94], which require sophisticated mathematical techniques to solve [52, 53, 54].

Given the large debate about forces in granular packings at the microscopic level,

the presence of shocks in this theory may not be fatal, and perhaps these shocks

158



characterize a physical concept, such as particle arching. However, what is perhaps

more troubling is that with the assumption of a coaxial flow rule, these theories would

predict discontinuities in the flow field also, and from all experiments and simulations

considered in this thesis, granular flows have always exhibited smooth flow fields.

6.3 The Stochastic Flow Rule

The Stochastic Flow Rule proposed by Kamrin and Bazant [65, 66] attempts to

resolve the above problems by assuming continuum stresses, but proposing that the

flow made up of the superposition of many discrete plastic flow events. They remove

the assumption of coaxiality, suggesting that it does not make sense for a discrete

chunk of granular material to deform along both slip planes. Instead, they suggest

that at each instant, the material will pick one slip plane randomly. Motivated by

geometrical considerations, they suggest that the size for these plastic deformation

events happens on the scale of spot.

Thus, they postulate that to generalize the spot model to an arbitrary geometry,

one can first calculate the Mohr-Coulomb stresses, and then generate flow by imag-

ining that spots carry out random walks on the lattice of Mohr-Coulomb slip lines.

Since the flow is generated by the spots which are a diffusing quantity, the predicted

flow field will be much smoother than that predicted by Mohr-Coulomb plasticity,

with discontinuities blurred out by diffusion.

To model this mathematically, they assume that the spot concentration follows a

Fokker-Planck equation

∂ρs

∂t
+ ∇ · (D1ρs) = (∇⊗∇) : (D2ρs). (6.7)

In steady-state flow, this simplifies to the time-independent drift-diffusion equation,

∇ · (D1ρs) = (∇⊗∇) : (D2ρs) (6.8)

where A : B = AijBij. Once solved, the mean particle velocity field u can be found
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by superposing the effects of all spots on all the particles. As discussed in previous

chapters, this can be calculated by convolving the spot influence function w(r, r′)

with the negative spot flux vector

u∗ = −D1ρs + ∇ · (D2ρs). (6.9)

Thus the particle velocity u is

u =

∫
w(r, r′)u∗(r′)dr′. (6.10)

The influence function, which in simple language describes the spot’s shape, should

have a characteristic width of three to five particle diameters, so that spots match

known correlation length data. In many situations, u∗ is close to u since the convo-

lution with w tends only to smooth out sharp changes in the spot flux density.

The remaining question is to derive the spot drift D1 and diffusion D2 from

mechanical principles from the underlying stress field. To begin, several assumptions

are made, such as proposing that the diffusion is isotropic so that D2 = D2I, and

that all length scales are set to the spot length scale, so that |D1| = Ls/∆t, and

D2 = L2
s/2∆t. All that remains is to find the direction of the spot drift, which can

be calculated from looking at local stress imbalances; for a full treatment, the reader

should refer to [65] and [66].

6.4 Solutions for the flow in two simple geometries

6.4.1 Wide silo

For the wide, 2D silo with smooth walls and a flat bottom, the stress balance equations

can be solved analytically, giving

ψ =
π

2
, p =

fg(zm − z)

1 + sinφ
(6.11)
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(a)
Outflow

(b)

Figure 6-1: Slip-line fields (from Mohr-Coulomb Plasticity) and the spot drift field
(from the SFR) displayed for (a) a wide silo draining under gravity, and (b) shearing
in an annular Couette cell (no gravity).

where z is the distance from the silo bottom, zm is the distance from the bottom to the

free surface, and fg is the material’s weight density. As described in [66] this results

in a regular lattice of diagonal slip lines, with a spot drift vector pointing uniformly

upwards. Thus, we recover a spot density which satisfies a diffusion equation

∂ρs

∂z
=
Ls

2
∇2ρs. (6.12)

as in the formulation in the previous chapters, and for a point orifice we obtain

ρs ≈
exp(−x2/4bz)√

4πbz
(6.13)

where the diffusion parameter is given by b = Ls/2. This matches the previous

analysis, but here the diffusion parameter no longer needs to be fitted; it is given

directly by the spot length. Using the typical range of spot lengths to be 3d < Ls < 5d,

the typical range of b values is predicted to be 1.5d to 2.5d, which compares very well

to the results of previous chapters. In the literature [95, 114, 27, 137, 84], granular

drainage experiments have predicted a range for b between 1.3d and 3.5d, in good

agreement with the prediction.
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6.4.2 Annular Couette cell

In annular Couette flow, material fills the region between two rough cylinders and is

sheared by rotating the inner cylinder while holding the outer stationary. To solve for

the stresses, we first convert the stress balance equations to polar coordinates (r, θ)

and require that p and ψ obey radial symmetry. This simplifies to

∂ψ∗

∂r
= − sin 2ψ∗

r(cos 2ψ∗ + sinφ)
,

∂η

∂r
= − 2 sinφ

r(cos 2ψ∗ + sinφ)
(6.14)

where η = log p and ψ∗ = ψ + π
2
− θ. As described in [66], this must be solved

numerically using fully rough inner wall boundary conditions. As shown in figure 6-1

this gives a drift field that points inward, but gradually opposes the motion of the

inner wall. The competition between diffusion, and an inwards-point diffusion leads

to an approximately exponential velocity profile.

To find the velocity field u requires convolving the solution for spot drift u∗

with the spot influence function. To obtain a solution close to the walls requires

a specification of how spots interact with the wall, and we consider two separate

hypotheses:

1. Assume the u∗ equals the wall velocity wherever spots overlap with the wall.

2. View the region inside the wall as a bath of non-diffusive spots which cause

particles to move in a manner which mimics the rigid wall motion.

The second hypothesis creates velocity profiles which decay faster. Regardless of

which hypothesis is chosen, the bulk behavior remains the same.
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6.5 Comparing SFR Predictions to DEM Simula-

tions

6.5.1 The silo geometry

We considered DEM simulations of a quasi-2D silo with plane walls at x = ±75d, z = 0

with friction coefficient µw = 0.5, and made the y direction periodic with width 8d. To

generate an initial packing, 90,000 spherical particles with contact friction coefficient

µc = 0.5 were poured in from a height of z = 130d at a rate of 378τ−1. After all

particles are poured in at t = 238τ , the simulation is run for an additional 112τ in

order for the particles to settle. After this process has taken place, the particles in

the silo come to a height of approximately z = 62.2d. To initiate drainage, an orifice

in the base of the container is opened up over the range −3d < x < 3d, and the

particles are allowed to fall out under gravity; figure 6-2 shows a typical simulation

snapshot during drainage.

We collected 282 snapshots every 2τ , and made use of this information to construct

velocity cross sections. A particle with coordinates xn at the nth timestep and xn+1

at the (n + 1)th timestep makes a velocity contribution of (xn+1 − xn)/∆t at the

point with coordinates (xn +xn+1)/2. This data can then be appropriately binned to

create a velocity profile; we considered bins of size d in the x direction, and created

velocity profiles for different vertical slices |z − zs| < d/2.

Since the SFR makes predictions about the velocity profile during steady flow,

we choose a time interval t1 < t < t2 over which the velocity field is approximately

constant. Choosing this interval requires some care, since if t1 is too small then initial

transients in the velocity profile can have an effect, and if t2 is too large, then the

free surface can have an influence. For the results reported here, we chose t1 = 120τ

and t2 = 200τ .

Figure 6-3 compares the SFR predictions for this environment to the DEM sim-

ulation. The displayed simulation data uses a particle contact friction of µc = 0.3.

Since the typical range of Ls from velocity correlations in simulations [112] and exper-
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iments [65] is 3d to 5d, we choose Ls = 4d to generate the approximate SFR solution.

We emphasize that this parameter is not fitted. In this geometry, the slip-lines are

symmetric about the drift direction causing both D1 and D2 to become independent

of the internal friction. In prior simulations we have found that particle contact fric-

tion has some effect on the flow [113], and analogously the internal friction should

play some role in the determination of b. Here, the loss of friction dependence comes

from our simplification that D2 is isotropic. A less simple but more precise definition

for D2 would anisotropically skew the spot diffusion tensor as a function of internal

friction: the slip-lines, which we model as the directions along which a spot can move

(roughly), intersect at a wider angle as internal friction is increased.

Even so, our simple model captures many of the features of the flow and accurately

portrays the dominant behavior. The downward velocity, especially at z = 10d,

strongly matches the predicted Gaussian. Perhaps a more global demonstration of

the underlying stochastic behavior in the SFR is evident in Figure 6-4, where a

linear relationship can be seen between the mean square width of vz and the height,

indicating that the system variables are undergoing a type of diffusive scaling. The

SFR solution also predicts this linear relationship and, in particular, that the slope

should equal 2b = Ls. The agreement shown in Figure 6-4 for such a typical Ls

value is a strong indicator that the role of the correlation length in the flow has been

properly accounted for in the SFR.

6.5.2 The Couette geometry

For the Couette geometry, we considered five different interparticle friction coeffi-

cients, µc = 0.1, 0.3, 0.5, 0.7, 0.9, and for each value an initial packing was generated

using a process similar to that for the silo. We consider a large cylindrical container

with a side wall at r = 64d with friction coefficient µw = µc, and a base at z = 0

with friction coefficient µw = 0. For each simulation, 160,000 particles are poured in

from a height of z = 48d at a rate of 4, 848τ−1. After all particles are introduced

at t = 33τ , the simulation is run for an additional time period of 322τ to allow the

particles to settle. After this process has taken place, the initial packings are approx-
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Figure 6-2: A typical snapshot of the silo system during drainage, taken at t = 60τ .
The colored bands are initially spaced 10d apart, and highlight the deformations that
occur during flow.

imately 11.5d thick. Packings with µc = 0.9 are approximately 2% thicker than those

with µc = 0.1.

The shearing simulations take place in an annulus between two radii, rin and rout.

A rough outer wall is created by freezing all particles which have r > rout; any forces

or torques that these particles experience are zeroed during each integration step.

Similarly, all particles between rin − 4d and rin are forced to rotate with a constant

angular velocity ω around r = 0. Particles with r < rin − 4d are deleted from the

simulation and an extra cylindrical wall with friction coefficient µw = µc is introduced

at r = rin−4d to prevent stray surface particles from falling out of the shearing region.

A typical run is shown in Figure 6-5.

These simulations of the Couette geometry caused some problems with finding

an efficient load-balancing scheme for the parallelization. In the silo geometries con-

sidered in this thesis, the particles are usually equally distributed in a box-shaped

region of space, so when the simulation is divided into a rectangular grid of subdo-

mains, each processor gets approximately the same number of particles, leading to

good load-balancing. However, if an annular geometry is subdivided into rectangular

grid of subdomains, some the processors may have many more particles than others,
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Figure 6-3: Mean downward velocity profiles at two different heights in a wide silo.
DEM results are plotted against the SFR predictions at heights of z = 10d, 30d.

and since the speed of the code is determined by the speed of the slowest node, this is

undesirable. We therefore exploited the radial symmetry of the geometry, and made

a 2× 2 grid of processors with boundaries at x = y = 0, so that each computational

subdomain contains approximately a quarter of the total particles. The twenty nodes

of the AMCL were then utilised by running five different simulations concurrently.

From the five initial packings, we carried out eight different shear cell simula-

tions to investigate the effects of friction, angular velocity, and inner wall radius.

To investigate the effect of friction, five runs were carried out with ω = 0.01τ−1 and

rin = 40d, for µc = 0.1, 0.3, 0.5, 0.7, 0.9. To examine the effect of the inner wall radius,

an additional run with rin = 30d and rout = 50d was carried out, with µc = 0.3 and

ω = 0.01τ−1 kept constant. To look at the effect of angular velocity, a further two

runs with ω = 0.05τ−1 and ω = 0.2τ−1 were carried out, with µc = 0.5 and rin = 40d

kept constant. For each simulation, we collected 561 snapshots. For the runs where

166



40

60

80

100

120

140

5 10 15 20 25 30 35

V
ar

(v
z
)

(d
2
)

Height (d)

Simultion
SFR
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sections in the DEM simulation, compared to SFR predictions.

rin = 40d, approximately 108, 350 particles were simulated, corresponding to 2.0Gb

of data. For the run with rin = 30d, 88, 657 particles were simulated, corresponding

to 1.7Gb of data.

The simulation results show a good empirical agreement with previous experimen-

tal work on shear cells [80, 87, 72, 21, 88]. In all cases, we see an angular velocity

profile that falls off exponentially from the inner cylinder, with a half-width on the

order of several particle diameters. Near the inner wall, the flow deviates from ex-

ponential, which is an effect seen in some prior studies but is more dramatic here.

Following methods similar to those used in silo simulation, we used the snapshots to

construct an angular velocity profile. We used bins of size d/2 in the radial direction,

and we looked at velocity profiles in different vertical slices zlow < z < zhigh.

Since the simulation geometry is rotationally symmetric, our angular velocity

profile can most generally be a function of r, z and t. Ideally, we hope that ω is
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Figure 6-5: A typical snapshot of the annular Couette cell during shearing based on
the simulation with rin = 40d, ω = 0.01τ−1, and µc = 0.5. Dark blue particles (with
r > rout) are frozen during the simulation, while dark red particles (with r < rin) are
rotated with angular velocity ω. The particles between rin and rout undergo shearing.
The colored bands of grey, cream, and cyan were initially radial, and in this snapshot,
after fifty frames, the deformations can be clearly seen.

primarily a function of r, with only a very weak dependence on z and t, but we began

by studying the effects of these other variables. To determine the dependence on time,

the velocity profiles were calculated over many different time intervals. As would be

expected, the simulation had to be run for small amount of time before the velocity

profile would form; this happens on a time scale of roughly 50τ , and the results

suggest a longer time is needed for the cases with low friction. However, the data also

shows time-dependent effect happening on a longer scale: as the shearing takes place,

there is a small but consistent migration of particles away from the rotating wall,

which has a small effect on the velocity profile. This effect does eventually appear to

saturate, but because of this, we chose to discard the simulation data for t < 500τ

and calculate velocity profiles based on the time window 500τ < t < 1100τ .
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To investigate the angular velocity dependence on the height, we calculated the

velocity profiles in five different slices zh < z < zh + d for zh = d, 3d, 5d, 7d, 9d. Near

the inner rotating wall, the velocity profiles show very little dependence on height.

However, in the slow-moving region close to the fixed outer wall, large differences

can be seen, with particles in the lowest slice moving approximately 30% slower than

those in the central slice, and those in the top slice moving approximate 30% faster.

The three central slices show differences of at most 10%, and we therefore chose to

use the range 3d < z < 8d.

The SFR treats the correlation length as a material property independent of the

flow geometry or other state variables. To see how well this notion is upheld, we solve

the SFR in the annular Couette geometry using the same correlation length (Ls = 4d)

that was used in the displayed silo prediction, figure 6-4. It is then compared to a

simulation of annular flow which uses the same grain properties (µc = 0.3).

Results from Figure 6-6 show that regardless of the wall hypothesis, the SFR

prediction captures the same qualitative features of the simulation. The SFR and

simulation both predict a flatter range near the inner wall, followed by exponential

decay. Near the inner wall, it does appear that wall hypothesis 1 (“no slip condition”

for spots) gives a closer match to the simulation.

The SFR, when applied to the annular flow geometry, does predict a slight de-

pendence of the flow on the internal friction. We emphasize that internal friction is

not the same quantity as particle contact friction µc, though we believe if the con-

tact friction is increased, inevitably, the internal friction must be as well. Spherical

grains almost always have internal friction angles in the range φ = 20◦ to φ = 30◦,

so to represent this range as best as possible, we simulated flows varying the particle

contact friction from µc = 0.1 to µc = 0.9. Figure 6-7 displays velocity profiles for

five different values of friction. In the semi-log format, profiles appear almost linear

over the range 45d < r < 58d indicating a very good fit to an exponential model of

velocity.

Since the curves in the figure are very close, and exhibit some experimental noise,

it is difficult to discern any small differences in the widths of the velocity profiles.
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µc b
0.1 0.974d
0.3 0.983d
0.5 1.033d
0.7 1.046d
0.9 1.032d

φ b
20◦ 1.026d
22◦ 1.038d
24◦ 1.052d
26◦ 1.069d
28◦ 1.084d
30◦ 1.102d

Table 6.1: (Left) Simulation: Half-widths of the shearing velocity profiles for different
values of µc, calculated by fitting the functional form f(r) = a−(log 2)r/b to log v/vw

over the range 45d < r < 58d. (Right) SFR: Fits the predictions to the same form
and uses Ls = 3d.

However, table 6.1 shows the results of applying linear regression to extract a half-

width for each velocity profile. We see differences on the order of 5%, roughly in line

with the SFR. More importantly, the trend of increasing flow width with increasing

friction is seen in both.

When the inner wall radius is decreased, Figure 6-8 indicates that the shear band

shrinks but the decay behavior in the tail changes only minimally. The SFR predicts

this qualitative trend as well, but significantly underestimates the size of the shear-

band decrease.

In agreement with past work on Couette flow [80, 21], we too find that the nor-

malized flow profile is roughly unaffected by the shearing rate (see Figure 6-9). As

previously discussed, this behavior is in agreement with the SFR, which always per-

mits flow fields to be multiplied by a constant.

6.6 Conclusion

The crucial principles motivating the Stochastic Flow Rule have been presented, and

its validity has been assessed by checking analytical predictions for silo and annular

Couette flow against discrete-element simulations. Using the same parameters for

both cases, without any fitting, the SFR manages good predictions for these two very

different flow geometries, which it seems cannot be described, even qualitatively, by

any other model. The model was also shown to capture the “diffusive” type flow
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solutions use Ls = 4d.
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Figure 6-9: Velocity profiles for three different angular velocities, with µc = 0.5 and
rin = 40d. The time windows over which the velocities are computed are scaled
according to the angular velocity.
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properties unique to granular materials such as Gaussian downward velocity in the

draining silo and exponentially decaying velocity in the annular Couette cell.

Our simulations also indicate that the slight changes in flow brought on by varying

the inter-particle contact friction in the annular flow geometry match the trends the

SFR predicts when the internal friction angle is appropriately varied. The trend is

also captured when the inner wall radius is varied, though the quantitative agreement

is not as strong. In agreement with past studies on annular Couette flow, and in

validation of one of the first principles behind the SFR, we find in our simulations

that the flow rate does not significantly affect the normalized flow profile over a

significant range of rates.
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